
Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 339

A taxonomic framework for autonomous service

management in Service-Oriented Architecture*

Du Wan CHEUN, Hyun Jung LA‡, Soo Dong KIM
(Department of Computer Science, Soongsil University, Seoul 156-743, Korea)

E-mail: {dwcheun, hjla80, sdkim777}@gmail.com

Received Dec. 7, 2011; Revision accepted Mar. 7, 2012; Crosschecked Mar. 7, 2012

Abstract: Since Service-Oriented Architecture (SOA) reveals the black box nature of services, heterogeneity, service dynamism,
and service evolvability, managing services is known to be a challenging problem. Autonomic computing (AC) is a way of de-
signing systems that can manage themselves without direct human intervention. Hence, applying the key disciplines of AC to
service management is appealing. A key task of service management is to identify probable causes for symptoms detected and to
devise actuation methods that can remedy the causes. In SOA, there are a number of target elements for service remedies, and there
can be a number of causes associated with each target element. However, there is not yet a comprehensive taxonomy of causes that
is widely accepted. The lack of cause taxonomy results in the limited possibility of remedying the problems in an autonomic way.
In this paper, we first present a meta-model, extract all target elements for service fault management, and present a computing
model for autonomously managing service faults. Then we define fault taxonomy for each target element and inter-relationships
among the elements. Finally, we show prototype implementation using cause taxonomy and conduct experiments with the pro-
totype for validating its applicability and effectiveness.

Key words: Service-Oriented Architecture (SOA), Autonomic computing (AC), Cause taxonomy, Services, Faults, Causes,

Adaptation
doi:10.1631/jzus.C1100359 Document code: A CLC number: TP311

1 Introduction

In Service-Oriented Architecture (SOA), service

providers develop services with reusable features, and
service consumers discover and subscribe to appro-
priate services at runtime. Since services deployed in
service registries expose only their interfaces, service
consumers and administrators have limited visibility
and manageability of services (Erl, 2007). In addition,
services may evolve without informing service sub-
scribers of the changes. Existing services may change
their interfaces or stop providing functionalities

suddenly. These key features of SOA, including the
black box nature of services, heterogeneity, service
dynamism, and service evolvability, make service
management more challenging than conventional
system management (Manes, 2005).

Autonomic computing (AC) is a way of de-
signing systems that can manage themselves in an
autonomous manner without direct human interven-
tion (Kephart and Chess, 2003). Applying key disci-
plines of AC to service management is appealing
since key technical issues for service management
can be effectively resolved by AC.

A key task of service management is to identify
probable causes for symptoms detected and to devise
actuation methods that can remedy the causes. When
symptoms of problems are detected, the probable
causes for the symptoms must be identified, and
elements that result in the causes should be remedied

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project (No. 2011-0002534) supported by the Basic Science Re-
search Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 340

in an appropriate way. In SOA, a number of key
elements become the targets for service remedies,
such as service, business process in a Business Proc-
ess Execution Language (BPEL) document (OASIS,
2007) or service choreography (W3C, 2005), enter-
prise service bus (ESB) (Chappell, 2004), and service
interface in the form of Web Service Description
Language (WSDL) (W3C, 2007b) or representational
state transfer (REST) (Richardson and Ruby, 2007).
There are also a number of different causes associated
with the target elements. To diagnose the problems
and find their causes effectively, it is essential to have
two solutions available: (1) a well-defined taxonomy
of all causes for each target element and (2) applica-
tions to apply the taxonomy.

Therefore, the taxonomy of causes provides the
basis for reasoning about symptoms and remedying
accountable target elements in an autonomous way.
Hence, the lack of cause taxonomy results in the lim-
ited possibility of determining causes and remedying
problems in an autonomous way. However, there is
not yet a comprehensive taxonomy of causes that is
widely accepted. The cause taxonomy we propose in
this paper has the following features which are dis-
tinguishable from existing works:

1. Presenting a theoretical foundation for fault
management in SOA;

2. Defining a meta-model of SOA as the basis for
deriving taxonomy;

3. Proposing a comprehensive cause taxonomy
for enabling autonomic service management;

4. Defining a taxonomy that is extendable with
new types of causes.

In this paper, we present a comprehensive tax-
onomy of causes that can be identified under SOA
environments. We first present key concepts for
managing service faults, identify all the possible tar-
get elements for service management, and suggest a
computing model for autonomously managing ser-
vice faults. With the theoretical foundation on service
fault management, we define comprehensive cause
taxonomy by considering internal structures of all the
target elements, inter-relationships among the ele-
ments at design time, and inter-relationships among
the elements at runtime. Finally, we show prototype
implementation using the cause taxonomy and con-
duct experiments with the prototype for validating
applicability and effectiveness.

2 Related work

While there is not yet a comprehensive taxon-

omy of causes that is widely accepted, many re-
searchers have proposed taxonomy for detecting and
diagnosing SOA faults and self-adapting. Brüning et
al. (2007) proposed fault taxonomy for testing SOA
faults. They first presented the five steps, publishing,
discovery, composition, binding, and execution, be-
cause faults may occur during all steps of the service
execution process. Then, they defined five types of
faults and their subtypes, as well as causal relation-
ships among fault types. In addition, they demon-
strated the application of the taxonomy with an ex-
ample of a travel agency. They focused on presenting
a list of faults that can occur and be detected at run-
time. However, descriptions of these faults need to be
improved for utilizing fault detection and diagnosis
and self-adaptation based on faults as well as SOA
faults testing. Huang et al. (2006) defined a layering
model and diagnosis algorithm for managing service
faults. They first presented four layers: service inter-
action layer, service software layer, execution plat-
form layer, and networking layer. Based on these
layers, they defined a window-based fault diagnosis
algorithm. Then, they showed simulation results for
evaluation of the layering model and diagnosis algo-
rithm. Even though their work focused more on the
algorithm than on the layering model for classifying
faults, it provided abstraction levels of faults based on
layers. However, this classification of the faults needs
to be specialized for applying to faults related tasks.

The above two works tended to utilize SOA
specific elements such as steps or layers as a basis for
defining fault taxonomy. Other works, such as IBM
Research Center (2006), provided a meta-model and a
template to specify symptoms. In IBM Research
Center (2006), a symptom is an abnormal condition
which can be observed and caused by a fault. Symp-
tom categories were suggested based on security,
operation, availability, and quality of service (QoS).
Moreover, an extension point was provided for tem-
porarily undefined situations. All these elements were
specified with eXtensible Markup Language (XML).
IBM Research Center (2006) focused on enabling AC
and providing a general way that can be applied to any
other software system. Therefore, the Symptom Ref-
erence specification needs to be extended with SOA
specific features. Pernici and Rosati (2007) proposed

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 341

a taxonomy for SOA faults based on the persistency
of the fault. In other words, there are three types of
faults: permanent, transient, and intermittent. They
showed that this classification can be used to analyze
faults and to define the recovery mechanism. How-
ever, they provided only a general classification for
the faults. These two works addressed the baseline for
defining taxonomy for SOA fault diagnosis; i.e., they
tended not to cover SOA specific features but to pro-
vide a general way to be extended.

In summary, there is still room for defining the
cause taxonomy for SOA fault diagnosis in terms of
the following issues. The first issue is that the basis
for defining cause types does not completely cover
the domain of faults that occur. The second issue is
that an SOA cause itself is difficult to classify by a
machine. These features limit the practicability and
applicability of the taxonomy and make it much
harder to manage services in an autonomic manner.
Similarly, diagnosis in the medical domain is to find
the cause of disease, not the symptom.

3 Theoretical foundation on service man-
agement

3.1 Meta-model

In this section, we present a basic set of defini-
tions that will be used throughout the discussion of
the cause taxonomy for autonomic service manage-
ment. To clearly understand these concepts, we define
a meta-model for representing cause and its related
elements as in Fig. 1. The meta-model is followed by
the standard usage (Avizienis et al., 2004).

A symptom is an observed state of a service

which indicates a pre-defined amount of deviations
between a normal state and the observed states. It is a
result of a certain fault. A fault is an abnormal condi-
tion which may lead to a symptom. A cause initiates a
fault, and a causal chain is a tree structure specifying a
set of related causes and their relationships.

3.2 Target elements for service management

When a problem occurs in SOA, a cause for the
problem occurs in certain elements, and these ele-
ments become the targets for remedying the causes.
Through our rigorous observations on SOA standards
and practices, we first define nine target elements for
autonomous service management (Fig. 2): service
interface, business process, service component,
message, runtime environment (services middleware,
BPEL engine, and Simple Object Access Protocol
(SOAP) engine), ESB, and service registry.

There are lower-level underlying target elements

such as the operating system and network which are
accountable for problems, but we do not consider the
lower-level elements in this research. While these
causes apply to distributed systems in general, this
paper focuses on typical faults applying to SOA. Thus,
we leave all general elements of distributed systems
aside and focus solely on the essential steps of SOA
and all causes associated with them. The other causes
are described in more detail in the related work.

3.3 Computing model

By extending IBM’s AC model (Kephart and
Chess, 2003), we present the computing model for
managing service faults with five steps as in Fig. 3.

Enterprise service bus (ESB)

Service
registry

Business
process

Service interface
(for service
component)

Service interface
(for BPEL)

Service
component

Message Message

Services
middleware

BPEL engine Messaging
engine

Network

Fig. 2 The nine targets of service management

Managed
ServiceManaged

ServiceManaged
service

Reasoning
knowledge base

Determine
faults

Diagnose
faults for
causes

Plan
actuation

Remedy
causes

Detect
symptom

Initialize

Fig. 3 Five phases of the computing model for manag-
ing service faults

Fig. 1 Meta-model for cause and its related elements

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 342

The phase ‘detect symptom’ is to monitor man-
aged services and recognize abnormal states of the
services which indicate a significant deviation be-
tween a service delivered and the service expected
which is specified in service-level agreements. The
phase ‘diagnose faults for causes’ is to identify the
cause for the symptom based on a cause taxonomy
and to determine the root cause by looking up the
knowledge of the causal chain. The phase ‘plan ac-
tuation’ is to make a plan to solve the causes and
prepare for the remedy. Finally, the phase ‘remedy
causes’ is to execute adapters on services and/or the
underlying SOA environment and resolve the causes.

4 Classification of causes

Typically, it is not feasible to define complete

taxonomies of causes, symptoms, and actuators. This
is because the numbers of possible causes, symptoms,
and actuators could be large and new types can be
introduced. On the other hand, taxonomies of the
Service Component Architecture (SCA) elements
should be available to define effective methods to
identify underlying causes for given symptoms and to
choose effective actuators for the diagnosed causes.

4.1 Criteria for defining the taxonomy

We define the taxonomy of causes by consider-
ing the characteristics of service-oriented computing,
SOA standards, and SOA elements/artifacts. Our
taxonomy is not meant to be complete but compre-
hensive and extensible, meaning that new cause types
can be defined by subtyping existing cause types. We
apply three criteria in defining the taxonomy: com-
pleteness on classification, exclusiveness among
elements, and incremental extensibility (Hunter,
2002).

A classification is complete if the set of all cause
types for a given target element is complete, i.e., not
missing any probable cause. We consider the key
components of each target to derive a complete list of
probable causes. A classification is exclusive if there
is not a common property among the cause types for a
target element. That is, any two cause types Ci and Cj
for a target element should not have any common
property between them. A classification is incremen-
tally extensible if a given cause can be extended into

its subtypes. With this criterion, abstract cause types
can initially be defined and they can be refined into
more concrete subtypes.

4.2 Cause types for defining the taxonomy

In software engineering, two types of informa-
tion, static and dynamic, are considered for software
analysis, design, and construction (Arban et al., 2005).
Static information of the software consists of com-
ponents and their relations. In object-oriented analy-
sis and design, for example, such components could
be classes and the relations could include association
between classes. Dynamic information of the soft-
ware contains states of components and interactions
among the components at runtime. The interaction
can be specified with sequential and/or concurrent
events. By utilizing this analogy, we first classify
causes into three types, namely, embedded cause for
SOA specific components, relation related cause for
relations among the components, and execution re-
lated cause to specify runtime behavior.

Fig. 4 shows the three types of causes and their
subtypes. These subtypes are elaborated upon in the
remaining sections. The main reason for classifying
causes into these three types is that the methods for
symptom detection, fault diagnosis, and adaptation
would considerably differ. For an embedded cause,
adaptation is applied to only the target element that
results in the cause. For a relation related cause, ad-
aptation is applied to mismatched elements that result
in the cause. In remedying execution related causes, a
non-trivial reasoning process is required for deter-
mining which of the participating targets is responsi-
ble for the cause, and for planning actuation on the
selected target. However, the determination of the
responsible target could not usually be done
autonomously.

Embedded cause is a problem or a cause em-
bedded in a service target without being involved in
any relation or interaction among target elements. For
example, a service interface specified in WSDL may
have operation signatures which use undefined data
types. This type of cause is not involved in any in-
teraction in form of external references or invocation.
Instead, it specifies a problem or a cause on the target
element itself.

Relation related cause is a problem of inconsis-
tency or incompatibility existing in the relation

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 343

between two target elements at static time. In SOA,
there is a considerable amount of relations among the
target elements, and the relations themselves can
result in certain causes.

Let us consider a case of relation between a ser-
vice interface and a service component (Fig. 5). For a
problem in an interaction between them, either the
service interface or the service component can be to
blame for the cause. Hence, determining the target
that results in a relation related cause requires context
information beyond the specification of the target
elements themselves. In many cases, this context
information describing the situation is not readily
available. To reason about interaction related causes,
such context information should be provided and
specified in a machine readable form such as in an
XML document.

Execution related cause is a problem occurring

when a service or a business process is invoked at
runtime. Even if elements within an SOA based sys-
tem have no problem and relations among elements
are correctly specified, a runtime element such as a
parameter or required resources can raise problems.

4.3 Taxonomy of embedded causes

Embedded causes are classified into seven types
based on target elements for service management
(Fig. 6).

For each target element, probable cause types are

derived by considering its sub-elements.
Service interface cause: A service interface

specifies capability provided by a service, and they
are specified in WSDL with the following key

SOA cause

Embedded
cause

Relation
related
cause

Execution
related
cause

<<abstract>>
Service interface cause

Business process cause

Message cause

Runtime element cause

Service registry cause

<<abstract>>
ESB cause

Incompatibility btw.
BP & srv. interface

Incompatibility btw. srv.
interface & message

Incompatibility btw. services

Incompatibility btw. message

Incompatibility btw. message
& srv. middleware

Incompatibility btw. srv.
middleware & srv. comp.

Interoperability btw.
runtime environments

Incompatibility btw. srv.
interface & registry

Incompatibility btw. srv.
interface & srv. comp.

Service comp. cause

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

<<abstract>>

& srv. interface

Fig. 4 Taxonomy of SOA-specific causes
btw.: between; srv.: service; comp.: component

Fig. 6 Seven types of embedded causes

«abstract»
Service

interface cause

«abstract»
Business

process cause

«abstract»
Message

cause

«abstract»
Runtime element

cause

«abstract»
Service registry

cause

«abstract»
ESB cause

«abstract»
Service com-
ponent cause

«abstract»
Embedded cause

Fig. 5 Matching between the service interface and the
service component

…
<message name="getOp1StringRequest">
<part name=“x" type="xsd:int"/>

</message>
<message name="getOp1StringResponse">
<part name=“returnedInfo" type="xsd:string"/>

</message>
<portType name=“Service777">
<operation name=“method_1">
<input message="tns: getOp1StringRequest"/>
<output message="tns: getOp1StringResponse"/>

</operation>
…

</portType>
…

// Filename: Service777.java
@WebService
public class Service777 {

…
@WebMethod
public String method_1(int x) {

...
}
…

}

«argument»

«return type»

«op name»

Service Interface

Service component

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 344

elements: data type, operation signature, and binding
information. Hence, there are four causes for each
element. An example of the binding cause is that the
required information is missing such as interface and
type. Because of this cause, a service cannot be in-
voked by its endpoint specified in service interface
specification, known as a reachability problem
(Hamadi and Benatallah, 2003).

Business process cause: A business process (BP)
defines a workflow among participating services and
it is specified in BPEL with four elements: invocation,
assignment, control flow, and waiting statement
(OASIS, 2007). Because the BP controls a series of
service invocations, there are three variations on each
element: invalid information on an element, no in-
formation on an element, and incompatible informa-
tion on an element. Fig. 7 depicts four causes and
their sub-causes for each element specified in a BPEL
document.

For example, there are two sub-causes for the
assignment cause: variable cause and query statement
cause. To specify a variable attribute of an assignment
element for a BPEL document, there are five variants
to be selected, i.e., variable, property, expression,
literal, and empty. An example of the variable cause is
that one of these variants is incorrectly copied from
source to destination values. Another example of the
branch cause is deadlock (Martens, 2005). This cause
can occur more when utilizing choreography for de-
fining services (Brogi et al., 2004).

Service component cause: A service component
realizes one or more service interfaces. It is distrib-
uted as a black-box form. Hence, cause types on ser-
vice components can be derived from externally ex-
posed properties.

One cause type is about functionality related
elements, i.e., input and output. Another is about state
related elements, i.e., pre-condition and post-

condition. Here, pre-condition and post-condition
depict the state of a service component or its related
resources before and after executing its functionality.
For example, one raw is updated with newer values
after a service component updates one table in the
database. This updated state can be treated as
post-condition. The other is about QoS related ele-
ments: unacceptable QoS and no responses (OASIS,
2010). In this case, there are existing references to
well-known causes of these two symptoms, such as
internal logic cause and inefficient data manipulation
cause (Zheng and Lyu, 2010). Fig. 8 depicts three
abstract causes and their concrete causes for each
element of the service component.

Message Cause: Message is an information ex-

change among SOA elements through a variety of
underlying protocols such as SOAP. This message
consists of header and body. The header specifies a
destination that a message should be delivered to. The
body specifies message contents and its encoding
styles. Therefore, there are two causes (i.e., header
cause and body cause) and one sub-cause for a body
cause. One example of the header cause is the version
mismatch cause (W3C, 2007a).

Runtime element cause: A runtime element such
as BPEL engine, SOAP engine, or service component
middleware has functionalities of processing and
executing SOA artifacts. Typically, the runtime ele-
ment has a form of software provided by a vendor.
Hence, cause types on the runtime element can be
derived from externally observed states. OASIS (2006)
defined four types to classify the states: available, par-
tially available, unavailable, and unknown. That is, all
the runtime elements can have causes based on four
states. For example, the unavailable cause on a BPEL
engine can occur when required resources such as
memory are not enough to execute a BP deployed on
the BPEL engine.

Service registry cause: Service registry is an in-
frastructure that enables one to publish and subscribe

Fig. 7 Cause types on business process specification

«abstract»
Business

process cause

« abstract »
Invocation

cause

« abstract »
Assignment

cause

« abstract »
Control flow

«abstract »
Waiting

statement cause

Partner
link cause

Input
cause

Variables

Query statement
cause

Output
cause

Branch

Repetition

Deadline

Duration

cause cause cause

causecause

cause

Fig. 8 Cause types on service components

abstract
Service

component cause

Functionality cause State cause

«abstract »
QoS cause

Post-state
cause

Output Pre-state
causecausecause

Input

abstract abstract««

«

»

»

»

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 345

to services, conforming to UDDI (universal descrip-
tion, discovery and integration) which defines data
structure for describing services and API (application
programming interface) for registering services
(OASIS, 2004).

Based on these, we define two abstract causes
and their concrete causes for each element of the BP
specification (Fig. 9). For example, there are two
possible situations for the identification cause. First, a
unique identity for each data structure is defined for
two or more structures. Second, a unique identity for
each data structure is not specified or assigned. In
addition, there are two possible situations for the
description cause. First, the published description for
a service is updated and does not conform to the pre-
vious one. Second, mandatory information for each
data structure is not specified.

ESB cause: ESB is an integration platform that

supports message routing and data transformation.
Java business integration (JBI) is mentioned as a way
for implementing ESB (Chappell, 2004). Hence, we
extract key elements for JBI based ESB: normalized
message router (NMR), binding component (BC), and
service engine (SE).

Hence, there are three causes and their sub-
causes for each cause (Fig. 10). For example, there are
two sub-causes for the NMR cause. To operate NMR,
there are two key elements: configuration including
the routing table and resource for executing NMR
itself. An example of the resource cause occurs when
the amount of memory allocated for running ESB is
not enough for routing service invocations.

4.4 Taxonomy of relationship related causes

Relationship related causes are classified into
four types based on target elements for service man-
agement (Fig. 11).

For each relationship between target elements,

probable cause types are derived by common attrib-
utes among SOA elements.

Incompatibility between business process and
service interface: Typically, a BP includes one or
more service invocations. Hence, the BPEL standard
(OASIS, 2007) provides rules to specify the service
invocations. First, PartnerLink, which specifies the
relationship between a BP and a target service, is
declared. In detail, PartnerLink declaration includes
an identification of each target service and description
of the service such as a role. Second, invocation re-
lated information is declared based on WSDL. There
are two key elements, a reference to a target service
and portType for binding operations. Third, values
produced by services are assigned to BP variables
through an assignment activity of the BP. Based on
these rules, we define three causes: PartnerLink dec-
laration cause, invocation declaration cause, and as-
signment declaration cause (Fig. 12).

For the invocation cause, two sub-causes could
occur. The reference cause can occur when references
specified in BPEL and WSDL are not matched and
the portType cause can occur when the portType
specified in BPEL and the portType specified in
WSDL are not matched.

Incompatibility between service interface and
message: In SOA, a message is a unit for communi-
cation between services or a BP and a service through
a service interface. To construct a message, three

Fig. 10 Cause types on enterprise service bus (ESB)
NMR: normalized message router; BC: binding component;
SE: service engine

Fig. 9 Cause types on service registry

« abstract »
Service registry

«abstract »
Service

description cause

«abstract»
Request

Identification
cause

Query Keyword Description
cause cause cause

cause

cause

« abstract »
ESB cause

«abstract »
NMR cause

« abstract »
BC cause

«abstract »
SE cause

Configuration
cause

Resource
cause

Destination
cause

Endpoint
cause

Configuration
cause

Fig. 11 Relationship among elements and their related
causes

Service
component

Service
interfaceMessage

Business
process

Service
registry

Cause

Cause

Cause
Cause

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 346

elements need to be considered: a protocol for com-
munication, a message format, and a set of data types
utilized in the message. These elements are prede-
fined in a service interface specification. Therefore,
we extract three causes on these elements: protocol
declaration cause, message format definition cause,
and data type definition cause.

Let us consider an example of the protocol dec-
laration cause. There are two representative protocols
to communicate services: SOAP and REST
(Richardson and Ruby, 2007). When a service inter-
face is declared in REST and a service request mes-
sage is specified in SOAP, the resulting fault is due to
the protocol declaration cause.

Incompatibility between service interface and
service registry: When a service provider publishes
his/her service on a service registry, he/she makes a
description for the service. The description is based
mainly on a service interface specification. Due to
this nature, service registry related standards such as
UDDI define data structures for describing services,
and information on the structure is closely related to a
service interface specification. Among attributes to be
described and registered on a service registry, the
service endpoint and an access point of a service
interface are important, because these are related to
invoking services. Hence, we extract two causes on
these elements, endpoint cause and interface access
point cause. Fig. 13 shows an example of the endpoint
cause.

In this example, endpoint information stored in
the service registry and the access point specified in
WSDL are different. Because of an invalid reference,
the FooService in the example will not be invoked.

Incompatibility between service interface and
service component: A service component realizes one
or more service interfaces. That is, a service compo-
nent is implemented by conforming to predefined

values of elements and their attributes of a service
interface. These elements include data type, operation,
binding, and endpoint. Hence, there are four causes
for each element.

For example, message mismatch has two possi-
ble situations. First, the data type for the input or
output message specified in a service interface and
declared in a service component is different from each
other. Second, a data type for the input or output
message declared in a service component cannot be
supported by the WSDL standard, even if the data
type is specified in a service interface.

4.5 Taxonomy of execution related causes

Execution related causes are classified into two
types: inter- and intra-interaction related causes. For
each execution between target elements, probable
cause types are derived by incompatibility problems
of corresponding elements.

Fig. 12 Cause types on interaction between business process (BP) and the service interface

«abstract»
Incompatibility between BP and service interface

«abstract »

PartnerLink declaration cause
«abstract»

Invocation declaration cause
«abstract»

Assignment declaration cause

Description
cause

Identification
cause

Reference
cause

portType
cause

Description
cause

Identification
cause

Fig. 13 An example of the invalid reference

Service interface

Service registry

Invalid endpoint

<?xml version="1.0"?>
<definitions name="FooService"
 ...
 <service>
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 ...
 <port name="fooServicePort"
 binding="interface:fooBinding">
 <soap:address location=
 "http://www.foo.com/fooService"/>
 </port>
 </service>

</definitions>

<businessService businessKey="..."
 serviceKey="...">
 ...
 <bindingTemplates>
 <bindingTemplate bindingKey="..."
 serviceKey="...">
 <description>foo Service </description>
 <accesssPoint URLType="http">
 http://www.foo.com/foo.html
 </accessPoint>
...

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 347

The inter-interaction related cause means a
problem that occurs when a service invokes another
service. When a service invokes another service, the
results of the caller service are sent to the callee ser-
vice. Hence, runtime messages with real values can
raise incompatible problems.

Incompatibility between services: Typically,
syntactic information on messages between services
is defined in a BP document. Hence, data type and the
number of inputs and outputs have already been
specified technically. However, a valid range of
variables (i.e., inputs and outputs) is varied depending
on a domain. Moreover, passed values sent by a
sender service are different from the intention of the
service whose role is a receiver. Therefore, we extract
two probable causes: invalid range cause and in-
compatible semantic cause (La and Kim, 2011).

Intra-interaction cause means a problem occur-
ring when a service performs its functionality. Dif-
ferent elements participate in executing a service,
such as service interface, service component, and
service middleware. These elements are managed by
a service provider.

As shown in Fig. 14, a client makes a request
through the service interface (Erl, 2007) when a ser-
vice is executed. Then, the request message arrives at
a service middleware. Based on the message, the
service middleware executes the appropriate service
component. Hence, three incompatible problems
among three elements can raise incompatibility
causes.

Incompatibility between message and service
interface: Typically, a client program is implemented
based on a service interface. When the client program
requests to invoke the service with the service inter-
face, the program generates a request message that
syntactically conforms to the service interface.

However, current standards on specifying a service
interface have limitations on description for user-
defined types and arrays. That is, data types supported
by a service interface cannot include all the variable
array types and user-defined types, even if additional
facilities such as JavaScript Object Notation (JSON)
are provided. Due to this limitation on specifying a
service interface, i.e., limited supports for data types,
a message cannot be interpreted even if it is suc-
cessfully sent to a service middleware. In this situa-
tion, an incompatible problem between the message
and service interface may occur.

Incompatibility between message and service
middleware: To receive a message, a service mid-
dleware is required to support the protocol used for
the message. However, there is no mechanism to
specify protocols supported by a service middleware.
Thus, a service middleware generates errors such as
not responding when a message arrives at the mid-
dleware. In this situation, an incompatible problem
between message and service middleware may occur.

Incompatibility between service middleware and
service component: To run functionality provided by
a service component, resources of a service middle-
ware are required, such as files, database, and mem-
ory. In the service middleware, there can be one or
more service components. Hence, resources of the
middleware are shared among service components.
Therefore, the availability of the resources is varied
depending on current status such as how many service
components are executed. Hence, required resources
of a service component may not be available de-
pending on the status of the middleware. Therefore,
there can be an incompatible problem between
available resources of service middleware and re-
quired resources of a service component.

Interoperability between runtime environments:
to execute services, more than one runtime environ-
ment is placed at the provider side. Therefore, if there
are conflicting settings on the configurations, an in-
compatible configuration cause occurs.

4.6 Guidelines for handling the evolution of cause
taxonomy

The proposed cause taxonomy is not complete,
but evolvable with introductions of new SOA im-
plementation technology. In this section, we describe
how the taxonomy can evolve, and how the evolution
of the taxonomy can be reflected in various fault

Fig. 14 Intra-interaction on a service

Service
middlewareClient

Service interface

Service
component

Conforms to

Requests to run

Sends request message

Cause

Cause

Cause

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 348

manager implementations.
The proposed cause taxonomy is specified with

the notion of generalization: abstract causes at the
upper layer and concrete causes at the lower layer.
Note that the classification of cause types at the ab-
stract level is complete, as illustrated in Section 4.2.
Hence, taxonomy evolution will occur at the concrete
cause type layer. More specifically, extending the
cause taxonomy will practically be tasks of adding
new cause types, deleting existing cause types, and
modifying existing cause types. These tasks will not
require altering the classification of and relationships
among abstract cause types. This is mainly due to the
nature of ‘abstract’ in defining high level cause types,
as illustrated in Fig. 15 with adding two cause types at
the concrete level.

Now, we consider the impact of modifying tax-

onomy in implementations. Tasks of modifying cause
types at the concrete level will have a minimal in-
fluence on implementations of the cause-related fault
manager such as our proof-of-concept (POC) im-
plementation in Section 5. Adding a new concrete
cause type will require implementing a new subclass
for the type. Deleting an existing cause type will re-
quire deleting its corresponding class and handling
any other class that depends on the class being deleted.
Modifying a cause type will require replacing its

corresponding class with a newly implemented class
for the type. In summary, modifying the taxonomy
can be reflected in implementations without major
structural changes.

5 Prototype implementation of the autono-
mous service fault manager

To show applicability and effectiveness of the

proposed cause taxonomy for managing service
autonomously, we implemented a POC version of the
autonomous service fault manager.

5.1 Functionality of the fault manager

The functionality of the fault manager is cap-
tured in three main use cases. The use case ‘detect
symptom’ is to monitor services and find a symptom,
i.e., a service state that would potentially yield an
abnormality. This is done by observing the output,
state, and QoS values of the workflow and its par-
ticipating services.

The use case ‘determine faults’ is to determine
the occurrence of a fault by the symptom. This is done
by comparing the output to the expected output.

The use case ‘diagnose faults for causes’ is to
infer service faults and determine the cause(s) for the
given fault in a deterministic and autonomic manner.
This is done by employing the Bayesian network
inference with our proposed taxonomy.

5.2 Design of the fault manager

The six key components and the control flow of
the fault manager are shown in Fig. 16.

Fig. 15 Extending cause taxonomy with new cause types

Existing cause taxonomy New cause taxonomy

New
cause type

New
cause type

Abstract

Concrete

Fig. 16 Control flow of the autonomous service fault manager

 Business process Service_1 Service _ 2

Autonomous service fault manager

(1) Execute service (BP) (2) Invoke service_1

1 . Intercept message
(3) Invoke service_2

2 . Notify monitored data

Actuation planner
8. Notify diagnosis results

3 . Detect symptom
4 . Determine fault
5 . [Fault is determined]

Retrieve cause taxonomy
6 . Diagnose faults

9 . Plan actuation

10. Invoke actuators

Fault management
console

7 . Display diagnosis results

Service actuation
console

Actuator

Enterprise service bus (ESB)

Fault diagnosis

Monitor

12. Display actuation applied

11. Return message

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 349

The component ‘monitor’ intercepts messages
from service invocation and gathers information such
as inputs and outputs, states, and QoS values. Then,
the ‘fault diagnosis’ component detects symptoms,
determines faults, retrieves the cause taxonomy, and
diagnoses faults in an autonomous manner.

5.2.1 Method to detect SOA symptom

In this subsection, we present a method to detect
an SOA symptom as follows:

Step 1 is to extract the set of expected quality
values which is typically specified in a Service Level
Agreement (SLA) (Dan et al., 2004). An SLA docu-
ment typically addresses a number of quality attrib-
utes, and each quality attribute is given a range of
valid values.

Step 2 is to compute the current value of each
quality attribute for the service, by acquiring quality-
related raw data and applying quality metrics.

Step 3 is to compare the expected values to the
measured values for the target service. When meas-
ured values are out of expected value ranges, an oc-
currence of abnormality, i.e., a symptom, is detected.

This three-step method for detecting symptoms
is further specified as an algorithm below:

Algorithm 1 Detect-Symptom
Input:

SLAs // Retrieve SLA documents
QualityMetrics // Retrieve a set of quality metrics

Output:
DetectedSymptomSet
// Step 1: Extract the set of expected quality values
ExtractExpectation(SLAs) {

for each service level agreement SLAi from SLAs
// expi=(QAi, ValidRangesi, conditioni)
for each expi from Expectations

Assign valid range of SLAi to ValidRangesi of QAi

Assign condition of SLAi to conditioni of QAi
endfor

endfor
return Expectations

}
// Step 2: Compute the current values of QAs
ComputeQoS(QualityMetric) {

for each quality metric qmk
// raw data which is only for qmk
Get MonitoredValues of service
Measure quality value based on qmk

endfor
return MeasuredValues

}

// Step 3: Compare expectations to measured values
CompareExpectationToMonitoredValues

(Expectations, MeasuredValues) {
for each expectation expi from Expectations

for each measured values mQVj from MeasuredValues
if (expi.QA==mQVj.QA) then

Check whether expi.ValidRange includes
mQVj.value

if (result==false)
Assign current mQVj to DetectedSymptomSet

endif

endif
endfor

endfor
return

}

5.2.2 Methods to diagnose SOA faults

After symptom detection, there are two sequen-
tial steps: fault determination and fault diagnosis. In
this subsection, we propose one method for each step.
The first method is about detecting candidate faults by
following guidelines from detected symptoms to
faults.

Candidate faults derived from the function
symptom: A function symptom is closely related to
inputs and/or output of an execution unit, a service.
Let ExecutionUniti be the ith execution unit within
one invocation of a service or a BP. Then, there are
two possible mappings:

Rule 1: Fault(ExecutionUniti−1)

Symptom.input(ExecutionUniti)
Rule 2: Fault(ExecutionUniti)

Symptom.output(ExecutionUniti)

Candidate faults derived from the state symp-
tom: A state symptom is derived from internal states
of a service instance. There are four possible map-
pings:

Rule 3: Fault(RuntimeElementk)

Symptom.pre_state(ExecutionUniti)
Symptom.post_state(ExecutionUniti)
&& utilizedBy(RuntimeElementk,

ExecutionUniti)==true
Rule 4: Fault(ESBk)

Symptom.pre_state(ExecutionUniti)
Symptom.post_state(ExecutionUniti)
&& utilizedBy(ESBk, ExecutionUniti)==true

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 350

Rule 5: Fault(Unitk)
Symptom.post_state(ExecutionUniti)
&& Unitk{ExecutionUnit1, ExecutionUnit2,

…, ExecutionUniti−1}
&& share(Unitk, ExecutionUniti)==true

Rule 6: Fault(ExecutionUniti)
Symptom.post_state(ExecutionUniti)

In this mapping, we utilize two additional

predicates, i.e., utilizedBy(i, j) and share(k, l). The
first is interpreted as element i is utilized by element j
and the second as k and l share the same resources
such as database.

Candidate faults derived from the QoS symp-
tom: A QoS symptom is detected by comparing
computed values of quality attributes to requirements.
There are four possible mappings:

Rule 7: Fault(ExecutionUniti)

Symptom.QoS(ExecutionUniti)
Rule 8: Fault(RuntimeElementk)

Symptom.QoS(ExecutionUniti)
&& utilizedBy(RuntimeElementk,

ExecutionUniti)==true
Rule 9: Fault(ESBk)

Symptom.QoS(ExecutionUniti)
&& utilizedBy(ESBk, ExecutionUniti)==true

Rule 10: Fault(ServiceRegistryk)
Symptom.QoS(ExecutionUniti)
&& utilizedBy(ESBk, ExecutionUniti)==true

Through this mapping process, a list of candidate
faults is identified. Based on this and the taxonomy, a
causal chain is constructed, i.e., a form a of Bayesian
network. To do this, we need to transform a proposi-
tional expression with a service network to a directed
acyclic graph (DAG), i.e., Bayesian network con-
struction. This construction consists of four steps, as
follows:

Algorithm 2 Construct-Causal_Chain
Input:

// Retrieve a list of services
Services: array [Svc1, Svc2, …, Svck]
// Retrieve a list of relationships among the services
Relationships: array [Rel1, Rel2, …, Relm]
// Retrieve a list of causes
Causes: array [C1, C2, …, Cl]
// Retrieve a list of relationships among the causes

Specializations: array [Spe1, Spe2, …, Spen]
SymptomSet: array [Symptom1, Symptom2, ..., Symptomn]

Output:
CausalChain: Graph(Vertex, Edge)
// Step 1: Map a service network to a DAG
MapFromServiceNetToDAG(Services, Relationships) {

for each service Svci from Services
// VertexiVertices && VerticesDAG
Map Svci to Vertexi
Set Vertexi to DAG

endfor
for each Relationship Reli from Relationships

Map Relj to Edgei // EdgeiEdges && EdgesDAG
Set Edgei to DAG

endfor
return

}
// Step 2: Refine graph with candidate faults
GenerateFaultTree(SymptomSet, MappingRules, DAG) {

for each symptom Symptomi from SymptomSet
// by applying Rule 1 and Rule 2
Retrieve candidate fault types
for each vertexk in DAG

if (Symptomi.occurencePlace==vertexk)
// x is the number of candidate fault types
Append x vertices
Append 2x edges
Update DAG with x vertices and 2x edges

endif
endfor

endfor
return

}
// Step 3: Refine graph with cause taxonomy
ConstructCausalChain(DAG, Causes, Specializations) {

for vertexx and vertexx+1 in DAG
for each Cl in Causes

if (Cl.Elements.contains(vertexx) &&
Cl.Elements.contains(vertexx+1))
Append Cl to CausalChain

endif
endfor

endfor
return

}
// Step 4: Refine graph with cause taxonomy
Retrieve conditional probability table (CPT) for each edge

This causal chain is optimized with the cause

taxonomy in terms of the range of possible causes and
correctness for identifying cause. First, irrelevant
causes are removed from the causal chain through the
mapping process with the 10 rules, in terms of two
parameters: the number of targets to be traced and the
number of cause types to be checked. Second, the

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 351

place in which the cause occurs is identified as well as
the types of causes. For the reasoning about the cause,
we utilize the two-step Bayesian inference algorithm
(Fig. 17).

The first step is to moralize the Bayesian net-

work. A moral graph is a concept in graph theory,
used to find the equivalent undirected form of di-
rected acyclic graph. It is a key step of the junction
tree algorithm, used in belief propagation on graphi-
cal models.

The second step is to triangulate the moralized
graph through the maximum cardinality search algo-
rithm with cause taxonomy. An undirected graph is
triangulated if every cycle of length greater than three
possesses a chord. Through these two steps, we can
derive possible causes for the target element.

Our cause taxonomy can especially ease the
burden of diagnosing faults. This is because the tax-
onomy provides classifications of all causes for each
target element and relationship among the elements.
Hence, it reduces steps for tracing elements within the
service execution path. Typically, a symptom is ob-
served in a specific target element. Then, a range of
possible causes for the symptom is from the causes of
the target elements to the causes of related target
elements within next nodes in the graph.

5.3 Implementation of the fault manager

Based on the design, we implemented a POC
version of the fault manager, which consists of three
inference-related components: monitor, fault diagno-
sis component, and actuation planner. Fig. 18 shows
the results of monitoring QoS of four SOA elements
with the monitor: business process B, service A.I,
service A.II, and service registry R. B, A.I, A.II, and
R indicate identities of each element.

Based on the monitoring results, the fault diag-

nosis component first reduces the ranges of possible
causes based on the cause taxonomy (Fig. 19).

Fig. 18 Monitoring QoS results on SOA elements
The area marked with an ellipse indicates that a symptom is
observed at that time frame

686

526 519 520 509 504 502 491 497 503

18 16 16 14 15 14 16 16 13 15

876

619 720 709

809 794

698 691 703 743

1580

1161

1255

1243

1333
1312

1216 1198 1213

1261

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10

Business process B

Service A.I

Service A.II

Service registry R

Threshold value: 1300 ms

R
es

p
on

se
 t

im
e

 (
m

s)

Number of invocations

Threshold value: 750 ms

Threshold value: 520 ms

Threshold value: 15 ms

Fig. 17 Two-step Bayesian inference

set e;
for each v in G, V

for each (‘p1’, ‘v’) in G
for each (‘p2’, ‘v’) in G

if ‘p1’ != ‘p2’ and (‘p1’, ‘p2’) is not in G, E and
(‘p2’, ‘p1’) is not in G, E then
e=e union (‘p1’, ‘p2’);

end
next

next
next
G, E=G, E union e;

Constant: V=set of all vertices in graph;
n=number of vertices in graph;
E=set of all edges in the graph;

Variable i, j: integer;
v, w: vertex;
set: array [0, n-1] of subset of vertices;
size: array[V] of integer;
alpha: array [V] of integer;
alphainv: array[1…n] of vertex;

Begin
for i:=0 to (n-1) do

set[i]:=0;
for each v in V

begin
size[‘v’]:=0;
add ‘v’ to set [0];

end
i:=1; j:=0;
while ‘i’<=n do

begin
‘v’:=delete any from set[‘j’];
alpha[‘v’]:=‘i’; alphainv[‘i‘]:=‘v’;
size[‘v’]:=-1;
for w is in V–{‘v’} do

if (‘v’, ‘w’) is in E and size[‘w’]>=0 then
begin

delete w from set[size[‘w’]];
size[‘w’]:=size[‘w’]+1;
add ‘w’ to set[size[‘w’]];

end
i:=‘i’+1;
j:=‘j’+1;
while j>=0 and set[‘j’]=0 do

j:=‘j’–1
end

End

Step 1

Step 2

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 352

Then, this component infers the causes using

existing Bayesian network inference engines. As a
result, specific cause types for the faults are
identified.

5.4 Experiments with the fault manager

Our experiment environment consisted of JDK
1.6.0_15 as the Java virtual machine, Bayesian net-
work tools in Java as the probability-based reasoning
engine, and mySQL 5.0.67 as the database manage-
ment system. The experiment platform ran 64-bit
Windows 7 with Intel 3.0 GHz Core 2 Duo and 4 GB
of RAM. For the experiment, we considered one BP
and its nine services, i.e., ServiceSet:={A, B, C, D, E,
F, G, H, I}. And, there were four possible execution
paths: A→B→E→G→I, A→C→F→G→I, A→C→
F→H→I, and A→D→F→H→I. We assumed that we
detected state symptom on service F. With execution
paths and rules, mappings from symptom to fault
were constructed (Fig. 20).

After mapping, a causal chain was constructed
with CPTs (Fig. 21a). By conducting inference using
the Bayesian network, we could obtain an inference
result of reasoning about cause; i.e., service compo-
nent F has a cause. This shows the way to find the
most problematic service within a given BP. To ac-
quire more accurate causes, the fault diagnosis com-

ponent should trace repeatedly over all the underlying
elements of service component F based on the pro-
posed cause taxonomy. In summary, Fig. 21 shows
that our cause taxonomy can be used in reasoning
causes.

However, we cannot show how accurate the di-

agnosis with cause taxonomy is. Therefore, we
compare two cases: the proposed cause taxonomy is
applied to the reasoning method or not. Our evalua-
tion on accuracy of diagnosis results is based on
coverage of the results. An accuracy of 100% means
that the diagnosis result includes the exact set of
faulty components. For example, we assume that
services A and B within the target SOC based system
are faulty components. If our diagnosis system di-
agnoses faults and concludes that only service A is a
faulty component, the accuracy of our diagnosis re-
sults is 50%.

As shown in Fig. 22, the accuracy of the
Bayesian network with the proposed cause taxonomy
is higher than that of a plain Bayesian network, in
terms of cause types (Zhang et al., 2009). By applying
the proposed cause taxonomy, the search space for
Bayesian inference is reduced; i.e., the domain of
Bayesian inference is limited by the proposed cause
taxonomy. Therefore, the accuracy of the reasoning
result becomes higher and the reasoning becomes
faster.

Service B

Service C

Service D

(b)

(a)

State
symptom

RT
element

ESB

RT
element

ESB

Service A

Service E

Service F

Service G

Service I

Service H

Service C

Service A

Service D

Service F

Service F

Fig. 20 Results showing mapping from symptom to fault
(a) Service network; (b) Refined service network with faults

Fig. 19 Source code for mapping function symptoms to
candidate faults

1 public void mapFunctionFactToTaxonomy() {
2 Vector<Fact> addition=new Vector<Fact>();
3 for (Fact info: additionalInfo) {
4 if (info.getName().equals("Exception")) {
5 addition.add(info);
6 }
7 }
8 int exceptionIndex=0;
9 for (int i=0; i<falseFunctionPredicate.size(); i++) {
10 for (Fact info: addition) {
11 if (falseFunctionPredicate.elementAt(i).
 equals(info.getDescription())) {
12 exceptionIndex=i+1;
13 falseFunctionPredicate.remove(exceptionIndex);
14 }
15 }
16 }
17 Vector<String> trueRelation=
 makeRelation(trueFunctionPredicate, Causes);
18 Vector<String> falseRelation=

 makeRelation(falseFunctionPredicate, Causes);
19 findFunctionConflicts();
20 functionMismatch=

 findFunctionConflicts(trueRelation, falseRelation);
21 }

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 353

6 Assessment and conclusions

A prerequisite to applying autonomic service

management is a reliable and comprehensive tax-
onomy for causes of services. This is because the
taxonomy provides the basis for reasoning about
symptoms and remedying accountable target ele-
ments in an autonomous way. Hence, in this paper, we
propose a comprehensive but extendable taxonomy of
services with a technical observation on the comput-
ing paradigm and characteristics of SOA.

We first define the theoretical foundation for
fault management issues in SOA, which becomes
the basis for the reasoning process in service man-
agement. That is, we define a meta-model of SOA for

deriving the cause taxonomy. There are a number of
components collaborating together in an SOA-based
system, and the provided meta-model clarifies inter-
component which is an essential prerequisite to ef-
fective inference for fault diagnosis.

Then, we define cause taxonomy for enabling
autonomic service management. In complex systems
such as the SOA-based system, it is infeasible to
manage a number of potential faults and cause types
in a manual manner. The taxonomy is derived by
considering internal structures of all the target ele-
ments, inter-relationships among the elements at de-
sign time, and inter-relationships among the elements
at runtime. Based on the taxonomy, subsequent
management tasks such as fault diagnosis and quality
actuation methods can be performed in autonomous
ways. The proposed taxonomy is designed for further
extension with new types of causes.

The results of our proof-of-concept implemen-
tation of a cause diagnosis application based on the
taxonomy show the applicability of our proposed
taxonomy which helps infer the causes of faults. We
believe that the proposed taxonomy of causes in SOA
would become an essential foundation for imple-
menting autonomic service management applications
in SOA.

Fig. 22 Comparison of accuracy of reasoning

0
20
40
60

80

100

Bayesian
network Bayesian network

with cause taxonomy

71.3
92.7

A
cc

u
ra

cy
 (

%
)

Fig. 21 Bayesian inference result: (a) Bayesian network, i.e., causal chain; (b) inference result
SVC component is the most probable cause. comp.: component; btw.: between; incom.: incompatibility; mid.: middleware

Most probable cause

(b)

(a)

SVC comp. A
True
False

90.0%
10.0%

Incom. btw SVCs

SVC comp. D

SVC comp. C

SVC comp. F

RT element

ESB

SVC comp. A
True
False

SVC comp. D
True
False

92.6%
7.4%

SVC comp. C
True
False

75.0%
25.0%

True
False

58.8%
41.2%

ESB
True
False

70.1%
29.9%

RT element
True
False

74.3%
25.7%

SVC comp. F
True
False

53.1%
46.9%

True
False

86.1%
13.9%

SVC comp. A True False
True
False

80.0%
15.0%

20.0%
77.0%

SVC comp. A True False
True
False

100.0%
0.0%

0.0%
100.0%

True False
True
False

70.0%
24.0%

12.0%
60.0%

Incom. btw SVCs

SVC comp. C True False
True
False

65.0%
56.0%

40.0%
46.0%

Incom. btw. SVCs
True False

True
False

90.0%
20.0%

10.0%
73.0%

Incom. btw. SVCs

SVC comp. C True False
True
False

90.0%
10.5%

7.0%
84.0%

Incom. btw. SVCs mid. and SVC comp.

SVC comp. C True False
True
False

40.0%
63.0%

56.0%
27.0%

Incom. btw. MSG and SVCs mid.

True False

True
False

56.0%
34.2%

46.8%
4.0%

Incom. btw. SVCs mid.
and SVC comp.

True False
True
False

98.0%
0.4%

4.0%
94.0%

Incom. btw. MSG and SVCs mid.

Incom. btw. SVCs

Incom. btw. SVCs

Incom. btw. MSG and SVCs mid.

Incom. btw. SVCs mid. and SVC comp.

True
False

59.4%
40.6%

True
False

69.2%
30.8%

92.6%
7.4%

Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(5):339-354 354

References
Arban, A., Moore, J., Bourque, P., Dupuis, R., 2005. Guide to

the Software Engineering Body of Knowledge. IEEE
Computer Society, California, USA.

Avizienis, A., Laprie, J., Randell, B., Landwehr, C., 2004.
Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Depend. Secure Comput.,
1(1):11-33. [doi:10.1109/TDSC.2004.2]

Brogi, A., Canal, C., Pimentel, E., Vallecillo, A., 2004. For-
malizing Web service choreographies. Electron. Notes
Theor. Comput. Sci., 105(10):73-94. [doi:10.1016/j.entcs.
2004.05.007]

Brüning, S., Weißleder, S., Malek, M., 2007. A Fault Tax-
onomy for Service-Oriented Architecture. Proc. 10th
IEEE High Assurance Systems Engineering Symp.,
p.367-368. [doi:10.1109/HASE.2007.46]

Chappell, D., 2004. Enterprise Service Bus. O′Reilly, Cali-
fornia, USA.

Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler,
D., Ludwig, H., Polan, M., Spreitzer, M., Youssef, A.,
2004. Web services on demand: WSLA-driven automated
management. IBM Syst. J., 43(1):136-158. [doi:10.1147/
sj.431.0136]

Erl, T., 2007. SOA Principles of Service Design. Prentice Hall,
Boston.

Hamadi, R., Benatallah, B., 2003. A Petri Net-Based Model for
Web Service Composition. Proc. 14th Australasian Da-
tabase Conf., p.191-200.

Huang, X., Zou, S., Wang, W., Cheng, S., 2006. Layering
Model and Fault Diagnosis Algorithm for Internet Ser-
vices. Proc. Int. Multi-Conf. on Computing in the Global
Information Technology, p.22. [doi:10.1109/ICCGI.2006.
45]

Hunter, E.J., 2002. Classification Made Simple. Ashgate Pub-
lishing, Surrey, England.

IBM Research Center, 2006. Symptoms Reference Specifica-
tion, Version 2.0. IBM Autonomic Computing Symptom
Specification.

Kephart, O., Chess, M., 2003. The vision of autonomic com-
puting. Computer, 36(1):41-50. [doi:10.1109/MC.2003.
1160055]

La, H., Kim, S., 2011. Static and dynamic adaptations for
service-based systems. Inform. Software Technol.,
53(12):1275-1296. [doi:10.1016/j.infsof.2011.06.001]

Manes, A., 2005. The Elephant Has Left the Building. Intel-
ligent Enterprise, NY.

Martens, A., 2005. Analyzing Web service based business
processes. LNCS, 3442:19-33. [doi:10.1007/978-3-540-
31984-9_3]

Organization for the Advancement of Structured Information
Standards (OASIS), 2004. UDDI Version 3.0.2, UDDI
Specification Technical Committee Draft.

Organization for the Advancement of Structured Information
Standards (OASIS), 2006. Web Services Distributed
Management: Management of Web Services (WSDM-
MOWS 1.1).

Organization for the Advancement of Structured Information
Standards (OASIS), 2007. Web Services Business Proc-
ess Execution Language Version 2.0 (WS-BPEL 2.0).

Organization for the Advancement of Structured Information
Standards (OASIS), 2010. SOA-EERP Business Quality
of Service Version 1.0.

Pernici, B., Rosati, A.M., 2007. Automatic Learning of Repair
Strategies for Web Services. Proc. 5th European Conf. on
Web Services, p.119-128. [doi:10.1109/ECOWS.2007.13]

Richardson, L., Ruby, S., 2007. RESTful Web Services.
O′Reilly, California, USA.

World Wide Web Consortium (W3C), 2005. Web Services
Choreography Description Language Version 1.0 (WS-
CDL 1.0).

World Wide Web Consortium (W3C), 2007a. Simple Object
Access Protocol (SOAP) 1.2.

World Wide Web Consortium (W3C), 2007b. Web Services
Description Language (WSDL), Version 2.0, Part 0:
Primer.

Zhang, J., Chang, Y., Lin, K., 2009. A Dependency Matric
Based Framework for QoS Diagnosis in SOA. Proc. IEEE
Int. Conf. on Service-Oriented Computing and Applica-
tions, p.1-8. [doi:10.1109/SOCA.2009.5410261]

Zheng, Z., Lyu, M.R., 2010. An adaptive QoS-aware fault
tolerance strategy for Web services. Emp. Software Eng.,
15(4):323-345. [doi:10.1007/s10664-009-9126-8]

