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Abstract:    A novel method based on rough sets (RS) and the affinity propagation (AP) clustering algorithm is developed to 
optimize a radial basis function neural network (RBFNN). First, attribute reduction (AR) based on RS theory, as a preprocessor of 
RBFNN, is presented to eliminate noise and redundant attributes of datasets while determining the number of neurons in the input 
layer of RBFNN. Second, an AP clustering algorithm is proposed to search for the centers and their widths without a priori 
knowledge about the number of clusters. These parameters are transferred to the RBF units of RBFNN as the centers and widths of 
the RBF function. Then the weights connecting the hidden layer and output layer are evaluated and adjusted using the least square 
method (LSM) according to the output of the RBF units and desired output. Experimental results show that the proposed method 
has a more powerful generalization capability than conventional methods for an RBFNN.  
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1  Introduction 
 

The radial basis function neural network 
(RBFNN), as a type of feedforward neural network 
(NN), has recently attracted extensive research in-
terest because of its simple architecture, high ap-
proximation and regularization capability, and good 
local specialization and global generalization ability. 
RBFNN has proved to be able to approximate any 
reasonable continuous function mapping with a sat-
isfactory level of accuracy (Zhang and Zhang, 2004). 
To date, RBFNN has been widely used in function 
approximation, pattern recognition, data classifica-

tion, control, time series prediction, and nonlinear 
system identification (Guerra and Coelho, 2008; Jing 
et al., 2008; Lee and Ko, 2009; Beyhan and Alci, 
2010; Jayasree et al., 2010; Hou and Han, 2011).  

However, optimizing the structure of RBFNN 
remains challenging. The parameters of RBFNN 
involve the numbers of neurons in the input layer, 
hidden layer, and output layer, RBF centers and 
widths of neurons in the hidden layer, and linear 
weights connecting the hidden layer and output layer. 
Each neuron in the hidden layer of RBFNN produces 
a radically symmetric response around a node pa-
rameter vector called a ‘center’ (Du et al., 2010). As 
is well known, the performance of RBFNN critically 
relies on the selection of RBF centers. Several dif-
ferent learning approaches have been presented to 
determine the RBF centers of neurons in the hidden 
layer. First, the conventional strategy is a clustering 
technique including k-means clustering, fuzzy 
k-means clustering, and hierarchical clustering, 
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through which RBF centers are selected randomly 
from input data and adjusted constantly by the clus-
tering algorithms until they no longer change (Zhang 
and Zhang, 2004; Park et al., 2011; Shen et al., 2011). 
However, these algorithms cannot determine the 
number of hidden neurons when no prior knowledge 
is provided, and usually result in a large number of 
RBF centers. Secondly, orthogonal least squares 
(OLS) is regarded as a popular approach to selecting 
RBF centers, based on their contributions to maxi-
mizing the model error reduction ratio (Chen et al., 
1991; Su et al., 2009). Furthermore, the recursive 
OLS algorithm and the fast recursive algorithm (FRA) 
have also been presented for the selection of RBF 
centers (Yu et al., 1997; Du et al., 2008). Although 
these algorithms are of fast convergent speed, they 
cannot avoid local minima and easily produce 
suboptimal solutions. Finally, in recent years, evolu-
tion algorithms, such as the genetic algorithm (GA) 
and differential evolution (DE), have been adopted 
widely to optimize RBF centers (Wu et al., 2008; Qu 
et al., 2009; Coelho and Santos, 2011). Although the 
more reduced structure can be achieved through 
evolution algorithms, a better generalization per-
formance cannot usually be guaranteed. 

AP clustering, as a new clustering technique 
based on message passing, has been proposed by 
Frey and Dueck (2007). The AP clustering algorithm 
has been shown to be very useful for many applica-
tions in face images, gene expression, and text sum-
marization. Unlike previous methods, AP simulta-
neously considers all data points as potential exem-
plars, and recursively transmits real-valued messages 
along the edges of the network until a good set of 
centers is generated (Xia et al., 2008). 

Based on the above analysis, in this paper we 
propose a novel optimizing method for RBFNN 
based on rough sets (RS) and the AP clustering al-
gorithm. To determine the centers and widths of RBF 
units, different from the conventional methods, the 
proposed method can find the centers and widths of 
clusters automatically, without defining the number 
of clusters through the AP clustering algorithm. Then 
these parameters are transferred to the hidden layer 
of RBFNN as the centers and widths of RBF units. 
Meanwhile, the number of the neurons of RBF units 
equals the number of RBF units. In addition, to 
eliminate noise and redundant attributes of datasets, 

attribute reduction (AR) based on RS is used to re-
duce the datasets and determine the number of the 
neurons in the input layer.  
 
 
2  Structure of RBFNN 

 
RBFNN consists of three different layers with a 

feedforward architecture: input layer, hidden layer, 
and output layer. The structure of RBFNN is shown 
in Fig. 1. Here the input layer is a set of m neurons, 
which accept the elements of an m-dimensional input 
vector. The input neurons are fully connected to a 
hidden layer that is composed of h hidden neurons, 
called RBF units. RBF units are connected directly to 
all the elements in the output layer, which activates 
the response of the neural network to the input pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Of particular note is the hidden layer, in which 
each RBF unit contains an RBF. The Gaussian func-
tion is most frequently used as the RBF basis  
function: 
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where ||x−ci|| is the Euclidean distance between input 
vector x and center ci, and σi represents the width of 
the ith RBF unit. The Gaussian function, which has 
the property of noise suppression, is bounded, strictly 
positive, and continuous. Thus, for a given input 
pattern, only the RBF units whose centers are close to 
the input pattern will produce nonzero activation 
values to the input pattern (Xia et al., 2008).  

Fig. 1  The structure of a radial basis function neural 
network (RBFNN) 
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The output of RBFNN is a linear combination of 
the responses of RBF units in the hidden layer. The 
values for the output neurons can be calculated as 
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where yk(x) is the output of the kth neuron in the 
output layer, wjk represents the weight from the jth 
neuron of the hidden layer to the kth neuron of the 
output layer, and n is the number of neurons in the 
output layer.  
 
 
3  The proposed method 
 

When an RBFNN is constructed, it is important 
to determine its main parameters including the 
number of neurons in the input layer, and centers and 
widths of RBF units in the hidden layer. In this sec-
tion, a novel optimizing method is proposed for the 
RBFNN to determine these parameters of RBFNN. 

3.1  Attribute reduction 

In general, the number of neurons in the input 
layer is equal to the dimensionality of the input 
vector. However, the given datasets frequently in-
volve some noise data and redundant attributes, 
which will weaken the generalization ability of the 
classifier and increase its training time. Thus, it is 
primarily important to eliminate noise data and re-
dundant attributes before datasets are inputted to the 
classifier. To solve these problems, in this study, 
rough sets (RS) are adopted as the preprocessor to 
eliminate noise data and redundant attributes. Then 
the number of neurons in the input layer is equal to 
the number of attributions after AR. 

RS theory, first introduced by Pawlak in 1982 
(Pawlak et al., 1995), has proved to be a powerful 
tool to deal with vagueness and uncertainty of in-
formation. RS theory is a mathematical approach to 
managing vague and uncertain data or problems 
related to information systems, indiscernibility rela-
tions and classification, attribute dependence and 
approximation accuracy, reduction and core attribute 
sets, and decision rules (Cheng et al., 2010). AR 
based on RS is a process of finding an optimal subset 
of all attributes according to a certain criterion so that 

the attribute subset is good enough to represent the 
classification relation of data. This preserves the 
quality of sorting after AR and requires no human 
input or domain knowledge other than the given 
datasets. The algorithm for AR of the input vector is 
as follows. 

 
Algorithm 1    AR based on RS theory 
Input: the datasets including sample attributes and 
classes. 
Output: the reduced datasets. 

Step 1: Initialization. Partition condition attrib-
utes and decision attribution of the datasets. The 
iteration variable i=1. 

Step 2: Remove the ith condition attribute of 
datasets. According to the remaining condition at-
tributes and decision attribution, analyze if the deci-
sion attribute indicates correctly and unambiguously 
the classification of condition attributes. If not, the 
ith condition attribute cannot be removed. Otherwise, 
this attribute is marked with the deleting label. 

Step 3: i=i+1. If i is not larger than the number 
of the original condition attributes, return to step 2. 
Otherwise, remove the attributes of the original 
datasets with the deleting labels, and then the re-
maining attributes and decision attribution comprise 
the reduced datasets, and exit Algorithm 1. 

3.2  Determining the centers and widths of RBF 
units 

Of all the parameters, the centers of RBF units 
are the most important. Once the centers of RBF 
units are determined, the RBFNN is regarded as a 
linear transformation from the input to the output. 
Considering that the centers of clustering need to be 
evaluated in advance in the conventional methods, in 
this study we propose a novel method to search 
automatically for the centers and widths of RBF units 
using the AP clustering algorithm without defining 
the number of clustering centers. 

In view of the advantage of AP clustering, we 
use it to search automatically for the centers of RBF 
units. The algorithm determining the number of 
centers and the widths of RBF units by AP clustering 
is shown as follows. 

 
Algorithm 2    AP clustering for determining the 
centers and widths of RBF units 
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Input:  
DS(N): the datasets including N samples. 
S(i, j): the similarity of point i to point j. 
P(j): the preference of point j, which indicates if 
point j is chosen as a cluster center. 
Output: centers and widths of RBF units by AP 
clustering. 

Step 1: Initialization. Define the maximum 
number of iterations MaxN and damping factor lam. 
Initialize similarity matrix SN×N (Sij=S(i, j)) according 
to the similarity of the data points. 

Step 2: Calculate the responsibility and avail-
ability according to the following equations:  
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where R(i, k) represents the responsibility from data 
point i to candidate exemplar point k, and A(i, k) is 
the availability from candidate exemplar point k to 
point i. 

Step 3: Evaluation. Judge if point k is the center 
of clustering, using the following rule:  
 

( , ) ( , ) 0.R k k A k k                (6) 
 

Step 4: Update the R(i, k) and A(i, k):  
 

( , ) (1 lam) ( , ) lam ( 1, ),R i k R i k R i k         (7) 

( , ) (1 lam) ( , ) lam ( 1, ).A i k A i k A i k         (8) 
 

Step 5: If the terminal conditions of AP clus-
tering are met, go to step 6; otherwise, return to step 2. 

Step 6: Record the centers and their number 
according to the results of AP clustering, and calcu-
late the widths of the clustering centers:  
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where ci is the vector of the ith center, NCi represents 
the number of data points in the ith center, xj is the jth 

data point, and ||·|| represents the Euclidean distance 
between two data points. Then exit Algorithm 2. 

3.3  Description of the proposed method 

The proposed algorithm for training the 
RBFNN is stated below. 

 
Algorithm 3    The proposed algorithm for training 
the RBFNN 
Input: the datasets including sample attributes and 
classes. 
Output: the results of RBFNN classification. 

Step 1: AR. Reduce the datasets through AR 
based on RS. Determine the number of neurons of the 
input layer according to the number of reduced  
attributions. 

Step 2: AP clustering. Calculate the centers and 
widths of clusters, and transfer these parameters to 
the RBF units. 

Step 3: Calculate the output of the hidden layer 
according to the centers and widths of the RBF units. 

Step 4: Evaluate the weights between the hidden 
layer and output layer using the least square method 
(LSM) according to the output of the RBF units and 
the desired output. 

Step 5: Compute the correct rate of RBFNN 
classification. Then exit Algorithm 3. 
 
 
4  Experimental results 
 

In this section we present three groups of ex-
periments on several datasets from the UCI Machine 
Learning Repository (Blake and Merz, 1998). The 
first is used to illustrate the characteristics of the 
proposed method, and the other two are presented to 
compare the classification ability of our method with 
that of other methods. 

4.1  Experiment 1 

Four datasets including Iris, Wine, Crx, and Zoo 
are used. Table 1 shows the sample size, the number 
of classes, and the number of attributions of these 
four datasets. 

Initially, the data including training data and 
testing data are processed through AR based on RS. 
The numbers of attributions before and after AR are 
listed in Table 2. The number of attributions of Iris 
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datasets does not change obviously, as the values of 
condition attributions of Iris datasets are all real, and 
thus in the AR algorithm the datasets are considered 
to have more patterns so that their attributions cannot 
be reduced obviously. In contrast, the numbers of 
attributions of other datasets are reduced obviously.  

Next, the datasets after AR are equally split into 
training datasets and testing datasets. Training sets 
are used to train the RBFNN and testing sets are used 
to verify the generalization ability of the network. In 
this phase, we first use the AP clustering algorithm to 
determine the number, centers, and widths of RBF 
units. As we know, among all the parameters of AP, 
the most important is the preference (P), which 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

directly influences the number of clusters. Note that 
P is negative. In our experiments, we select three 
different values of P to deal with the datasets, in-
cluding the median of similarity matrix S (denoted as 
median(S)), its half (median(S)/2), and its double 
(2*median(S)). The results of clustering using the 
different values of P are shown in Table 3. When P 
increases, the number of clustering centers becomes 
smaller, regardless of the condition (with or without 
AR). The number of clustering centers with AR is 
almost always smaller than that without AR (except 
when P=2*median(S)), which indicates that with AR 
some noise and redundant attributes of the datasets 
can be eliminated. The running time of the AP algo-
rithm with AR is less than that without AR when 
P=median(S)/2. In other conditions, however, the 
running time of the AP algorithm with AR is more 
than that without AR.  

To illustrate more clearly the convergence of the 
AP algorithm, we provide Figs. 2 and 3 to describe 
the iteration process of the AP algorithm under 
varying conditions. Comparison of Figs. 2 and 3 
shows that the performance of the AP algorithm in-
creases when P increases. Meanwhile, the AP algo-
rithm with AR almost always has better fitness (net 
similarity) than that without AR, especially when 
testing Wine and Crx datasets. This indicates that AP 
clustering benefits from AR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Parameters of the four datasets 

Dataset 
Number of  

classes 
Number of  

samples 
Number of  
attributions 

Iris 3 150 4 
Wine 3 178 13 
Crx 2 690 15 
Zoo 7 214 16 

 
Table 2  Attribute reduction (AR) based on rough sets

Number of attributions 
Dataset 

Before AR After AR 
Iris 4 3 

Wine 13 2 
Crx 15 5 
Zoo 16 6 

 
Table 3  The results of affinity propagation clustering for three different values of preference (P) 

Number of clustering centers 
Without AR With AR Dataset 

Number 
of classes 

P=median(S)/2 P=median(S) P=2*median(S) P=median(S)/2 P=median(S) P=2*median(S)
Iris 3 11 9 4 10 7 5 

Wine 3 28 14 7 15 9 7 
Crx 2 68 44 26 59 40 28 
Zoo 7 17 9 7 11 8 8 

Time (s) 
Without AR With AR Dataset 

Number 
of classes 

P=median(S)/2 P=median(S) P=2*median(S) P=median(S)/2 P=median(S) P=2*median(S)
Iris 3 5.625 5.125 4.609 4.797 5.172 5.391 

Wine 3 5.750 6.656 4.250 4.813 4.437 4.422 
Crx 2 31.266 14.594 15.547 15.547 35.922 18.516 
Zoo 7 15.750 7.094 7.002 11.235 9.062 8.782 

Number of iterations 
Without AR With AR Dataset 

Number 
of classes 

P=median(S)/2 P=median(S) P=2*median(S) P=median(S)/2 P=median(S) P=2*median(S)
Iris 3 181 154 138 152 158 178 

Wine 3 169 220 135 157 140 141 
Crx 2 184 170 164 176 432 217 
Zoo 7 578 253 235 427 341 337 

 



Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(2):131-138 136 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The iteration process of the affinity propagation algorithm without attribute reduction 
(a) Iris datasets; (b) Wine datasets; (c) Crx datasets; (d) Zoo datasets 
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Fig. 3  The iteration process of the affinity propagation algorithm with attribute reduction 
(a) Iris datasets; (b) Wine datasets; (c) Crx datasets; (d) Zoo datasets 
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According to the results of the AP clustering 
algorithm, we can calculate the centers, their widths 
and numbers, and transfer these parameters to the 
RBF units of RBFNN. According to Eq. (1), we can 
evaluate the output of RBF units. In the next phase of 
training, the main work is to estimate the weights 
connecting the hidden layer and output layer, de-
pending on the output of the RBF units. Then the 
weights are adjusted according to LSM, depending 
on the mean-square error between the output of 
RBFNN and the expected output of the samples. 
Table 4 lists the results of calculating the centers of 
the RBF units, achieved by the proposed method and 
k-means clustering. The proposed method gives 
better results than k-means clustering. Meanwhile, 
the classification accuracy rate of RBFNN optimized 
by the proposed method with AR is very close to that 
without AR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Experiment 2 

The second group contains three datasets: the 
Pima Indian diabetes problem (dataset 1), the Wis-
consin breast cancer problem (dataset 2), and the 
Ionosphere data classification problem (dataset 3) 
(Mao and Huang, 2005). The first two datasets are 
tested by cross-validation to estimate the classifica-
tion accuracy of RBFNN. Table 5 lists the classifi-
cation accuracy results.  

As shown in Table 5, our method achieves a 
similar performance to the method proposed by Mao 
and Huang (2005). Specifically, the experiment of 
the eight-fold on dataset 2 achieves a classification 
accuracy of 100%, and its average performance is 
superior to that of Mao and Huang (2005)’s method. 

 
 
 
 
 
 
 

4.3  Experiment 3 

Cleveland data on cardiology patients are used 
in the third experiment. The dataset has 303 samples 
with 13 input attributes and one output attribute, and 
is divided into a training dataset and a test dataset 
consisting of 152 and 151 samples, respectively. 

To compare our method with the methods men-
tioned in Mao (2002), we also perform a ten-fold 
cross-validation. Table 6 gives a comparison of our 
results with these methods, showing that our method 
is superior to these methods, except linear discrimi-
nation analysis and Naïve Bayes, with respect to 
average accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
In general, the performance of our method is 

reasonably good. This also indicates that the AP 
clustering algorithm can effectively find the centers 
of the RBF units without a priori knowledge about 
the number of centers. 

 
 

5  Conclusions 
 

The aim of this paper is to introduce a novel 
method optimizing RBFNN based on RS theory and 
the AP clustering algorithm. Through AR based on 
RS theory, noise data and redundant attributions are 

Table 4  The classification accuracy rate of RBFNN  

Classification accuracy rate (%) 
Method 

Iris Wine Crx Zoo 

AP without AR     

P=media(s)/2 96.00 93.26 87.83 88.24

P=media(s) 96.00 93.26 88.98 88.24

P=media(s)*2 93.33 94.38 88.12 94.12

AP with AR     

P=media(s)/2 96.00 89.89 87.29 86.27

P=media(s) 96.00 91.01 88.41 88.24

P=media(s)*2 94.67 93.26 87.83 92.17

k-means without AR 86.67 86.52 86.97 84.31

k-means with AR 93.33 88.76 86.38 82.35

AP: affinity propagation; AR: attribute reduction 

Table 5  The classification accuracy of the second 
group of datasets 

Classification accuracy (%) Dataset 
No. Mao and Huang (2005) Our method 

1 78.39±5.2 78.13±4.69 

2 97.4±2.2 97.96±2.04 

3 98.0 98.0 

Table 6  Comparison with the methods mentioned 
in Mao (2002) for the Cleveland data on cardiology 
patients 

Method Accuracy (%) 

Our method 82.12±1.34 

Mao (2002) 81.8 

Linear discrimination analysis 84.5 

Naïve Bayes 82.5–83.4 

SVM (five-fold cross-validation) 81.3 
CART (classification and regression 
tree) 

80.8 

C4.5 (Quinlan’s induction decision, 
five-fold cross-validation) 

77.8 
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eliminated, and the number of neurons in the input 
layer is also reduced. Furthermore, the AP clustering 
algorithm, in which there is no need to define the 
number of clusters in advance, can determine auto-
matically the centers and widths of the RBF units. 
The better performance obtained by the proposed 
method is shown by simulation results. In the future, 
we will focus on improving the performance of the 
AR algorithm and adjusting, dynamically, the pa-
rameters of AP clustering according to the output of 
RBFNN. 
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