
Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 232

Array based HV/VH tree: an effective data structure for

layout representation*

Jie REN†, Wei-wei PAN, Yong-jun ZHENG, Zheng SHI†‡, Xiao-lang YAN
(Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)

†E-mail: {renjie, shiz}@vlsi.zju.edu.cn

Received July 4, 2011; Revision accepted Oct. 25, 2011; Crosschecked Feb. 8, 2012

Abstract: We present a new data structure for the representation of an integrated circuit layout. It is a modified HV/VH tree
using arrays as the primary container in bisector lists and leaf nodes. By grouping and sorting objects within these arrays together
with a customized binary search algorithm, our new data structure provides excellent performance in both memory usage and
region query speed. Experimental results show that in comparison with the original HV/VH tree, which has been regarded as the
best layout data structure to date, the new data structure uses much less memory and can become 30% faster on region query.

Key words: Very large scale integration (VLSI), Layout representation, HV/VH trees, Region query
doi:10.1631/jzus.C1100193 Document code: A CLC number: TN47

1 Introduction

The fabrication of an integrated circuit (IC) is
costly and time-consuming; therefore, it is essential
that the layout’s correctness be verified before the
final tape-out. A series of processes are standard in
this layout verification routine, such as design rule
check, parasitic extraction, transistor extraction, and
layout versus schematic (LVS). All these processes
are based on geometric operations on circuit layout;
thus, it is important to choose a proper data structure
for layout representation. The data structure needs to
be memory-efficient and faster enough for common
layout operations.

An important operation on circuit layout is re-
ferred to as region query, which is defined as finding
the objects that intersect with a given rectangular
window. Region query is greatly used in the above
processes. Its speed is the main indicator for evalu-
ating layout data structures.

Various spatial data structures have been pro-
posed for layout representation, ranking from the
simple linear linked list to corner stitching (Ouster-
hout, 1982), then the more sophisticated k-d trees
(Rosenberg, 1985) and the large family of quad-trees
(Kedem, 1982; Brown, 1986; Pitaksanonkul et al.,
1989; Weyten and de Pauw, 1989; Lai et al., 1993;
1996; Berg et al., 2008). A summary is listed in
Table 1.

Most of the research in IC layout data structures

was undertaken in the early 1980s through the

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the National Natural Science Foundation of
China (No. 61106034) and the National Science and Technology
Major Project (No. 2009ZX02023-004-1)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Table 1 Various spatial data structures for IC layout
representation

Spatial data structure
Reference

Abbreviation Full name

Kedem, 1982 BLQT Bisector List Quad Tree

Rosenberg, 1985 k-d tree k-dimensional tree

Brown, 1986 MSQT Multiple Storage Quad Tree

Weyten and de
Pauw, 1989

QLQT Quad List Quad Tree

Pitaksanonkul
et al., 1989

BQT Bounded Quad Tree

Lai et al., 1993 HVT Horizontal/Vertical Tree

Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 233

mid-1990s. This area has not been very active since
then. However, it is believed that there remain op-
portunities for developing better layout data struc-
tures (Samet, 1990a; 1990b; Mehta, 2005).

Comprehensive experiments comparing HVT
with BQT, k-d, and QLQT showed that the data
structures ordered from best to worst in terms of space
requirements were HVT, BQT, k-d, and QLQT. In
terms of region query speed, the best data structures
were HVT and QLQT followed by BQT and finally
k-d (Samet, 2006; Mehta and Zhou, 2008). Since it
was published, HVT has been the data structure of
choice in terms of both memory usage and region
query speed.

An HV/VH tree consists of alternate levels of H-
and V-nodes. An H-node splits the 2D space assigned
to it into two halves with a horizontal bisector, while a
V-node does the same with a vertical bisector. An
H/V-node is not split if the number of objects assigned
to it is less than some fixed threshold. In such a case,
the node is marked as a leaf node, and objects in it are
stored into a single linked list. This threshold is re-
ferred to as the HV-threshold.

Objects intersecting an H/V-node’s bisector are
stored in the bisector list of the node. Bisector lists of
HVT are implemented with binary cut trees (Kedem,
1982; Lai et al., 1993). A horizontal bisector is di-
vided into identical halves by a vertical cut-line, and
objects intersecting with it are stored in cut tree’s root.
Other objects are assigned to either the left or the right
child of the root node, depending on its relative posi-
tion to the vertical cut-line. Then we repeat this pro-
cedure to both children of the root recursively. The
subdivision is stopped when the number of objects in
a cut tree node is less than another fixed threshold,
which we call the B-threshold. Cut tree nodes also use
a linked list to store objects.

In our method, cut trees and linked lists are all
replaced with arrays; thus, a considerable number of
pointers are eliminated and the memory usage is re-
duced. Meanwhile, by well-organizing and applying a
customized binary search algorithm to these arrays,
the region query speed of our data structure is also
competitive. By experiments, we show that the array
based HV/VH tree is faster than all its rivals on region
query and uses the least memory at the same time.

2 Array based HV/VH tree

Array based HV/VH trees are similar to HV/VH
trees. They are also composed of alternate levels of H-
and V-nodes. The HV-threshold and B-threshold we
mentioned above remain valid in the new data struc-
ture. For convenience, we will use ABHVT for array
based HV/VH tree in the following text.

Fig. 1 shows a sample layout and its corre-
sponding implementation of both HVT and ABHVT.

Comparison of Figs. 1b and 1c shows that the
major difference between HVT and ABHVT locates
in leaf nodes and bisector lists. In HVT, linked lists
are used as the container for layout objects and bi-
sector lists are implemented with cut trees, whereas in
ABHVT, both leaf nodes and bisector lists are im-
plemented with plain arrays. With ABHVT, we can
get rid of the complicated cut trees, and the array
implementation also seems simple. However, this
change would also cause serious degradation in the
speed aspect due to the existence of very large arrays.
These large arrays usually belong to bisector lists of

(a)

(b) (c)

Fig. 1 The sample layout (a), HVT implementation (b),
and ABHVT implementation (c)
The horizontal dashed line in (a) is the bisector of the root
node (an H-node). It divides the layout into two halves. Ob-
jects intersecting this divider compose the root’s bisector list,
and the bisector list contains three objects A, C, and E. Then
the procedure is repeated for the lower and upper halves of the
layout in a recursive manner. The vertical dashed line in (a) is
the bisector of the upper half. The lower half is not further
divided since the number of objects in it is two, which equals
the HV-threshold

Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 234

high-level H/V-nodes. In the following sections, we
will show how we eliminate this adverse effect.

2.1 Optimization to bisector list arrays

The optimization process consists of two steps,
grouping and sorting. Here we take a horizontal
bisector list for demonstration. Vertical bisector lists
can be handled in a similar manner. Note that, if the
number of objects in a bisector list is smaller than the
B-threshold, no optimization is performed. For leaf
node arrays, no optimization is performed either,
since their array-size is also limited by the
HV-threshold. A full check is always performed to
small arrays during region query.

Given a horizontal bisector list containing more
objects than the B-threshold, first we partition its
objects into several subgroups (if needed); thus,
within each subgroup, the objects are of similar width.
In Fig. 2, the 12 objects are divided into two sub-
groups G1 and G2. Objects C and H are picked out
because their widths are obviously larger than those
of the others.

Then, we sort each subgroup by the left bound-
ary coordinate of the objects. See the array marked by
‘After sorting’ in Fig. 2. Within each subgroup, there
is a guarantee that

Array[i].lx≤Array[j].lx, if i<j.

Array[i].lx stands for the left boundary coordinate of
the ith object of the subgroup array.

Additionally, we keep two integers in the bi-
sector list to record its boundaries in the orthogonal

direction of the bisector. See y_lower_bound and
y_upper_bound in Fig. 2.

2.2 Binary search algorithm

The binary search algorithm is vital in making
ABHVT’s region query fast. It takes in a subgroup
along with a search window, and tries to obtain a
minimal subset of the subgroup. The subset obtained
guarantees that any objects out of it definitely do not
intersect with the search window.

Assume Fig. 3 depicts the corresponding layout
of a subgroup, where window.x1 and window.x2 are
the left and right boundaries of the search window,
respectively, and max_width is the maximal object
width of this subgroup. Fig. 3 shows that the array is
divided into four zones by three vertical cut-lines
window.x1, window.x2, and window.x1−max_width.
For the four zones, we know:

1. Zone 1 and Zone 4 objects do not intersect
with the search window.

2. Zone 3 objects intersect with the search win-
dow in the x direction.

3. Zone 2 objects probably intersect with the
search window in the x direction.

Thus, objects of Zone 2 and Zone 3 are returned
as the binary search result. They will be passed on for
further checks. Note that, during binary search, we
have no choice but to put Zone 2 objects into our
results since they are suspects. And their presence
degrades the efficiency of region query. However, we
could diminish the quantity of Zone 2 objects by
minimizing the parameter max_width. This explains
why we would group them and keep objects of similar
width in the same subgroup in the first place.

2.3 Region query with ABHVT

Region query with ABHVT can be implemented
with a simple recursive procedure. The pseudo code
in C is written below.

Fig. 2 Optimization to a horizontal bisector list

Fig. 3 Binary search with a horizontal subgroup array

Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 235

region_query(treenode, window) {
// treenode could be either an H-node or a V-node
if (treenode is leaf node) {
 perform full check to the leaf node array;
}
// blist stands for the bisector list of treenode;
if (blist intersects window) {
 if (blist is horizontal)
 region_query_to_hbisector(blist, window);
 else
 region_query_to_vbisector(blist, window);
}
if (child1 intersects window)
 region_query(child1, window);
if (child2 intersects window)
 region_query(child2, window);

}
region_query_to_hbisector(blist, window) {

if (window does not intersect y bounds of blist)
 return;
foreach (subgroup) {
// window.x1 and window.x2 stand for the left and
// right bounds of window, respectively
 int x0=window.x1–max_width;
 int pos0=bisearch1(subgroup, x0);
 int pos1=bisearch2(subgroup, window.x1);
 int pos2=bisearch2(subgroup, window.x2);
 foreach (object whose index[pos0, pos1))
 check intersection with window;
 foreach (object whose index[pos1, pos2))
 if (divider of blist intersects window)
 add this object to results immediately;
 else
 check intersection with window in y direction only;
}

}
int bisearch1(array, x) {

do binary search on array to find an index pos satisfying
array[pos–1].x1<x and array[pos].x1≥x;

return pos;
}
int bisearch2(array, x) {

do binary search on array to find an index pos satisfying
array[pos–1].x1≤x and array[pos].x1>x;

return pos;
}

Continuing to use the previous horizontal bi-
sector list example, the corresponding layout of its
subgroup G1 is obtained, as shown in Fig. 4, in which
all objects are relatively small. Our goal here is to find
the objects intersecting with the search window with
minimal calculations.

For Search 1, the entire subgroup can be skipped
since by checking y boundaries, we know that none of
the objects in G1 intersect with the search window.

For Search 2, we obtain three indices pos0, pos1, and
pos2 by performing binary searches:

pos0=bisearch1(window.x1–max_width),
pos1=bisearch2(window.x1),
pos2=bisearch2(window.x1).

Clearly, objects out of index range [pos0, pos2)

do not intersect with the search window. Our search
area is thus reduced from the entire array to the ob-
jects within range [pos0, pos2).

Normally, checking whether an object intersects
with a rectangular window requires four comparisons,
two in the x direction and two in the y direction:

window.x1≤object.x2, window.x2≥object.x1,
window.y1≤object.y2, window.y2≥object.y1.

In ABHVT, however, these four comparisons are

not always simultaneously necessary. In Fig. 4, since
both the Search 2 window and the bisector list objects
cross the bisector, y-direction comparisons are not
needed for any object of G1. This is based on the fact
that if two rectangles are crossed by a common
horizontal line, then they must overlap with each
other in the vertical direction. Furthermore,
x-direction comparisons are needed only for objects
within index range [pos0, pos1), while the objects
within range [pos1, pos2) can be determined to be
intersecting with the Search 2 window without any
comparison.

2.4 Data structures

A leaf node in ABHVT has an unsigned integer
recording the array size and a pointer to the array
header:

Fig. 4 Region query on subgroup G1

Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 236

class CLeaf{
 size_t count;
 CObject **obj_list;
};

A bisector list may contain several subgroup
arrays, but we still use one single array for storage,
and we record the starting indices for each sub-array.

class CBisector{
 size_t count; // total number of objects
 CObject **obj_list;
 int lower_bound, upper_bound;
 size_t num_of_groups;
 int *max_sizes; // max object width/height
 size_t *group_sizes; // size of each subgroup
};

An ABHVT tree node has two child-pointers, a
divider of integer type, and a pointer to either a leaf
node or a bisector list. With the dual use of the body
field, an extra flag is needed to distinguish between
the two cases. In order to save memory, we embed this
flag into the integer mid at its highest bit (next to the
sign bit).

class CTreeNode{
 CTreeNode *left, *right;
 int mid; // bisector
 union{
 CLeaf *leaf;
 CBisector *bisector;
 } body;
};

Note that given a non-leaf H/V-node, if the
number of objects in its bisector list is smaller than
the B-threshold, a leaf instead of a bisector list will be
created for the body field.

3 Experimental results

We implemented QLQT and HVT to compare
with ABHVT. All implementations were compiled
with GCC 4.2.4 and the same optimization flag O2.
Our test cases consisted of 10 circuits selected from
IWLS 2005 benchmarks (Table 2). The B-threshold
was fixed to 32 in all our tests.

3.1 Space

To describe an object, we always need four in-
tegers to store object boundaries and one pointer for
indexing. Memory used for this purpose is called

‘object-description’, and it is necessary for any kind
of layout data structure. Hence, it makes sense that we
exclude them in comparing memory usage between
QLQT, HVT, and ABHVT.

Fig. 5 shows the results of our tests for space.
The x coordinate of the chart is the HV-threshold and
the y coordinate is the average number of bytes re-
quired per object (not including object descriptions).
Data was collected on a 64-bit Linux server, where an
integer takes four bytes and a pointer takes eight.
ABHVT completely outperformed its two rivals. At a
typical HV-threshold of 64, ABHVT, HVT, and
QLQT used 1.52, 9.9, and 15.92 bytes of memory per
object, respectively. Note that ABHVT used even less
memory than the method of simply representing a
layout with a single linked list.

3.2 Time

Fig. 6 plots the speedup factor of HVT and
ABHVT, both compared with QLQT. The speedup
factor is defined by dividing the region query time of
HVT or ABHVT by that of QLQT. The x coordinate
remains the HV-threshold. The y coordinate is the
speedup factor. At each HV-threshold value, thou-
sands of random region queries were performed for
each layout, and the average speedup factor of the 10
layouts was used for plotting.

Table 2 Ten circuits selected from IWLS 2005 bench-
marks for testing

Circuit
Number of

objects (×103)
Circuit

Number of
objects (×106)

b01 2 DSP 1.0

b10 7 RISC 1.8

ac97_ctrl 400 ethernet 2.2

b22 600 vga_lcd 4.1

DMA 600 b19 4.4

Fig. 5 Memory usage vs. the HV-threshold

0
10

20

30

40

50

60

70

80

90

N
um

be
r

of
 b

yt
es

 p
er

 o
bj

ec
t

8 16 32 64 128 256 512 1024
QLQT 77.03 36.98 22.77 15.92 12.95 10.92 9.86 9.10
HVT 18.68 14.27 11.50

9.06 8.59 8.34 8.21

ABHVT 8.84 5.17 2.85 1.52 0.82 0.43 0.23 0.12
9.90

HV-threshold

Ren et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(3):232-237 237

Fig. 6 indicates that ABHVT was the fastest
among the three candidates, outperforming HVT at all
HV-threshold values. At an HV-threshold of 64,
ABHVT was about 45% faster than HVT and 80%
faster than QLQT.

Further tests indicated that ABHVT is suitable
especially for large region queries. Fig. 7 plots the
speedup factor of HVT and ABHVT again compared
with QLQT. The x coordinate is the side length of the
square search window. ABHVT’s advantage over
HVT gets greater as the search window gets larger.

4 Conclusions

A new spatial data structure is presented for IC
layout representation. In comparison with HVT,
which has been regarded as the best data structure for
region query, our new data structure provides even
better performance in both space and speed. By using
arrays as the underlying data structure for layout ob-
jects, ABHVT uses even less memory than simple
linked list implementation. Also, by grouping and
sorting those arrays, the region query speed of
ABHVT is very high.

Experimental results show that in ABHVT, only
two bytes are required per object at typical thresholds
(not including object descriptions). In terms of speed,
ABHVT is 30% faster than HVT.

Note that the insertion and deletion operations
with ABHVT are slow since inserting an element into
an array is never as convenient as inserting it into a
linked list. However, in most layout verification
processes, the layouts are used in read-only mode and
editing operations are rarely called. Thus, this disad-
vantage of ABHVT is negligible in practice. We be-
lieve that ABHVT is the perfect data structure for a
wide range of IC layout applications.

References
Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M., 2008.

Computational Geometry: Algorithms and Applications.
Springer, the Netherlands, p.219-238.

Brown, R.L., 1986. Multiple storage quad trees: a simpler
faster alternative to bisector list quad trees. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst., 5(3):413-419.
[doi:10.1109/TCAD.1986.1270210]

Kedem, G., 1982. The Quad-CIF Tree: a Data Structure for
Hierarchical On-line Algorithms. Proc. 19th Design
Automation Conf., p.352-357.

Lai, G.G., Fussell, D., Wong, D.F., 1993. HV/VH Trees: a New
Spatial Data Structure for Fast Region Queries. Proc. 30th
Int. Design Automation Conf., p.43-47. [doi:10.1145/
157485.164562]

Lai, G.G., Fussell, D.S., Wong, D.F., 1996. Hinted quad trees
for VLSI geometry DRC based on efficient searching for
neighbors. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst., 15(3):317-324. [doi:10.1109/43.489102]

Mehta, D.P., 2005. Handbook of Data Structures and Applica-
tions. Chapter 52: Layout Data Structures. Chapman &
Hall/CRC, USA, p.1046-1063.

Mehta, D.P., Zhou, H., 2008. Handbook of Algorithms for
Physical Design Automation. Chapter 4: Basic Data
Structures. Auerbach Publications, FL, USA, p.55-69.

Ousterhout, J.K., 1982. Corner stitching: a data structure
technique for VLSI layout tools. IEEE Trans. Comput.-
Aided Des. Integr. Circ. Syst., 3(1):87-100. [doi:10.1109/
TCAD.1984.1270061]

Pitaksanonkul, A., Thanawastien, S., Lursinsap, C., 1989.
Comparisons of quad trees and 4-D trees: new results.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst.,
8(11):1157-1164. [doi:10.1109/43.41501]

Rosenberg, J.B., 1985. Geographical data structures compared:
a study of data structures supporting region queries. IEEE
Trans. Comput.-Aided Des. Integr. Circ. Syst., 4(1):53-67.
[doi:10.1109/TCAD.1985.1270098]

Samet, H., 1990a. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS. Addi-
son-Wesley, MA.

Samet, H., 1990b. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, MA.

Samet, H., 2006. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann, CA, USA, p.474-483.

Weyten, L., de Pauw, W., 1989. Quad list quad trees: a geo-
metrical data structure with improved performance for
large region queries. IEEE Trans. Comput.-Aided Des.
Integr. Circ. Syst., 8(3):229-233. [doi:10.1109/43.21842]

Fig. 6 Speedup factor vs. the HV-threshold

0.5

1.0

1.5

2.0

2.5

3.0

8 16 32 64 128 256 512 1024

S
pe

ed
u

p
fa

ct
or

HVT/QLQT

ABHVT/QLQT

HV-threshold

Fig. 7 Speedup factor vs. the search window size

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
u

p
fa

ct
or

HVT/QLQT

ABHVT/QLQT

0 1 2 4 8 16 32 64 128 256

Search window size (μm)

