
Cheun et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(5):339-354 339

 

 

 

 

A taxonomic framework for autonomous service  

management in Service-Oriented Architecture* 
 

Du Wan CHEUN, Hyun Jung LA‡, Soo Dong KIM 
(Department of Computer Science, Soongsil University, Seoul 156-743, Korea) 

E-mail: {dwcheun, hjla80, sdkim777}@gmail.com 

Received Dec. 7, 2011;  Revision accepted Mar. 7, 2012;  Crosschecked Mar. 7, 2012 

 
Abstract:    Since Service-Oriented Architecture (SOA) reveals the black box nature of services, heterogeneity, service dynamism, 
and service evolvability, managing services is known to be a challenging problem. Autonomic computing (AC) is a way of de-
signing systems that can manage themselves without direct human intervention. Hence, applying the key disciplines of AC to 
service management is appealing. A key task of service management is to identify probable causes for symptoms detected and to 
devise actuation methods that can remedy the causes. In SOA, there are a number of target elements for service remedies, and there 
can be a number of causes associated with each target element. However, there is not yet a comprehensive taxonomy of causes that 
is widely accepted. The lack of cause taxonomy results in the limited possibility of remedying the problems in an autonomic way. 
In this paper, we first present a meta-model, extract all target elements for service fault management, and present a computing 
model for autonomously managing service faults. Then we define fault taxonomy for each target element and inter-relationships 
among the elements. Finally, we show prototype implementation using cause taxonomy and conduct experiments with the pro-
totype for validating its applicability and effectiveness. 
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1  Introduction 
 
In Service-Oriented Architecture (SOA), service 

providers develop services with reusable features, and 
service consumers discover and subscribe to appro-
priate services at runtime. Since services deployed in 
service registries expose only their interfaces, service 
consumers and administrators have limited visibility 
and manageability of services (Erl, 2007). In addition, 
services may evolve without informing service sub-
scribers of the changes. Existing services may change 
their interfaces or stop providing functionalities 

suddenly. These key features of SOA, including the 
black box nature of services, heterogeneity, service 
dynamism, and service evolvability, make service 
management more challenging than conventional 
system management (Manes, 2005). 

Autonomic computing (AC) is a way of de-
signing systems that can manage themselves in an 
autonomous manner without direct human interven-
tion (Kephart and Chess, 2003). Applying key disci-
plines of AC to service management is appealing 
since key technical issues for service management 
can be effectively resolved by AC.  

A key task of service management is to identify 
probable causes for symptoms detected and to devise 
actuation methods that can remedy the causes. When 
symptoms of problems are detected, the probable 
causes for the symptoms must be identified, and 
elements that result in the causes should be remedied 
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in an appropriate way. In SOA, a number of key 
elements become the targets for service remedies, 
such as service, business process in a Business Proc-
ess Execution Language (BPEL) document (OASIS, 
2007) or service choreography (W3C, 2005), enter-
prise service bus (ESB) (Chappell, 2004), and service 
interface in the form of Web Service Description 
Language (WSDL) (W3C, 2007b) or representational 
state transfer (REST) (Richardson and Ruby, 2007). 
There are also a number of different causes associated 
with the target elements. To diagnose the problems 
and find their causes effectively, it is essential to have 
two solutions available: (1) a well-defined taxonomy 
of all causes for each target element and (2) applica-
tions to apply the taxonomy.  

Therefore, the taxonomy of causes provides the 
basis for reasoning about symptoms and remedying 
accountable target elements in an autonomous way. 
Hence, the lack of cause taxonomy results in the lim-
ited possibility of determining causes and remedying 
problems in an autonomous way. However, there is 
not yet a comprehensive taxonomy of causes that is 
widely accepted. The cause taxonomy we propose in 
this paper has the following features which are dis-
tinguishable from existing works: 

1. Presenting a theoretical foundation for fault 
management in SOA; 

2. Defining a meta-model of SOA as the basis for 
deriving taxonomy; 

3. Proposing a comprehensive cause taxonomy 
for enabling autonomic service management; 

4. Defining a taxonomy that is extendable with 
new types of causes. 

In this paper, we present a comprehensive tax-
onomy of causes that can be identified under SOA 
environments. We first present key concepts for 
managing service faults, identify all the possible tar-
get elements for service management, and suggest a 
computing model for autonomously managing ser-
vice faults. With the theoretical foundation on service 
fault management, we define comprehensive cause 
taxonomy by considering internal structures of all the 
target elements, inter-relationships among the ele-
ments at design time, and inter-relationships among 
the elements at runtime. Finally, we show prototype 
implementation using the cause taxonomy and con-
duct experiments with the prototype for validating 
applicability and effectiveness. 

2  Related work 
 
While there is not yet a comprehensive taxon-

omy of causes that is widely accepted, many re-
searchers have proposed taxonomy for detecting and 
diagnosing SOA faults and self-adapting. Brüning et 
al. (2007) proposed fault taxonomy for testing SOA 
faults. They first presented the five steps, publishing, 
discovery, composition, binding, and execution, be-
cause faults may occur during all steps of the service 
execution process. Then, they defined five types of 
faults and their subtypes, as well as causal relation-
ships among fault types. In addition, they demon-
strated the application of the taxonomy with an ex-
ample of a travel agency. They focused on presenting 
a list of faults that can occur and be detected at run-
time. However, descriptions of these faults need to be 
improved for utilizing fault detection and diagnosis 
and self-adaptation based on faults as well as SOA 
faults testing. Huang et al. (2006) defined a layering 
model and diagnosis algorithm for managing service 
faults. They first presented four layers: service inter-
action layer, service software layer, execution plat-
form layer, and networking layer. Based on these 
layers, they defined a window-based fault diagnosis 
algorithm. Then, they showed simulation results for 
evaluation of the layering model and diagnosis algo-
rithm. Even though their work focused more on the 
algorithm than on the layering model for classifying 
faults, it provided abstraction levels of faults based on 
layers. However, this classification of the faults needs 
to be specialized for applying to faults related tasks.  

The above two works tended to utilize SOA 
specific elements such as steps or layers as a basis for 
defining fault taxonomy. Other works, such as IBM 
Research Center (2006), provided a meta-model and a 
template to specify symptoms. In IBM Research 
Center (2006), a symptom is an abnormal condition 
which can be observed and caused by a fault. Symp-
tom categories were suggested based on security, 
operation, availability, and quality of service (QoS). 
Moreover, an extension point was provided for tem-
porarily undefined situations. All these elements were 
specified with eXtensible Markup Language (XML). 
IBM Research Center (2006) focused on enabling AC 
and providing a general way that can be applied to any 
other software system. Therefore, the Symptom Ref-
erence specification needs to be extended with SOA 
specific features. Pernici and Rosati (2007) proposed 
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a taxonomy for SOA faults based on the persistency 
of the fault. In other words, there are three types of 
faults: permanent, transient, and intermittent. They 
showed that this classification can be used to analyze 
faults and to define the recovery mechanism. How-
ever, they provided only a general classification for 
the faults. These two works addressed the baseline for 
defining taxonomy for SOA fault diagnosis; i.e., they 
tended not to cover SOA specific features but to pro-
vide a general way to be extended. 

In summary, there is still room for defining the 
cause taxonomy for SOA fault diagnosis in terms of 
the following issues. The first issue is that the basis 
for defining cause types does not completely cover 
the domain of faults that occur. The second issue is 
that an SOA cause itself is difficult to classify by a 
machine. These features limit the practicability and 
applicability of the taxonomy and make it much 
harder to manage services in an autonomic manner. 
Similarly, diagnosis in the medical domain is to find 
the cause of disease, not the symptom. 

 
 

3  Theoretical foundation on service man-
agement 

3.1  Meta-model 

In this section, we present a basic set of defini-
tions that will be used throughout the discussion of 
the cause taxonomy for autonomic service manage-
ment. To clearly understand these concepts, we define 
a meta-model for representing cause and its related 
elements as in Fig. 1. The meta-model is followed by 
the standard usage (Avizienis et al., 2004). 

 
 
 
 
 

 
 
 
A symptom is an observed state of a service 

which indicates a pre-defined amount of deviations 
between a normal state and the observed states. It is a 
result of a certain fault. A fault is an abnormal condi-
tion which may lead to a symptom. A cause initiates a 
fault, and a causal chain is a tree structure specifying a 
set of related causes and their relationships.  

3.2  Target elements for service management 

When a problem occurs in SOA, a cause for the 
problem occurs in certain elements, and these ele-
ments become the targets for remedying the causes. 
Through our rigorous observations on SOA standards 
and practices, we first define nine target elements for 
autonomous service management (Fig. 2): service 
interface, business process, service component, 
message, runtime environment (services middleware, 
BPEL engine, and Simple Object Access Protocol 
(SOAP) engine), ESB, and service registry.  

 
 
 
 
 
 
 
 

 
 
 
There are lower-level underlying target elements 

such as the operating system and network which are 
accountable for problems, but we do not consider the 
lower-level elements in this research. While these 
causes apply to distributed systems in general, this 
paper focuses on typical faults applying to SOA. Thus, 
we leave all general elements of distributed systems 
aside and focus solely on the essential steps of SOA 
and all causes associated with them. The other causes 
are described in more detail in the related work. 

3.3  Computing model 

By extending IBM’s AC model (Kephart and 
Chess, 2003), we present the computing model for 
managing service faults with five steps as in Fig. 3. 
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Fig. 2  The nine targets of service management
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Fig. 3  Five phases of the computing model for manag-
ing service faults 

Fig. 1  Meta-model for cause and its related elements
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The phase ‘detect symptom’ is to monitor man-
aged services and recognize abnormal states of the 
services which indicate a significant deviation be-
tween a service delivered and the service expected 
which is specified in service-level agreements. The 
phase ‘diagnose faults for causes’ is to identify the 
cause for the symptom based on a cause taxonomy 
and to determine the root cause by looking up the 
knowledge of the causal chain. The phase ‘plan ac-
tuation’ is to make a plan to solve the causes and 
prepare for the remedy. Finally, the phase ‘remedy 
causes’ is to execute adapters on services and/or the 
underlying SOA environment and resolve the causes. 

 
 

4  Classification of causes 
 
Typically, it is not feasible to define complete 

taxonomies of causes, symptoms, and actuators. This 
is because the numbers of possible causes, symptoms, 
and actuators could be large and new types can be 
introduced. On the other hand, taxonomies of the 
Service Component Architecture (SCA) elements 
should be available to define effective methods to 
identify underlying causes for given symptoms and to 
choose effective actuators for the diagnosed causes. 

4.1  Criteria for defining the taxonomy 

We define the taxonomy of causes by consider-
ing the characteristics of service-oriented computing, 
SOA standards, and SOA elements/artifacts. Our 
taxonomy is not meant to be complete but compre-
hensive and extensible, meaning that new cause types 
can be defined by subtyping existing cause types. We 
apply three criteria in defining the taxonomy: com-
pleteness on classification, exclusiveness among 
elements, and incremental extensibility (Hunter, 
2002). 

A classification is complete if the set of all cause 
types for a given target element is complete, i.e., not 
missing any probable cause. We consider the key 
components of each target to derive a complete list of 
probable causes. A classification is exclusive if there 
is not a common property among the cause types for a 
target element. That is, any two cause types Ci and Cj 
for a target element should not have any common 
property between them. A classification is incremen-
tally extensible if a given cause can be extended into 

its subtypes. With this criterion, abstract cause types 
can initially be defined and they can be refined into 
more concrete subtypes. 

4.2  Cause types for defining the taxonomy 

In software engineering, two types of informa-
tion, static and dynamic, are considered for software 
analysis, design, and construction (Arban et al., 2005). 
Static information of the software consists of com-
ponents and their relations. In object-oriented analy-
sis and design, for example, such components could 
be classes and the relations could include association 
between classes. Dynamic information of the soft-
ware contains states of components and interactions 
among the components at runtime. The interaction 
can be specified with sequential and/or concurrent 
events. By utilizing this analogy, we first classify 
causes into three types, namely, embedded cause for 
SOA specific components, relation related cause for 
relations among the components, and execution re-
lated cause to specify runtime behavior. 

Fig. 4 shows the three types of causes and their 
subtypes. These subtypes are elaborated upon in the 
remaining sections. The main reason for classifying 
causes into these three types is that the methods for 
symptom detection, fault diagnosis, and adaptation 
would considerably differ. For an embedded cause, 
adaptation is applied to only the target element that 
results in the cause. For a relation related cause, ad-
aptation is applied to mismatched elements that result 
in the cause. In remedying execution related causes, a 
non-trivial reasoning process is required for deter-
mining which of the participating targets is responsi-
ble for the cause, and for planning actuation on the 
selected target. However, the determination of the 
responsible target could not usually be done  
autonomously.  

Embedded cause is a problem or a cause em-
bedded in a service target without being involved in 
any relation or interaction among target elements. For 
example, a service interface specified in WSDL may 
have operation signatures which use undefined data 
types. This type of cause is not involved in any in-
teraction in form of external references or invocation. 
Instead, it specifies a problem or a cause on the target 
element itself. 

Relation related cause is a problem of inconsis-
tency or incompatibility existing in the relation  
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between two target elements at static time. In SOA, 
there is a considerable amount of relations among the 
target elements, and the relations themselves can 
result in certain causes. 

Let us consider a case of relation between a ser-
vice interface and a service component (Fig. 5). For a 
problem in an interaction between them, either the 
service interface or the service component can be to 
blame for the cause. Hence, determining the target 
that results in a relation related cause requires context 
information beyond the specification of the target 
elements themselves. In many cases, this context 
information describing the situation is not readily 
available. To reason about interaction related causes, 
such context information should be provided and 
specified in a machine readable form such as in an 
XML document. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Execution related cause is a problem occurring 

when a service or a business process is invoked at 
runtime. Even if elements within an SOA based sys-
tem have no problem and relations among elements 
are correctly specified, a runtime element such as a 
parameter or required resources can raise problems. 

4.3  Taxonomy of embedded causes 

Embedded causes are classified into seven types 
based on target elements for service management  
(Fig. 6). 

 

 
 
 
 
 
 
 
 
 
For each target element, probable cause types are 

derived by considering its sub-elements. 
Service interface cause: A service interface 

specifies capability provided by a service, and they 
are specified in WSDL with the following key  
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btw.: between; srv.: service; comp.: component 

Fig. 6  Seven types of embedded causes
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Fig. 5  Matching between the service interface and the 
service component 

…
<message name="getOp1StringRequest">
<part name=“x" type="xsd:int"/>

</message>   
<message name="getOp1StringResponse">
<part name=“returnedInfo" type="xsd:string"/>

</message> 
<portType name=“Service777">
<operation name=“method_1">
<input message="tns: getOp1StringRequest"/>
<output message="tns: getOp1StringResponse"/>

</operation>
…

</portType>
…

// Filename: Service777.java
@WebService
public class Service777 {

…
@WebMethod
public String method_1(int x) {

...
}
…

}

«argument»

«return type»

«op name»

Service Interface

Service component
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elements: data type, operation signature, and binding 
information. Hence, there are four causes for each 
element. An example of the binding cause is that the 
required information is missing such as interface and 
type. Because of this cause, a service cannot be in-
voked by its endpoint specified in service interface 
specification, known as a reachability problem 
(Hamadi and Benatallah, 2003). 

Business process cause: A business process (BP) 
defines a workflow among participating services and 
it is specified in BPEL with four elements: invocation, 
assignment, control flow, and waiting statement 
(OASIS, 2007). Because the BP controls a series of 
service invocations, there are three variations on each 
element: invalid information on an element, no in-
formation on an element, and incompatible informa-
tion on an element. Fig. 7 depicts four causes and 
their sub-causes for each element specified in a BPEL 
document. 

 
 
 
 
 
 
 
 
 
 
 

For example, there are two sub-causes for the 
assignment cause: variable cause and query statement 
cause. To specify a variable attribute of an assignment 
element for a BPEL document, there are five variants 
to be selected, i.e., variable, property, expression, 
literal, and empty. An example of the variable cause is 
that one of these variants is incorrectly copied from 
source to destination values. Another example of the 
branch cause is deadlock (Martens, 2005). This cause 
can occur more when utilizing choreography for de-
fining services (Brogi et al., 2004). 

Service component cause: A service component 
realizes one or more service interfaces. It is distrib-
uted as a black-box form. Hence, cause types on ser-
vice components can be derived from externally ex-
posed properties.  

One cause type is about functionality related 
elements, i.e., input and output. Another is about state 
related elements, i.e., pre-condition and post- 

condition. Here, pre-condition and post-condition 
depict the state of a service component or its related 
resources before and after executing its functionality. 
For example, one raw is updated with newer values 
after a service component updates one table in the 
database. This updated state can be treated as 
post-condition. The other is about QoS related ele-
ments: unacceptable QoS and no responses (OASIS, 
2010). In this case, there are existing references to 
well-known causes of these two symptoms, such as 
internal logic cause and inefficient data manipulation 
cause (Zheng and Lyu, 2010). Fig. 8 depicts three 
abstract causes and their concrete causes for each 
element of the service component.  

 
 
 
 
 
 
 
 
 
Message Cause: Message is an information ex-

change among SOA elements through a variety of 
underlying protocols such as SOAP. This message 
consists of header and body. The header specifies a 
destination that a message should be delivered to. The 
body specifies message contents and its encoding 
styles. Therefore, there are two causes (i.e., header 
cause and body cause) and one sub-cause for a body 
cause. One example of the header cause is the version 
mismatch cause (W3C, 2007a). 

Runtime element cause: A runtime element such 
as BPEL engine, SOAP engine, or service component 
middleware has functionalities of processing and 
executing SOA artifacts. Typically, the runtime ele-
ment has a form of software provided by a vendor. 
Hence, cause types on the runtime element can be 
derived from externally observed states. OASIS (2006) 
defined four types to classify the states: available, par-
tially available, unavailable, and unknown. That is, all 
the runtime elements can have causes based on four 
states. For example, the unavailable cause on a BPEL 
engine can occur when required resources such as 
memory are not enough to execute a BP deployed on 
the BPEL engine. 

Service registry cause: Service registry is an in-
frastructure that enables one to publish and subscribe 

Fig. 7  Cause types on business process specification
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to services, conforming to UDDI (universal descrip-
tion, discovery and integration) which defines data 
structure for describing services and API (application 
programming interface) for registering services 
(OASIS, 2004).  

Based on these, we define two abstract causes 
and their concrete causes for each element of the BP 
specification (Fig. 9). For example, there are two 
possible situations for the identification cause. First, a 
unique identity for each data structure is defined for 
two or more structures. Second, a unique identity for 
each data structure is not specified or assigned. In 
addition, there are two possible situations for the 
description cause. First, the published description for 
a service is updated and does not conform to the pre-
vious one. Second, mandatory information for each 
data structure is not specified. 

 
 
 
 
 
 
 
 
 
 
ESB cause: ESB is an integration platform that 

supports message routing and data transformation. 
Java business integration (JBI) is mentioned as a way 
for implementing ESB (Chappell, 2004). Hence, we 
extract key elements for JBI based ESB: normalized 
message router (NMR), binding component (BC), and 
service engine (SE).  

Hence, there are three causes and their sub- 
causes for each cause (Fig. 10). For example, there are 
two sub-causes for the NMR cause. To operate NMR, 
there are two key elements: configuration including 
the routing table and resource for executing NMR 
itself. An example of the resource cause occurs when 
the amount of memory allocated for running ESB is 
not enough for routing service invocations. 

4.4  Taxonomy of relationship related causes 

Relationship related causes are classified into 
four types based on target elements for service man-
agement (Fig. 11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each relationship between target elements, 

probable cause types are derived by common attrib-
utes among SOA elements. 

Incompatibility between business process and 
service interface: Typically, a BP includes one or 
more service invocations. Hence, the BPEL standard 
(OASIS, 2007) provides rules to specify the service 
invocations. First, PartnerLink, which specifies the 
relationship between a BP and a target service, is 
declared. In detail, PartnerLink declaration includes 
an identification of each target service and description 
of the service such as a role. Second, invocation re-
lated information is declared based on WSDL. There 
are two key elements, a reference to a target service 
and portType for binding operations. Third, values 
produced by services are assigned to BP variables 
through an assignment activity of the BP. Based on 
these rules, we define three causes: PartnerLink dec-
laration cause, invocation declaration cause, and as-
signment declaration cause (Fig. 12). 

For the invocation cause, two sub-causes could 
occur. The reference cause can occur when references 
specified in BPEL and WSDL are not matched and 
the portType cause can occur when the portType 
specified in BPEL and the portType specified in 
WSDL are not matched. 

Incompatibility between service interface and 
message: In SOA, a message is a unit for communi-
cation between services or a BP and a service through 
a service interface. To construct a message, three  

Fig. 10  Cause types on enterprise service bus (ESB) 
NMR: normalized message router; BC: binding component; 
SE: service engine 

Fig. 9  Cause types on service registry
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elements need to be considered: a protocol for com-
munication, a message format, and a set of data types 
utilized in the message. These elements are prede-
fined in a service interface specification. Therefore, 
we extract three causes on these elements: protocol 
declaration cause, message format definition cause, 
and data type definition cause. 

Let us consider an example of the protocol dec-
laration cause. There are two representative protocols 
to communicate services: SOAP and REST 
(Richardson and Ruby, 2007). When a service inter-
face is declared in REST and a service request mes-
sage is specified in SOAP, the resulting fault is due to 
the protocol declaration cause.  

Incompatibility between service interface and 
service registry: When a service provider publishes 
his/her service on a service registry, he/she makes a 
description for the service. The description is based 
mainly on a service interface specification. Due to 
this nature, service registry related standards such as 
UDDI define data structures for describing services, 
and information on the structure is closely related to a 
service interface specification. Among attributes to be 
described and registered on a service registry, the 
service endpoint and an access point of a service 
interface are important, because these are related to 
invoking services. Hence, we extract two causes on 
these elements, endpoint cause and interface access 
point cause. Fig. 13 shows an example of the endpoint 
cause. 

In this example, endpoint information stored in 
the service registry and the access point specified in 
WSDL are different. Because of an invalid reference, 
the FooService in the example will not be invoked. 

Incompatibility between service interface and 
service component: A service component realizes one 
or more service interfaces. That is, a service compo-
nent is implemented by conforming to predefined  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

values of elements and their attributes of a service 
interface. These elements include data type, operation, 
binding, and endpoint. Hence, there are four causes 
for each element. 

For example, message mismatch has two possi-
ble situations. First, the data type for the input or 
output message specified in a service interface and 
declared in a service component is different from each 
other. Second, a data type for the input or output 
message declared in a service component cannot be 
supported by the WSDL standard, even if the data 
type is specified in a service interface.  

4.5  Taxonomy of execution related causes 

Execution related causes are classified into two 
types: inter- and intra-interaction related causes. For 
each execution between target elements, probable 
cause types are derived by incompatibility problems 
of corresponding elements.  

Fig. 12  Cause types on interaction between business process (BP) and the service interface 

«abstract»
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«abstract »
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Description
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Description
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Fig. 13  An example of the invalid reference

 
Service interface

Service registry

Invalid endpoint

<?xml version="1.0"?> 
<definitions name="FooService" 
    ...
   <service>  
     xmlns="http://schemas.xmlsoap.org/wsdl/">
      ...
     <port name="fooServicePort" 
         binding="interface:fooBinding"> 
        <soap:address location=
           "http://www.foo.com/fooService"/> 
     </port> 
   </service>

</definitions>

<businessService businessKey="..."  
   serviceKey="..."> 
     ...
   <bindingTemplates> 
      <bindingTemplate bindingKey="..." 
         serviceKey="..."> 
         <description>foo Service </description> 
         <accesssPoint URLType="http"> 
             http://www.foo.com/foo.html
         </accessPoint> 
...
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The inter-interaction related cause means a 
problem that occurs when a service invokes another 
service. When a service invokes another service, the 
results of the caller service are sent to the callee ser-
vice. Hence, runtime messages with real values can 
raise incompatible problems. 

Incompatibility between services: Typically, 
syntactic information on messages between services 
is defined in a BP document. Hence, data type and the 
number of inputs and outputs have already been 
specified technically. However, a valid range of 
variables (i.e., inputs and outputs) is varied depending 
on a domain. Moreover, passed values sent by a 
sender service are different from the intention of the 
service whose role is a receiver. Therefore, we extract 
two probable causes: invalid range cause and in-
compatible semantic cause (La and Kim, 2011). 

Intra-interaction cause means a problem occur-
ring when a service performs its functionality. Dif-
ferent elements participate in executing a service, 
such as service interface, service component, and 
service middleware. These elements are managed by 
a service provider. 

As shown in Fig. 14, a client makes a request 
through the service interface (Erl, 2007) when a ser-
vice is executed. Then, the request message arrives at 
a service middleware. Based on the message, the 
service middleware executes the appropriate service 
component. Hence, three incompatible problems 
among three elements can raise incompatibility 
causes. 

 
 
 
 
 
 
 
 

 

 

Incompatibility between message and service 
interface: Typically, a client program is implemented 
based on a service interface. When the client program 
requests to invoke the service with the service inter-
face, the program generates a request message that 
syntactically conforms to the service interface. 

However, current standards on specifying a service 
interface have limitations on description for user- 
defined types and arrays. That is, data types supported 
by a service interface cannot include all the variable 
array types and user-defined types, even if additional 
facilities such as JavaScript Object Notation (JSON) 
are provided. Due to this limitation on specifying a 
service interface, i.e., limited supports for data types, 
a message cannot be interpreted even if it is suc-
cessfully sent to a service middleware. In this situa-
tion, an incompatible problem between the message 
and service interface may occur. 

Incompatibility between message and service 
middleware: To receive a message, a service mid-
dleware is required to support the protocol used for 
the message. However, there is no mechanism to 
specify protocols supported by a service middleware. 
Thus, a service middleware generates errors such as 
not responding when a message arrives at the mid-
dleware. In this situation, an incompatible problem 
between message and service middleware may occur. 

Incompatibility between service middleware and 
service component: To run functionality provided by 
a service component, resources of a service middle-
ware are required, such as files, database, and mem-
ory. In the service middleware, there can be one or 
more service components. Hence, resources of the 
middleware are shared among service components. 
Therefore, the availability of the resources is varied 
depending on current status such as how many service 
components are executed. Hence, required resources 
of a service component may not be available de-
pending on the status of the middleware. Therefore, 
there can be an incompatible problem between 
available resources of service middleware and re-
quired resources of a service component. 

Interoperability between runtime environments: 
to execute services, more than one runtime environ-
ment is placed at the provider side. Therefore, if there 
are conflicting settings on the configurations, an in-
compatible configuration cause occurs. 

4.6  Guidelines for handling the evolution of cause 
taxonomy 

The proposed cause taxonomy is not complete, 
but evolvable with introductions of new SOA im-
plementation technology. In this section, we describe 
how the taxonomy can evolve, and how the evolution 
of the taxonomy can be reflected in various fault 

Fig. 14  Intra-interaction on a service
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manager implementations. 
The proposed cause taxonomy is specified with 

the notion of generalization: abstract causes at the 
upper layer and concrete causes at the lower layer. 
Note that the classification of cause types at the ab-
stract level is complete, as illustrated in Section 4.2. 
Hence, taxonomy evolution will occur at the concrete 
cause type layer. More specifically, extending the 
cause taxonomy will practically be tasks of adding 
new cause types, deleting existing cause types, and 
modifying existing cause types. These tasks will not 
require altering the classification of and relationships 
among abstract cause types. This is mainly due to the 
nature of ‘abstract’ in defining high level cause types, 
as illustrated in Fig. 15 with adding two cause types at 
the concrete level. 

 
 
 

 

 

 
Now, we consider the impact of modifying tax-

onomy in implementations. Tasks of modifying cause 
types at the concrete level will have a minimal in-
fluence on implementations of the cause-related fault 
manager such as our proof-of-concept (POC) im-
plementation in Section 5. Adding a new concrete 
cause type will require implementing a new subclass 
for the type. Deleting an existing cause type will re-
quire deleting its corresponding class and handling 
any other class that depends on the class being deleted. 
Modifying a cause type will require replacing its  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

corresponding class with a newly implemented class 
for the type. In summary, modifying the taxonomy 
can be reflected in implementations without major 
structural changes. 

 
 

5  Prototype implementation of the autono-
mous service fault manager 

 
To show applicability and effectiveness of the 

proposed cause taxonomy for managing service 
autonomously, we implemented a POC version of the 
autonomous service fault manager.  

5.1  Functionality of the fault manager 

The functionality of the fault manager is cap-
tured in three main use cases. The use case ‘detect 
symptom’ is to monitor services and find a symptom, 
i.e., a service state that would potentially yield an 
abnormality. This is done by observing the output, 
state, and QoS values of the workflow and its par-
ticipating services. 

The use case ‘determine faults’ is to determine 
the occurrence of a fault by the symptom. This is done 
by comparing the output to the expected output.  

The use case ‘diagnose faults for causes’ is to 
infer service faults and determine the cause(s) for the 
given fault in a deterministic and autonomic manner. 
This is done by employing the Bayesian network 
inference with our proposed taxonomy. 

5.2  Design of the fault manager 

The six key components and the control flow of 
the fault manager are shown in Fig. 16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15  Extending cause taxonomy with new cause types

Existing cause taxonomy New cause taxonomy

New
cause type

New
cause type

Abstract

Concrete

Fig. 16  Control flow of the autonomous service fault manager 
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The component ‘monitor’ intercepts messages 
from service invocation and gathers information such 
as inputs and outputs, states, and QoS values. Then, 
the ‘fault diagnosis’ component detects symptoms, 
determines faults, retrieves the cause taxonomy, and 
diagnoses faults in an autonomous manner. 

5.2.1  Method to detect SOA symptom 

In this subsection, we present a method to detect 
an SOA symptom as follows: 

Step 1 is to extract the set of expected quality 
values which is typically specified in a Service Level 
Agreement (SLA) (Dan et al., 2004). An SLA docu-
ment typically addresses a number of quality attrib-
utes, and each quality attribute is given a range of 
valid values. 

Step 2 is to compute the current value of each 
quality attribute for the service, by acquiring quality- 
related raw data and applying quality metrics. 

Step 3 is to compare the expected values to the 
measured values for the target service. When meas-
ured values are out of expected value ranges, an oc-
currence of abnormality, i.e., a symptom, is detected. 

This three-step method for detecting symptoms 
is further specified as an algorithm below: 

 
Algorithm 1    Detect-Symptom 
Input:  

SLAs // Retrieve SLA documents 
QualityMetrics // Retrieve a set of quality metrics 

Output:  
DetectedSymptomSet  
// Step 1: Extract the set of expected quality values 
ExtractExpectation(SLAs) { 

for each service level agreement SLAi from SLAs 
// expi=(QAi, ValidRangesi, conditioni) 
for each expi from Expectations  

Assign valid range of SLAi to ValidRangesi of QAi 

Assign condition of SLAi to conditioni of QAi 
endfor 

endfor 
return Expectations 

} 
// Step 2: Compute the current values of QAs 
ComputeQoS(QualityMetric) { 

for each quality metric qmk 
// raw data which is only for qmk 
Get MonitoredValues of service  
Measure quality value based on qmk 

endfor 
return MeasuredValues 

} 

// Step 3: Compare expectations to measured values 
CompareExpectationToMonitoredValues  

(Expectations, MeasuredValues) { 
for each expectation expi from Expectations 

for each measured values mQVj from MeasuredValues 
if (expi.QA==mQVj.QA) then 

Check whether expi.ValidRange includes 
mQVj.value 

if (result==false) 
Assign current mQVj to DetectedSymptomSet 

endif 

endif 
endfor 

endfor 
return 

} 

5.2.2  Methods to diagnose SOA faults 

After symptom detection, there are two sequen-
tial steps: fault determination and fault diagnosis. In 
this subsection, we propose one method for each step. 
The first method is about detecting candidate faults by 
following guidelines from detected symptoms to 
faults. 

Candidate faults derived from the function 
symptom: A function symptom is closely related to 
inputs and/or output of an execution unit, a service. 
Let ExecutionUniti be the ith execution unit within 
one invocation of a service or a BP. Then, there are 
two possible mappings: 
 
Rule 1: Fault(ExecutionUniti−1) 

Symptom.input(ExecutionUniti) 
Rule 2: Fault(ExecutionUniti) 

Symptom.output(ExecutionUniti) 
 

Candidate faults derived from the state symp-
tom: A state symptom is derived from internal states 
of a service instance. There are four possible map-
pings: 
 
Rule 3: Fault(RuntimeElementk) 

Symptom.pre_state(ExecutionUniti)  
Symptom.post_state(ExecutionUniti) 
&& utilizedBy(RuntimeElementk,  

ExecutionUniti)==true 
Rule 4: Fault(ESBk) 

Symptom.pre_state(ExecutionUniti)  
Symptom.post_state(ExecutionUniti) 
&& utilizedBy(ESBk, ExecutionUniti)==true 
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Rule 5: Fault(Unitk) 
Symptom.post_state(ExecutionUniti)  
&& Unitk{ExecutionUnit1, ExecutionUnit2, 

…, ExecutionUniti−1}  
&& share(Unitk, ExecutionUniti)==true 

Rule 6: Fault(ExecutionUniti) 
Symptom.post_state(ExecutionUniti) 

 
In this mapping, we utilize two additional 

predicates, i.e., utilizedBy(i, j) and share(k, l). The 
first is interpreted as element i is utilized by element j 
and the second as k and l share the same resources 
such as database. 

Candidate faults derived from the QoS symp-
tom: A QoS symptom is detected by comparing 
computed values of quality attributes to requirements. 
There are four possible mappings: 
 
Rule 7: Fault(ExecutionUniti) 

Symptom.QoS(ExecutionUniti) 
Rule 8: Fault(RuntimeElementk) 

Symptom.QoS(ExecutionUniti)  
&& utilizedBy(RuntimeElementk,  

ExecutionUniti)==true 
Rule 9: Fault(ESBk) 

Symptom.QoS(ExecutionUniti)  
&& utilizedBy(ESBk, ExecutionUniti)==true 

Rule 10: Fault(ServiceRegistryk) 
Symptom.QoS(ExecutionUniti)  
&& utilizedBy(ESBk, ExecutionUniti)==true 
 

Through this mapping process, a list of candidate 
faults is identified. Based on this and the taxonomy, a 
causal chain is constructed, i.e., a form a of Bayesian 
network. To do this, we need to transform a proposi-
tional expression with a service network to a directed 
acyclic graph (DAG), i.e., Bayesian network con-
struction. This construction consists of four steps, as 
follows: 

 
Algorithm 2    Construct-Causal_Chain 
Input: 

// Retrieve a list of services 
Services: array [Svc1, Svc2, …, Svck] 
// Retrieve a list of relationships among the services 
Relationships: array [Rel1, Rel2, …, Relm] 
// Retrieve a list of causes 
Causes: array [C1, C2, …, Cl] 
// Retrieve a list of relationships among the causes 

Specializations: array [Spe1, Spe2, …, Spen] 
SymptomSet: array [Symptom1, Symptom2, ..., Symptomn] 

Output: 
CausalChain: Graph(Vertex, Edge) 
// Step 1: Map a service network to a DAG 
MapFromServiceNetToDAG(Services, Relationships) { 

for each service Svci from Services 
// VertexiVertices && VerticesDAG 
Map Svci to Vertexi  
Set Vertexi to DAG 

endfor 
for each Relationship Reli from Relationships 

Map Relj to Edgei  // EdgeiEdges && EdgesDAG 
Set Edgei to DAG 

endfor 
return 

} 
// Step 2: Refine graph with candidate faults  
GenerateFaultTree(SymptomSet, MappingRules, DAG) { 

for each symptom Symptomi from SymptomSet 
// by applying Rule 1 and Rule 2 
Retrieve candidate fault types  
for each vertexk in DAG 

if (Symptomi.occurencePlace==vertexk) 
// x is the number of candidate fault types 
Append x vertices 
Append 2x edges 
Update DAG with x vertices and 2x edges 

endif 
endfor 

endfor 
return 

} 
// Step 3: Refine graph with cause taxonomy 
ConstructCausalChain(DAG, Causes, Specializations) { 

for vertexx and vertexx+1 in DAG 
for each Cl in Causes 

if (Cl.Elements.contains(vertexx) && 
Cl.Elements.contains(vertexx+1)) 
Append Cl to CausalChain 

endif 
endfor 

endfor 
return 

} 
// Step 4: Refine graph with cause taxonomy 
Retrieve conditional probability table (CPT) for each edge 

 
This causal chain is optimized with the cause 

taxonomy in terms of the range of possible causes and 
correctness for identifying cause. First, irrelevant 
causes are removed from the causal chain through the 
mapping process with the 10 rules, in terms of two 
parameters: the number of targets to be traced and the 
number of cause types to be checked. Second, the 
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place in which the cause occurs is identified as well as 
the types of causes. For the reasoning about the cause, 
we utilize the two-step Bayesian inference algorithm 
(Fig. 17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first step is to moralize the Bayesian net-

work. A moral graph is a concept in graph theory, 
used to find the equivalent undirected form of di-
rected acyclic graph. It is a key step of the junction 
tree algorithm, used in belief propagation on graphi-
cal models. 

The second step is to triangulate the moralized 
graph through the maximum cardinality search algo-
rithm with cause taxonomy. An undirected graph is 
triangulated if every cycle of length greater than three 
possesses a chord. Through these two steps, we can 
derive possible causes for the target element. 

Our cause taxonomy can especially ease the 
burden of diagnosing faults. This is because the tax-
onomy provides classifications of all causes for each 
target element and relationship among the elements. 
Hence, it reduces steps for tracing elements within the 
service execution path. Typically, a symptom is ob-
served in a specific target element. Then, a range of 
possible causes for the symptom is from the causes of 
the target elements to the causes of related target 
elements within next nodes in the graph. 

5.3  Implementation of the fault manager 

Based on the design, we implemented a POC 
version of the fault manager, which consists of three 
inference-related components: monitor, fault diagno-
sis component, and actuation planner. Fig. 18 shows 
the results of monitoring QoS of four SOA elements 
with the monitor: business process B, service A.I, 
service A.II, and service registry R. B, A.I, A.II, and 
R indicate identities of each element.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Based on the monitoring results, the fault diag-

nosis component first reduces the ranges of possible 
causes based on the cause taxonomy (Fig. 19). 

Fig. 18  Monitoring QoS results on SOA elements 
The area marked with an ellipse indicates that a symptom is 
observed at that time frame 
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Fig. 17  Two-step Bayesian inference 

set e; 
for each v in G, V 

for each (‘p1’, ‘v’) in G 
for each (‘p2’, ‘v’) in G 

if ‘p1’ != ‘p2’ and (‘p1’, ‘p2’) is not in G, E and  
(‘p2’, ‘p1’) is not in G, E then 
e=e union (‘p1’, ‘p2’); 

end 
next 

next 
next 
G, E=G, E union e; 

Constant: V=set of all vertices in graph; 
n=number of vertices in graph;  
E=set of all edges in the graph; 

Variable i, j: integer; 
v, w: vertex; 
set: array [0, n-1] of subset of vertices; 
size: array[V] of integer; 
alpha: array [V] of integer; 
alphainv: array[1…n] of vertex; 

Begin 
for i:=0 to (n-1) do 

set[i]:=0; 
for each v in V 

begin 
size[‘v’]:=0; 
add ‘v’ to set [0]; 

end 
i:=1; j:=0; 
while ‘i’<=n do 

begin 
‘v’:=delete any from set[‘j’]; 
alpha[‘v’]:=‘i’; alphainv[‘i‘]:=‘v’; 
size[‘v’]:=-1; 
for w is in V–{‘v’} do 

if (‘v’, ‘w’) is in E and size[‘w’]>=0 then 
begin 

delete w from set[size[‘w’]]; 
size[‘w’]:=size[‘w’]+1; 
add ‘w’ to set[size[‘w’]]; 

end 
i:=‘i’+1; 
j:=‘j’+1; 
while j>=0 and set[‘j’]=0 do 

j:=‘j’–1 
end 

End 

Step 1

Step 2
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Then, this component infers the causes using 

existing Bayesian network inference engines. As a 
result, specific cause types for the faults are  
identified. 

5.4  Experiments with the fault manager 

Our experiment environment consisted of JDK 
1.6.0_15 as the Java virtual machine, Bayesian net-
work tools in Java as the probability-based reasoning 
engine, and mySQL 5.0.67 as the database manage-
ment system. The experiment platform ran 64-bit 
Windows 7 with Intel 3.0 GHz Core 2 Duo and 4 GB 
of RAM. For the experiment, we considered one BP 
and its nine services, i.e., ServiceSet:={A, B, C, D, E, 
F, G, H, I}. And, there were four possible execution 
paths: A→B→E→G→I, A→C→F→G→I, A→C→ 
F→H→I, and A→D→F→H→I. We assumed that we 
detected state symptom on service F. With execution 
paths and rules, mappings from symptom to fault 
were constructed (Fig. 20). 

After mapping, a causal chain was constructed 
with CPTs (Fig. 21a). By conducting inference using 
the Bayesian network, we could obtain an inference 
result of reasoning about cause; i.e., service compo-
nent F has a cause. This shows the way to find the 
most problematic service within a given BP. To ac-
quire more accurate causes, the fault diagnosis com-

ponent should trace repeatedly over all the underlying 
elements of service component F based on the pro-
posed cause taxonomy. In summary, Fig. 21 shows 
that our cause taxonomy can be used in reasoning 
causes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
However, we cannot show how accurate the di-

agnosis with cause taxonomy is. Therefore, we 
compare two cases: the proposed cause taxonomy is 
applied to the reasoning method or not. Our evalua-
tion on accuracy of diagnosis results is based on 
coverage of the results. An accuracy of 100% means 
that the diagnosis result includes the exact set of 
faulty components. For example, we assume that 
services A and B within the target SOC based system 
are faulty components. If our diagnosis system di-
agnoses faults and concludes that only service A is a 
faulty component, the accuracy of our diagnosis re-
sults is 50%. 

As shown in Fig. 22, the accuracy of the 
Bayesian network with the proposed cause taxonomy 
is higher than that of a plain Bayesian network, in 
terms of cause types (Zhang et al., 2009). By applying 
the proposed cause taxonomy, the search space for 
Bayesian inference is reduced; i.e., the domain of 
Bayesian inference is limited by the proposed cause 
taxonomy. Therefore, the accuracy of the reasoning 
result becomes higher and the reasoning becomes 
faster. 
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Fig. 20  Results showing mapping from symptom to fault
(a) Service network; (b) Refined service network with faults

Fig. 19  Source code for mapping function symptoms to 
candidate faults 

1 public void mapFunctionFactToTaxonomy() { 
2   Vector<Fact> addition=new Vector<Fact>(); 
3   for (Fact info: additionalInfo) { 
4     if (info.getName().equals("Exception")) { 
5       addition.add(info); 
6     } 
7   } 
8   int exceptionIndex=0; 
9   for (int i=0; i<falseFunctionPredicate.size(); i++) { 
10     for (Fact info: addition) { 
11       if (falseFunctionPredicate.elementAt(i). 
                equals(info.getDescription())) { 
12         exceptionIndex=i+1; 
13         falseFunctionPredicate.remove(exceptionIndex); 
14       } 
15     } 
16   } 
17   Vector<String> trueRelation= 
               makeRelation(trueFunctionPredicate, Causes); 
18   Vector<String> falseRelation= 

      makeRelation(falseFunctionPredicate, Causes); 
19   findFunctionConflicts(); 
20   functionMismatch= 

      findFunctionConflicts(trueRelation, falseRelation); 
21 } 
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6  Assessment and conclusions 

 
A prerequisite to applying autonomic service 

management is a reliable and comprehensive tax-
onomy for causes of services. This is because the 
taxonomy provides the basis for reasoning about 
symptoms and remedying accountable target ele-
ments in an autonomous way. Hence, in this paper, we 
propose a comprehensive but extendable taxonomy of 
services with a technical observation on the comput-
ing paradigm and characteristics of SOA. 

We first define the theoretical foundation for 
fault management issues in SOA, which becomes  
the basis for the reasoning process in service man-
agement. That is, we define a meta-model of SOA for  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

deriving the cause taxonomy. There are a number of 
components collaborating together in an SOA-based 
system, and the provided meta-model clarifies inter- 
component which is an essential prerequisite to ef-
fective inference for fault diagnosis. 

Then, we define cause taxonomy for enabling 
autonomic service management. In complex systems 
such as the SOA-based system, it is infeasible to 
manage a number of potential faults and cause types 
in a manual manner. The taxonomy is derived by 
considering internal structures of all the target ele-
ments, inter-relationships among the elements at de-
sign time, and inter-relationships among the elements 
at runtime. Based on the taxonomy, subsequent 
management tasks such as fault diagnosis and quality 
actuation methods can be performed in autonomous 
ways. The proposed taxonomy is designed for further 
extension with new types of causes. 

The results of our proof-of-concept implemen-
tation of a cause diagnosis application based on the 
taxonomy show the applicability of our proposed 
taxonomy which helps infer the causes of faults. We 
believe that the proposed taxonomy of causes in SOA 
would become an essential foundation for imple-
menting autonomic service management applications 
in SOA. 

Fig. 22  Comparison of accuracy of reasoning 
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Fig. 21  Bayesian inference result: (a) Bayesian network, i.e., causal chain; (b) inference result 
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80.0% 
15.0% 

20.0% 
77.0% 

SVC comp. A True False 
True 
False 

100.0% 
0.0% 

0.0% 
100.0% 

True False
True 
False 

70.0%
24.0%

12.0%
60.0%

Incom. btw SVCs 

SVC comp. C True False
True
False

65.0%
56.0%

40.0%
46.0%

Incom. btw. SVCs
True False 

True 
False 

90.0% 
20.0% 

10.0%
73.0%

Incom. btw. SVCs 

SVC comp. C True False
True
False

90.0%
10.5%

7.0%
84.0%

Incom. btw. SVCs mid. and SVC comp.

SVC comp. C True False
True
False

40.0%
63.0%

56.0%
27.0%

Incom. btw. MSG and SVCs mid.

True False

True 
False 

56.0%
34.2%

46.8%
4.0%

Incom. btw. SVCs mid. 
and SVC comp. 

True False
True 
False 

98.0% 
0.4% 

4.0%
94.0%

Incom. btw. MSG and SVCs mid. 

Incom. btw. SVCs 

Incom. btw. SVCs

Incom. btw. MSG and SVCs mid.

Incom. btw. SVCs mid. and SVC comp.

True
False

59.4%
40.6%

True
False

69.2%
30.8%

92.6% 
7.4% 
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