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Abstract:    To obtain comparable high query performance with relational databases, diverse database technologies have to be 
adapted to confront the complexity posed by both Resource Description Framework (RDF) data and SPARQL query. Database 
caching is one of such technologies that improves the performance of database with reasonable space expense based on the spatial/ 
temporal/semantic locality principle. However, existing caching schemes exploited in RDF stores are found to be dysfunctional for 
complex query semantics. Although semantic caching approaches work effectively in this case, little work has been done in this 
area. In this paper, we try to improve SPARQL query performance with semantic caching approaches, i.e., SPARQL algebraic 
expression tree (AET) based caching and entity caching. Successive queries with multiple identical sub-queries and star-shaped 
joins can be efficiently evaluated with these two approaches. The approaches are implemented on a two-level-storage structure. 
The main memory stores the most frequently accessed cache items, and items swapped out are stored on the disk for future pos-
sible reuse. Evaluation results on three mainstream RDF benchmarks illustrate the effectiveness and efficiency of our approaches. 
Comparisons with previous research are also provided. 
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1  Introduction 
 

Nowadays, the Semantic Web is becoming 
popular and has been recognized as a machine- 
understandable data Web where explicit semantics is 
specified to the information on the Web. Resource 
Description Framework (RDF) (Klyne and Carroll, 
2004) defines the syntax for data representation and 
interchange on the Semantic Web. RDF triple is the 
smallest unit of describing a statement about a Web 

resource, which has the form of <subject, predicate, 
object> (also known as <subject, property, value>). 
For example, the fact that product1 with the label 
‘label1’ is produced by producer1 could be expressed 
as two triples <product1, label, ‘label1’> and <prod-
uct1, producer, producer1>, where product1 and pro-
ducer1 are uniform resource identifiers (URIs) that 
identify unique entities, and ‘label1’ is the literal 
representing the label. An RDF document containing 
multiple triples can be viewed as a directed labeled 
graph by simply taking a triple as a graph fragment 
that has an edge labeled with predicate and is directed 
from a subject node to an object node. 

As RDF has a graph-based data model, it is more 
suitable for knowledge representation than the rela-
tional model (Wikipedia, 2012). However, to define 
queries over such a data model, a new query language 
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should be proposed. W3C’s SPARQL (Prud′hom- 
meaux and Seaborne, 2008) is one of the RDF query 
languages. It takes graph pattern matching as the 
basic building block. To query products and their 
corresponding product labels and producers, one can 
write a SPARQL query by specifying a graph pattern 
as follows: 

 
Query 1: Select the products and their labels and 
producers  
SELECT    ?product         ?p          ?l 
WHERE{  ?product    producer    ?p. 

?product       label       ?l  } 
 

Here, a graph pattern consists of one or more triple 
patterns, which are delimited by period delimiter ‘.’. 
Identifiers starting with question mark ‘?’ are vari-
ables, whose values are to be determined during query 
evaluation. An equal join on ?product is required to 
find triples with variable ‘?product’ appearing as 
subject in both triple patterns <?product, pro-
ducer, ?producer> and <?product, label, ?label>.  

Although graph pattern matching facilitates a 
flexible expression of query semantics on RDF data, 
it makes the query evaluation of SPARQL different 
from that of SQL. Moreover, the existence of billions 
of RDF triples published on the Semantic Web also 
challenges the performance of SPARQL query 
engines. To obtain comparable high query perform- 
ance on large scale RDF data, diverse typical database 
technologies like index structures, query optimiza-
tions, and parallelization have to be adapted. This is 
necessary to confront the complexity posed by both 
RDF data and SPARQL query. They are well studied 
and utilized in mainstream RDF stores, e.g., Sesame 
(Broekstra et al., 2002), Jena (Wilkinson et al., 2003; 
Owens et al., 2008), Virtuoso (Erling and Mikhailov, 
2007), RDF-3X (Neumann and Weikum, 2008), 
YARS2 (Harth et al., 2007), and Oracle’s RDF_ 
MATCH (Chong et al., 2005). 

Database caching is another such kind of tech-
nique. It improves the performance of database with 
reasonable space expense based on the spatial/ 
temporal locality principle. It has also been widely 
developed in the field of DB-based Web 2.0 applica-
tions. There are three kinds of caching granularity 
(Dar et al., 1996), i.e., page level, tuple level, and 

semantic caching. Since data is usually organized in 
pages on the disk, designing a page level caching is 
intuitive but may be insensitive to the physical dis-
tribution of the data. The finest granularity level, 
tuples caching, can avoid the bad data clustering 
problem. However, it will produce more join opera-
tions. Semantic caching is believed to have better 
performance than the others (Dar et al., 1996; Li et al., 
2001; Ren et al., 2003). It caches semantic descrip-
tions of previously evaluated queries and corre-
sponding results. A new query can be efficiently an-
swered if the whole or part of it has been previously 
cached. Such semantic locality does make sense for 
those queries with complex semantics. 

Though page level and tuple (triple) level 
caching schemes have been naturally exploited in 
RDF stores together with other database technologies, 
they might not always be the best options. The Berlin 
SPARQL BenchMark (BSBM) illustrates a real-world 
application case and emulates “the search and 
navigation pattern of a consumer looking for a 
product” (Bizer and Schultz, 2009). A sequence of 
queries are issued to simulate a real-world workload. 
Since there are close associations between successive 
queries, semantic locality does exist. The intrinsic 
expressiveness of RDF data and SPARQL query 
language makes it possible to express rich semantics 
in Semantic Web applications, and hence to develop 
reasonable semantic caching approaches beyond low 
level page caching, individual triples caching, and 
specific application objects caching. Unfortuanately, 
little research has been done on this topic. 

In this paper, we focus on improving SPARQL 
query performance with semantic caching approaches, 
i.e., SPARQL algebraic expression tree (AET) based 
caching and entity caching. Successive queries with 
multiple identical sub-queries and star-shaped joins 
can be efficiently evaluated with the two proposed 
approaches, respectively. 

The main contributions of this paper include: 
1. We develop an efficient and robust approach 

that caches intermediate query results based on the 
SPARQL AET. The serialization methods for identi-
fying query and intermediate results are described to 
explain how the approach speeds up the evaluation of 
SPARQL queries with similar sub-queries. Operators 
including join, left outer join, union, and filter are 
supported.  
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2. We propose an entity caching approach which 
aggregates triples of the same entity (RDF resource) 
according to the ontology. This approach reduces 
star-shaped joins during the query evaluation phase 
and brings significant performance improvement.  

3. We implement both semantic caching ap-
proaches on the Sesame RDF and provide the 
evaluation results of query performance on three 
benchmarks, LUBM (Guo et al., 2005), SP2Bench 
(Schmidt et al., 2008), and BSBM (Bizer and Schultz, 
2009), to illustrate the effectiveness and efficiency.  

 
 

2  Related work 
 

We are concerned about typical techniques of 
cache-conscious query processing (Ross, 2009), 
which focus mainly on designing efficient query 
processing algorithms. The approaches usually im-
prove the performance of the query from four major 
aspects: spatial locality, temporal locality, prefetching, 
and sampling.  

To improve spatial locality, data items accessed 
at the same time are organized in the same cache 
region. For example, data items can be arranged as 
column oriented (e.g., in column-wise databases) or 
with specific cache index structures. To improve 
temporal locality, techniques like data blocking, 
buffering, and cache-sized partitioning are employed. 
Prefetching data into a cache can hide the latency 
caused by cache miss. Cache sampling is used to 
choose appropriate algorithms for future query proc-
essing according to the statistical information ob-
tained from the cached data items. In our work, query 
results are blocked in the same semantic region ac-
cording to the semantic description of SPARQL AETs 
in our SPARQL AET caching. Our entity caching 
approach performs prefetching and data blocking for 
those RDF triples related to the same entity (RDF 
resource). 

Semantic caching was first proposed by Dar et al. 
(1996). The approach was designed for a client-server 
database, including a client-side caching and re-
placement. The main idea of semantic caching is to 
maintain a semantic description of previously evalu-
ated results in the cache for future reuse. Semantic 
caching is believed to outperform page caching and 
tuple caching approaches (Li et al., 2001). Li et al. 

(2001) proposed two semantic caching strategies with 
different granularities to tackle the long latency 
problem caused by ‘view-like’ query behavior in the 
mediator-based database systems. Ren et al. (2003) 
provided a formal definition of the semantic caching 
model. They presented a query plan tree data structure 
to provide a detailed plan of a newly coming query 
from a cache. Simulation results showed advantages 
in “client-server environment, mobile computing, 
heterogeneous systems, Web applications, etc.”. 

Besides the relational data model, semantic 
caching has been studied in eXtensible Markup 
Language (XML) context as well. XCache is a se-
mantic caching system for XQuery processing (Chen 
et al., 2002).  

Few of the existing RDF stores concentrate on 
RDF data caching design. As for Semantic Web ap-
plications, there are only a few researches on very 
similar topics. Abadi et al. (2007) proposed an ap-
proach to materialize path expressions like <?book, 
author, ?someone>, <?someone, wasBorn, ‘1860’> to 
a form like ?book.author:was Born=‘1860’. Oracle’s 
RDF_MATCH system (Chong et al., 2005) imple-
ments generic materialized join views to avoid 
self-join of a triple table. RDF_MATCH also applies 
subject-property matrix materialized join views to 
minimize the query processing overheads that are 
inherent in the canonical triple based RDF represen-
tation. Castillo et al. (2010) implemented RDF Mat-
View which materializes frequent join patterns based 
on the analysis of SPARQL queries. Although se-
mantic caching is an effective means to deal with 
view-like query behavior, it is beyond the material-
ized join views after all because it requires cache 
replacement strategies be cooperated.  

To the best of our knowledge, the most relevant 
work in the Semantic Web is Martin et al. (2010), 
which introduced a proxy cache layer between a Web 
application and an RDF repository, and employed 
both triple level query result caching and application 
object caching. The caching scheme showed good 
results on BSBM (Bizer and Schultz, 2009). Consid-
ering the intrinsic rich semantics resided in Semantic 
Web applications, it is possible to design more 
meaningful semantic level caching approaches be-
yond low level individual triples caching and specific 
application objects caching. 
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3  Preliminaries 

3.1  Definitions 

RDF data is modeled as a directed graph with 
labeled nodes and edges, in which the basic element is 
the RDF triple. Definition 1 gives the formal defini-
tion. 
Definition 1 (RDF triple)    Assume U is the set of 
URIs, B the set of blank nodes, and L the set of literals. 
Triple 
 

t=<s, p, o>(UB)×U×(UBL) 
 
is called an RDF triple. Here, subject s represents an 
entity (resource), while predicate p specifies a prop-
erty of the entity and object o the property value. All 
subjects and objects constitute the labeled nodes of an 
RDF graph and predicate the labeled edges. 

SPARQL is a pattern matching based RDF query 
language recommended by W3C. Definitions of the 
triple pattern and the basic graph pattern (BGP) are 
provided as follows. 
Definition 2 (Triple pattern)    Assume V is an infinite 
set of variables disjoint from U, B, and L. Then a 
triple  
 

tp=<s, p, o>(UBV)(UV)(UBLV) 
 
is a triple pattern. 
Definition 3 (Basic graph pattern, BGP)    Assume p1, 
p2, …, pn (n≥1) are all triple patterns. Then a set 
G={p1, p2, …, pn} is a BGP. 

In a BGP SPARQL query, one or more triple 
patterns are given to specify the graph pattern. During 
the query evaluation phase, a query engine searches 
the RDF graph for sub-graphs that match the graph 
pattern and returns them as query results. Besides 
triple selection, BGP also issues projection and join 
operations. 
Definition 4 (Projection operation)    Given a set of 
binding names, N, then the projection operation of a 
binding B with binding names set N on binding names 
Np is  

p(B, Np)={v|vNNp}. 
 

Definition 5 (Join operation)    Assume pa and pb are 
two triple patterns in one graph pattern. Then a join 
operation j(pa, pb, v)=pa⋈v=vpb occurs if and only if a 

variable v appears in both pa and pb (as any of s, p,  
and o).  

The join operation connects multiple triple pat-
terns and divides the evaluation of the graph pattern 
into multiple triple pattern evaluations. Besides the 
join operation (also known as equi-join), the left outer 
join is also supported in SPARQL, as defined in 
Definition 6. 
Definition 6 (Left outer join operation)    Assume pa 
and pb are two triple patterns in one graph pattern. 
Then a left outer join operation loj(pa, pb, v)=pa⟕v=vpb 
occurs if and only if a variable v satisfies either of the 
two conditions: (1) v appears in both pa and pb (as any 
of s, p, and o)—in this condition loj(pa, pb, v) has the 
same output as j(pa, pb, v); (2) v appears only in pa—in 
this condition the variables in pb only are all null. 

Because a triple pattern cannot express quanti-
tative criteria like the range query, regular expression 
matching, etc., the filter operation is introduced in 
SPARQL as well. 
Definition 7 (Filter operation)    A filter operation 
f(pin, p) is an operation that outputs the triples in pin 
that satisfy the predicate criteria specified in p. 
Definition 8 (Union operation)    A union operation 
u(pa, pb) is the union of the output of two input pat-
terns pa and pb.  
Definition 9 (Algebraic expression, AE)    Given a 
SPARQL query Q, then expression E=(P, O) is an 
algebraic expression (AE) of evaluating Q, where P is 
the set of triple patterns and O is the set of operations 
to be executed during query evaluation. In this paper, 
O={j, loj, f, p}.  

For instance, Query 1 has the corresponding AE: 
p(j(<?product, producer, ?p>, <?product, label, ?p>), 
{?product, ?p, ?l}). 

In some SPARQL query engines, like Sesame, 
AE of a query is usually organized in a tree shaped 
structure to be efficiently evaluated. Hence, we call 
such a tree structure corresponding to the AE an AET. 
The AET of Query 1 is shown in Fig. 1. 

As a projection operation is always performed 
automatically after a node has been evaluated, pro-
jections are omitted in AET. In this way, an AET can 
represent the evaluation process of a SPARQL query. 
In this study, we consider AETs of BGP SPARQL 
queries with left outer join, union, and filter  
operations.  
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3.2  SPARQL query evaluation 

The evaluation of a SPARQL query is similar to 
that of an SQL selection-projection-join query. To 
evaluate Query 1, an AET as shown in Fig. 1 may be 
generated at the query evaluation phase by query 
engines. For the convenience of discussion, we pre-
sent only the SPARQL query evaluation process that 
is concerned with the join operation. Other operations 
involved in the evaluation, like left outer join, union, 
and filter, can be analyzed and applied similarly. 

The join order may vary due to the optimization 
strategy selected and statistical information provided. 
For complex BGP queries, there could be much more 
triple patterns specified, which brings more join op-
erations and makes optimal join ordering a challenge. 
The tree in Fig. 1 is only an example that helps de-
scribe our caching approaches. Those complex query 
optimization techniques beyond the scope of BGP are 
not discussed in this paper. Once a SPARQL query is 
translated into an AET, the query engine will perform 
a post-order traverse in the tree to ensure that all the 
sub-AET trees of a node have been evaluated before 
evaluating the node itself. Apparently, the output from 
the root node is the evaluation result of the query. 
Such an evaluation process is usually implemented as 
a recursion expansion and will not stop until the en-
gine reaches leaf nodes. The recursion expansion is a 
top-down process, while recursion reduction is a 
bottom-up one. 

As SPARQL queries can be very complex, the 
recursive evaluation of AET may be very complex 
and involves a lot of join nodes in its AET. Such 
queries are quite common in real-world Semantic 
Web applications. As join operations usually have 

heavy computation loads and consume a large amount 
of memory, they are the temporal/spatial bottleneck of 
the performance of RDF data management systems, 
especially for those dealing with large-scale RDF 
data. 
 
 
4  AET based caching 
 

BSBM demonstrates a scenario which consists 
of a sequence of queries mixed to form a typical query 
use case. Usually, in one query mix, successive que-
ries probably share the partial/whole semantics. If 
previously evaluated query results are maintained in 
the cache, it is possible to speed up the query evalua-
tion of future semantically related queries. Based on 
this idea, we present an AET query plan based cach-
ing approach that caches intermediate query results 
for possible reuse in the future SPARQL queries. 

To illustrate our approach, we provide a simple 
query mix that consists of two successively issued 
SPARQL queries, both derived from Query 1. 
 

Query 2  
SELECT  ?product ?l ?p ?c 
WHERE{ ?product label  ?l. 

?product producer ?p. 
?product comment ?c } 

Query 3  
SELECT  ?product ?l ?p ?prop 
WHERE{ ?product label  ?l. 

?product producer ?p. 
?product productProperty ?prop } 

 

By comparison with Query 2, Query 3 has ob-
viously redundant evaluations on triple queries 
<?product, producer, ?p> and <?product, label, ?l>, 
and the join <?product, producer, ?p>⋈?product=?product 

<?product, label, ?l>. 
It is more evident when we translate the queries 

into AETs. Suppose the corresponding AETs of the 
two queries are as shown in Fig. 2. Apparently, they 
have a common sub-AET as annotated by the dashed 
line. The evaluation result obtained from the sub-AET 
is an intermediate query result. If the sub-AET can be 
detected and its result cached, redundancy can be 
avoided by reusing the intermediate query result. 

Fig. 1  The algebraic expression tree (AET) of Query 1
Leaf nodes (identified by rectangle) in an AET are always 
triple selection operations, where a triple selection is per-
formed with the specified triple pattern. Non-leaf nodes 
(identified by ellipse) are other operations including join, left 
outer join, union, and filter 

Select <?product, 
producer, ?p>

Select <?product, 
label, ?l>

Join on ?product=?product

<?product, ?p> <?product, ?l>

Output

n1

n2 n3

<?product, ?p, ?l>
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Deduced from the example, more complex que-

ries will lead to more complex AETs, and likely more 
sub-AET evaluation results will be cached. The 
cached sub-AET results can be reused if identical 
sub-AETs occur in the newly arriving query evalua-
tion. Once the cache is hit, the result of matched sub- 
AET can be directly accessed, and hence repeated 
issuing of join can be avoided. In fact, queries having 
common sub-AETs in their corresponding AETs are 
very common in Semantic Web applications. Intui-
tively, caching the result of common sub-AETs can 
speed up the evaluation process, thus reducing the 
cost of running time and space overhead of the  
application. 

4.1  Identifying AETs 

There are multiple logically equivalent algebraic 
expressions for a given query. On one hand, this fact 
makes query optimization feasible in a query engine; 
on the other hand, it makes the AET based caching 

approach confront the challenge of identifying an 
AET (or part of AET) so that the query engine can 
recognize the identical AET (part) and reuse corre-
sponding cached results. To solve this problem, we 
first define the equality of two AETs: 
Definition 10 (Equality of two AETs)    Assume RA 
and RB are the root nodes of two AETs TA and TB, 
respectively. Then we have 
 
TA=TB 

( .subj .subj) ( .pred .pred)

( .obj .obj),

when ( is a leaf node) is a leaf node),

.leftChild .leftChild) ( .rightChild

.rightChild) ),

when ( is a non-leaf node)

( is a non-l

A B A B

A B

A B

A B A

B A B

A

B

R R R R

R R

R R

R R R

R R R

R

R

  
 

 
  

   

 eaf node),

FALSE, otherwise.















 

 
Considering the recursive definition of equality 

relation, we define the following recursive rule which 
helps to generate an identifier for each unique AET.  
Definition 11 (Unique ID of AET)    Given the root 
node R of an AET T, then T has a unique identifier: 
 

" " .subj"," .pred "," .obj" ",

                  when is a leaf node,
ID( )=

"("ID( .leftChild)","ID( .rightChild)")",

                  when is a non-leaf node.

R R R

R
T

R R R

R

ì < >ïïïïïïíïïïïïïî
 

According to Definition 11, two AETs can be 
identified regardless of the variables. However, there 
is still one case left to be considered. Suppose we use 
‘?p’ instead of ‘?product’ to represent the variable of 
products in Query 2. The new query is lexically dif-
ferent from Query 2, though the two queries have the 
same semantics, and hence identical AETs. To solve 
the problem, AET is normalized as a preprocessing. 
The ID generated from the normalized AET can be 
used to identify AETs with the same query semantics.  

The variable name normalization is implemented 
as a variable labeling method via a pre-order traverse 
of the AET. Each time the ID generator meets a triple 
pattern p, it assigns an ID id to each variable v in p. It 

Select <?product, 
producer, ?p>

Select <?producer, 
label, ?l>

Join on 
?product=?product

<?product, ?p>
<?product, ?l>

n1

n2

n5

Select <?product, 
comment, ?c>

Join on ?product=?product

<?product, ?c>

<?product, ?p, ?l, ?c>

Output

n3

n4

<?product, ?p, ?l>

(a)

Select <?product, 
producer, ?p>

Select <?producer, 
label, ?l>

Join on ?product=?product

<?product, ?p> <?product, ?l>

n6

n7

n10

<?product, ?p, ?l>

Select <?product, 
productProperty, ?prop>

Join on ?product=?product

<?product, ?prop>

<?product, ?p, ?l, ?prop>

Output

n8

n9

(b)

Fig. 2  Algebraic expression trees (AETs) of Query 2 (a) 
and Query 3 (b) 
These two queries have a common sub-AET as annotated by 
the dashed lines 
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first looks up the name n of v in a global map m which 
contains <name, ID> pairs. If a pair <n, id> does exist 
in m, the generator assigns the id found to v. Other-
wise, the generator generates a new ID id, and adds 
pair <n, id> to m after assigning id to v. 

In our example, the output of the normalization 
preprocessing is a new AET with expression <?v1, 
producer, ?v2>⋈?v1=?v1<?v1, label, ?v3>. Therefore, 
the ID of such a normalized AET is J(<?v1, pro-
ducer, ?v2>, <?v1, label, ?v3>) according to the rule 
defined in Definition 11. The ID generated can  
then be used to identify an AET with unique query 
semantics. 

4.2  Replacement strategy and cache update 

In AET-based caching a conventional version of 
the least recently used (LRU) replacement algorithm 
is employed. When a cache item is required to be 
inserted into the cache repository which is already full, 
the least frequently used cache item will be deleted 
from the cache repository to yield storage space for 
the new item. 

As the construction of the AET-based cache re-
pository is closely related to the query engine 
evaluation on the AET, computing an updated version 
of a cache item affected by triple insertion/removal is 
usually not more convenient than reconstructing the 
cache item. Since AET-based caching takes effect in a 
relatively small query context (the AET of the next 
coming query has an identical sub-AET to the pre-
vious one), taking cache update into account is costly 
and not worthwhile. In our implementation of the 
AET-based caching approach, all cache items imme-
diately become invalid on triple repository update 
(triple insertion into or removal from the triple  
repository).  

4.3  SPARQL query evaluation with AET based 
caching 

To use the caching approach to improve the 
performance of SPARQL query evaluation, some 
modifications to the general query evaluation algo-
rithm are needed. A cache lookup operation is in-
serted before evaluating a sub-AET; a cache writing 
operation is performed before returning the result of a 
sub-AET to its parent node in case of cache miss. 
With our caching approach, a SPARQL query engine 
works as in Algorithm 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithm is recursive. The recursion ex-

pands at line 12 where the evaluation of a node de-
pends on the results of all its children. Before the 
recursion, we add the cache lookup operation (lines 
7–9): the query engine first computes the ID of the 
current sub-AET that takes current_node as its root 
node; then it looks up the cache repository with the ID. 
The evaluation result will be directly accessed and 
returned to the parent node if there is a matched cache 
item; in this way the evaluation from current_node 
down is avoided. Otherwise, the engine evaluates the 
result of the current sub-AET, and returns the result to 
the parent node after storing it in the cache repository 
(lines 10–17). 

 
 

5  Entity caching 
 

AET based caching improves the evaluation of 
SPARQL queries with an identical sub-AET structure. 

Algorithm 1    AET evaluation with caching 
Input: A normalized AET Tn 
Output: Evaluation result R of input 
Global variable: current_node (the node whose result is 
being evaluated by the query engine) 
Initialization: current_noderoot node Nr of Tn 
Function evaluate(T)  
1  RTthe root node of Tn 
2  If RT is a leaf 
3    Issue triple selection RT, Rtresult 

4    Return Rt 

5  Else 
6    Compute the ID of T as id 
7    If item <id, content> exists in the cache           
8      Access the item, Rccontent 

9      Return Rc 
10   Else 
11     Sc{N1, N2, …, Nn}, where N1, N2, …, Nn are  
         direct child nodes of RT 
12     Scr{evaluate(N1), evaluate(N2), …,  
         evaluate(Nn)}={R1, R2, …, Rn} 
13     Execute operation on current_node with Scr,  
         Rcresult 

14     If cache repository is full 
15       Delete an item from the cache with LRU 
16     Add item <id, Rc> to the cache  
17     Return Rc 
End Function 
Algorithm: Revaluate(Tn) 
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However, for queries with the same semantics but 
different join ordering, AET based query caching 
does not work well since the corresponding AETs 
have different structures. Take the AETs shown in  
Fig. 3 as an example. Caching the output of n1 will not 
be helpful for the evaluation of Query B because 
Query A and Query B have different join orders due to 
the query optimization strategies chosen. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Moreover, selecting n properties of an entity 

(RDF resource) means n−1 joins are required in the 
corresponding AET. In the relational database, a join 
operation occurs only when there is an inter-relational 
condition restriction. In constant, no join operation is 
required when selecting properties within a relation. 
This inspired us to materialize those triples related to 
the same entity as a view to avoid join operations 
when retrieving the information of the entity. Fortu-
nately, the RDF data model can simplify the materi-
alization. We extract and aggregate triples having the 
same subject into a tuple containing all properties and 
corresponding property values of a specific entity. A 
table storing such tuples is shown in Table 1. 

 
 
 
 
 
 
 
 

We employ a horizontal table schema (Sakr and 
Al-Naymat, 2010) to store such tuples for the fol-
lowing two reasons: 

1. Flexible ontology representations are allowed 
with this table schema. First, for an entity, any possi-
ble property can be null. Second, an entity can have 
multiple types and hierarchical types.  

2. An intra-entity selection can be conducted via 
one single access to the corresponding row in the 
table avoiding costly star-shaped joins. 

5.1  Cache construction 

We explain how cache items are constructed and 
filled into the cache repository on cache miss. The 
cache repository is initially empty. On evaluating a 
query, triple patterns specified in the BGP are grouped 
according to subjects. For example, Query 2 in BSBM 
retrieves basic information of a specific product by 
specifying a set of BGPs and groups (Table 2). For 
simplicity, left outer joins (optional) are omitted in 
this example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  A sparse table storing aggregated RDF triples 

ID Type Feature Label Producer Description 

Product1 {product} {feature1, feature2} {“p1”} {producer1} - 

Feature1 {productFeature} - {“pf1”}          - {“description1”}

Feature2 {productFeature} - {“pf2”}           - {“description2”}

Producer1 {producer} - {“pp1”}           - - 

 

Table 2  Grouped triple patterns and graph representation

ID Triple pattern(s) 

Product1 product1 rdfs:label ?label. 
product1 rdfs:comment ?comment. 
product1 bsbm:producer ?p.  
product1 bsbm:productFeature ?f. 
product1 bsbm:productPropertyTextual1  

?propertyTextual1. 
product1 bsbm:productPropertyTextual2  

?propertyTextual2. 
product1 bsbm:productPropertyTextual3  

?propertyTextual3. 
product1 bsbm:productPropertyNumeric1  

?propertyNumeric1. 
product1 bsbm:productPropertyNumeric2  

?propertyNumeric2. 
?p ?p rdfs:label ?producer. 

?f ?f rdfs:label ?productFeature. 

Fig. 3  Query A (a) and Query B (b) with different join 
orders 

Select <?p, type, 
product>

Select <?p, 
producer, ?producer>

Join on ?p=?p

<?p> <?p, ?producer>

n1

<?p, ?producer>

Output

Select <?p, 
type, product>

Select <?p, 
label, ?label>

Join on ?p=?p

<?p> <?p, ?label>

<?p, ?label>

Select <?p, 
producer, ?producer>

Join on ?p=?p

<?p, ?producer>

<?p, ?label, ?producer>

Output

(a)

(b)
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Triple patterns in which multiple properties of a 
specific entity are selected are considered as a group. 
Relations are also specified between corresponding 
groups. Once grouped, joins are categorized into two 
types, i.e., intra-entity (group) join and inter-entity 
(group) join. Hence, a query evaluation is divided into 
two steps:  

Step 1: Entity selection. Each group, which cor-
responds to an entity, is issued independently. Entity 
caching is used to achieve speedup. 

Step 2: Inter-entity joins, which are performed to 
generate the final result of the BGP.  

After step 1, each group may have multiple en-
tities (in case of a variable at the subject position) 
selected corresponding to the triple pattern specified 
in the group. Each entity corresponds to a tuple that 
includes the entity’s URI and all its properties. The 
tuples are then added to the cache repository table for 
possible future reuse. 

5.2  Query expansion and triple reducing 

The method of constructing our entity cache 
ensures simultaneously selecting multiple properties 
of an entity, but an entity may be cached partially 
rather than totally. For instance, a product has the 
following properties: type, label, comment, producer, 
productFeature, and productProperty. Suppose a 
query selects type, label, comment, and producer of 
product1. Then there will be only one tuple  
<product1, type:product, label:“product1”, comment: 
“comment1”, producer:producer1> in the cache after 
the query is answered. Values of productFeature and 
productProperty are both null in the cached tuple. At 
this time, if there is another query selecting producer, 
productFeature, and productProperty of product1, 
accesses to both the entity cache and the triple store 
are inevitable. This will apparently affect the evalua-
tion performance. 

To solve this problem, we have to expand a triple 
pattern group to include all property values of an 
entity in the cache once the entity is accessed. By this 
expansion and prefetching, a single access to the 
entity cache item can fulfill entity selection no matter 
which properties are selected. Since the entire entity 
description has been reserved in the entity cache, 
there is no need to store those triples in the triple store 
as long as the cache holds the entity. Therefore, with 

query expansion, all triples describing the entity are 
removed from the triple store to reduce the store size. 
Furthermore, a triple write-back is performed when 
the entity is obsolete from the cache repository. Ex-
perimental results are provided in Section 6 to show 
the performance improvement of this technique. 

5.3  Replacement strategy and cache update 

The LRU algorithm and its variations have 
proved effective and efficient in cache replacement. 
In this work, we enhance the LRU with semantic 
information. In our replacement approach, if a cache 
item is hit, the cache item itself and all the cache items 
it refers to are moved to the head of the LRU list. For 
example, if item (product1, hasFeature:{feature1, 
feature2}, producer:{producer1}) is hit, then items 
(feature1, …), (feature2, …), (producer1, …) should 
all be moved to the head of the LRU list. The princi-
ple behind this is the locality of data access. In prac-
tical applications, adjacent operations usually have 
semantics involvement (e.g., searching for products 
that fulfill specified restrictions, and then viewing 
product details of some of the search results). Thus, 
the data semantically related to the currently accessed 
data is more likely to be accessed in the near future. 
Compared to plain LRU, LRU with semantics has 
more cache hits during the warm cache phase (Fig. 4). 
 
 
 
 
 
 
 
 
 

 
 
Cache update is what to be concerned about 

when triple insertion/removal occurs. Our update 
strategy for entity caching is quite simple. Suppose 
the current triple to be inserted/removed is <s, p, o>. 
Then when entity s is in the triple store, the inser-
tion/removal operation of <s, p, o> is performed on 
the triple store; when entity s is in the entity cache, the 
insertion/removal operation of property p:o is per-
formed on the cache repository. 

Fig. 4  Comparison of cache hit rate between LRU with 
semantics and plain LRU 
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6  Implementation and evaluation 
 

We use Sesame (Broekstra et al., 2002), a Java- 
based RDF framework, to implement our caching 
approaches.  

Fig. 5 shows the system architecture. A two- 
level storage is employed in both AET based caching 
and entity caching. The most frequently accessed 
cache items are stored in the main memory, and the 
swapped out items are stored on the disk for possible 
future use. 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPARQL queries are translated into AETs and 
sent to the AET cache manager after parsing, and a 
lookup is performed in the AET cache repository. The 
result is directly returned to its requester on cache hit. 
Otherwise, the AET is passed to the entity cache 
manager, where AETs are processed and an entity 
cache lookup is performed in the entity cache re-
pository. On cache hit, the results are directly sent to 
its requester, and the AET cache repository is updated. 
Otherwise, the AET is passed to the AET evaluator 
and evaluated in a conventional way. Results are re-
turned to all requesters with both the AET cache re-
pository and the entity cache repository updated. 

AET based caching stores cache items in a cus-
tom binary format. It uses a deflation compression 
algorithm to reduce space consumption.  

Entity caching stores tuples as key-value objects 
in the main memory. For tuple persistence, the 
MySQL (www.mysql.com) database is used. Tuples 
are serialized in JSON (www.json.org) and indexed 
with Apache Lucene (lucene.apache.org). 

Three benchmarks, LUBM (Guo et al., 2005), 
SP2Bench (Schmidt et al., 2008), and BSBM (Bizer 

and Schultz, 2009), are employed to evaluate our 
caching approaches. Here, we first present the metrics 
before introducing the evaluation results. 

6.1  Evaluation metrics 

1. Time improvement. We compare this metric 
from three aspects: (1) per-query-mix time consump-
tion without our caching approaches; (2) per-query- 
mix time consumption with our caching approaches at 
the cache warm-up phase, when few cache hits occur; 
(3) per-query-mix time consumption with our caching 
approaches at the warm cache phase, when cache hits 
occur more frequently and the time consumption 
tends to be stable.  

2. Cache hit. The count of cache hits is used to 
reflect to what extent the cached items are utilized.  

3. Eliminated operations. This metric evaluates 
how many operations are eliminated. 

6.2  Experiment setup 

6.2.1  Datasets 

LUBM: We tested our caching approaches on 
three datasets of different sizes: LUBM(10) (1.3M 
triples), LUBM(100) (13.8M triples), and LUBM 
(1000) (138M triples).  

SP2Bench: We used three SP2Bench datasets of 
different scales: 2.5M triples, 10M triples, and 40M 
triples. 

BSBM: We used three datasets of different sizes: 
BSBM(1000) (0.35M triples), BSBM(10 000) (3.5M 
triples), and BSBM(100 000) (35M triples). 

6.2.2  Evaluation process 

For i=1 to 10 
    Construct condition C 
    Issue query mix Q, which costs time period Ti 
Next i 
Output average value T of T1, T2, …, T10 
 

Here, condition C and query mix Q are set as follows: 
1. In the evaluation of no-cache-query evalua-

tion performance, C=Cn=disabling our caching ap-
proaches and using the original Sesame implementa-
tion; in the evaluation of query evaluation perform-
ance at the cache warm-up phase, C=Cu=enabling our 
caching scheme and clearing up the memory/disk 
cache repository; in the evaluation of query evalua-

Cache miss

Cached tuples?

Triples

Cache miss Entity tuples

Result

Cache hit
AET cache 
manager

Entity cache 
manager

Evaluator

AET
Cached sub-AETs?

Triples

Triple pattern

Cache hit

Entity caching

AET based caching

Triple store

Fig. 5  Architecture of the caching system 
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tion performance at the warm cache phase, C=Cw= 
going on without clearing up the memory/disk cache 
repository after the evaluation under Cu.  

2. In the evaluation of LUBM, Q=QL=14 queries 
provided by LUBM; in the evaluation of SP2Bench, 
Q=QS=17 queries provided by SP2Bench; in the 
evaluation of BSBM, Q=QB=25 queries provided by 
BSBM. 

6.2.3  Runtime resources 

The evaluation was performed on a HP dx2390 
workstation with Q8400 CPU (2.66 GHz, quadruple 
core), 4 GB RAM, and 320 GB hard disk drive, run-
ning Windows Server 2008 R2 Enterprise Edition. 
JVM version is JDK 1.6.0 Update 12 for x64 archi-
tecture. Java programs are run with -Xmx1024M 
command argument. 

6.3  Evaluation results 

6.3.1  Time improvement and cache hit 

Fig. 6 shows the experimental results of time 
improvement of our caching approaches on LUBM, 
SP2Bench, and BSBM datasets.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Query evaluation at the cache warm-up phase 
costs more time with than without our caching ap-
proaches. This can be explained as follows:  

1. There are few cache hits during the cache 
warm-up phase, so most queries are evaluated in a 
conventional way, like in the original Sesame  
implementation.  

2. Cache building takes extra time.  
The latter makes query evaluation at cache 

warm-up time a bit slower than in the original Sesame 

implementation without a caching scheme.  
AET based caching contributes more to the 

performance improvement on LUBM and SP2Bench. 
The reason is that LUBM and SP2Bench provide 
static query mixes.  

However, for BSBM performance improvement, 
entity caching contributes more to the performance 
improvement. The reason for BSBM having a dif-
ferent behavior is that BSBM generates queries dy-
namically, which makes queries in different query 
mixes have little in common. As a result, there are few 
cache hits in AET based caching. The entity caching 
caches entities and is more flexible, and hence  
helps a lot in reducing the workload of BSBM query 
evaluation.  

As for cache hit, as LUBM and SP2Bench pro-
vide static query mixes that contain fixed queries, 
both of the two caching approaches have reasonable 
cache hits on both benchmarks. Nevertheless, for 
BSBM, things become different. AET based caching 
leads to a small hit count. Entity caching in the warm 
cache phase leads to more hits.  

6.3.2  Comparisons with existing approaches 

The comparisons with the caching approaches in 
Martin et al. (2010) are shown in Fig. 7. In Martin et 
al. (2010), TQC stands for the triple-based query 
caching technique and OC stands for application 
object caching. For LUBM and SP2Bench, TQC 
caches only triples, so operations still have to be re-
issued on cache hit. As a result, TQC does not work 
well on LUBM or SP2Bench. OC is a caching 
mechanism designed for the application layer, where 
adjacent queries usually have sub-queries in common. 
But LUBM and SP2Bench focus mainly on the 
evaluation of RDF stores’ throughput with complex 
semantics. As neither benchmark is designed based 
on real Web applications, OC does not work well on 
LUBM or SP2Bench. For BSBM, things become a 
little different: TQC does not perform well, while OC 
improves the performance to a considerable degree 
(about 50%). BSBM is a benchmark simulating the 
context of an electronic business application. Test 
queries in BSBM are designed intentionally to have 
coherent semantics in a small query context. There-
fore, OC is applicable in improving performance on 
BSBM.  

Fig. 6  Benchmark test results 
The numbers above the columns are the average cache hit 
counts in each corresponding experiment configuration 
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6.3.3  Scalability 

The scalability is shown in Fig. 7 as well. The 
system with both of our caching approaches (AC+EC) 
had the best performance at the warm cache phase in 
all the nine datasets. Our caching approaches effec-
tively increased the processing capacity of the Ses-
ame RDF framework. Processing capacity on larger 
scale RDF datasets (LUBM(1000), SP2Bench(40M), 
BSBM(100k)) was promoted more than on smaller 
scale datasets. This ensures that RDF stores with our 
caching approaches have higher upper bounds in data 
scaling. 

6.3.4  Eliminated operations 

Our caching approaches sped up query evalua-
tion via elimination of joins, left outer joins, filters, 
and unions. According to Fig. 8, operations in LUBM 
and SP2Bench were eliminated mainly by AET based 
caching because the test queries in these two bench-
marks are static. For BSBM, queries are generated 
dynamically; thus, AET based caching did not work 
well and few operations were eliminated. However, 
entity caching provides a more flexible caching effect, 
and as illustrated, is able to eliminate more operations 
for BSBM test queries. This operation elimination 
ensures the speedup in BSBM query evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7  Conclusions and future work 
 

In this paper, we present two semantic caching 
approaches that take full advantage of the semantics 

Fig. 8  Eliminated join operations for LUBM (a), 
SP2Bench (b), and BSBM (c) 
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Fig. 7  Comparisons with existing approaches using 
datasets LUBM (a), SP2Bench (b), and BSBM (c) 
AC: algebraic expression tree (AET) based caching; EC: 
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originated from both SPARQL queries and RDF data. 
AET based caching caches intermediate results 

of SPARQL queries. Cache items are identified by the 
sub-AET structure, which ensures the identification 
ability of SPARQL query semantics. The AET based 
caching effectively improves the evaluation of 
SPARQL queries with an identical sub-query. It per-
forms well on query context with similar adjacent 
queries. 

Entity caching extracts BGP from SPARQL 
queries and groups triple patterns included in the BGP 
by the subject URIs/variables of the triple patterns. 
Triple pattern groups are expanded to fully select the 
property values of the object specified by the subject 
URI. The entity caching is adaptive and efficient. It 
works well on almost all query contexts.  

Compared with existing work, both approaches 
and their combination can further speed up the 
evaluation of SPARQL query mix. The possible rea-
son is that the proposed approaches perform semantic 
caching beyond low level page caching, individual 
triples caching, and specific application objects 
caching. 

Our evaluations on three mainstream RDF 
benchmarks also reveal that AET based caching is 
suitable for the relatively static query mix, while 
entity caching plays a role in the dynamic query mix. 

This work, however, is still at a very preliminary 
stage. Future work includes:  

1. Distributed caching. Distributed caching has 
been widely applied in mainstream Web 2.0 applica-
tions. As the Semantic Web develops, centralized 
local caching will not work on very large scale Se-
mantic Web data. Distributed semantic caching will 
therefore become a must in distributed Semantic Web 
data infrastructures.  

2. Storage and indexing technique. Entity cach-
ing speeds up query evaluation via a new storage and 
indexing scheme of Semantic Web objects. This is 
applicable on the design of appropriate storage and 
index structure for RDF stores.  
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JZUS (A/B/C) latest trends and developments 

 JZUS-A wins the “China Government Award for Publishing” for Journals 

This prize is the highest award for the publishing industry in China. It has been award to journals for the 
first time, and only 20 journals in China won the prize, 10 science and technology journals and 10 social sci- 
ence journals. 

 In 2010 & 2011, we opened a few active columns on the website http://www.zju.edu.cn/jzus 

 Articles in Press 
 Top 10 cited papers in parts A, B, C 
 Newest cited papers in parts A, B, C 
 Top 10 DOIs monthly 
 Newest 10 comments (Open peer review: Debate/Discuss/Question/Opinions) 

 As mentioned in correspondence published in Nature Vol. 467: p.167; p.789; 2010, respectively: 

JZUS (A/B/C) are international journals with a pool of more than 7600 referees from more than 67 coun-
tries (http://www.zju.edu.cn/jzus/reviewer.php). On average, 64.4% of their contributions come from outside 
Zhejiang University (Hangzhou, China), of which 50% are from more than 46 countries and regions. 

The publication, designated as a key academic journal by the National Natural Science Foundation of 
China, was the first in China to sign up for CrossRef’s plagiarism screening service CrossCheck.  

 

 JZUS (A/B/C) have developed rapidly in specialized scientific and technological areas. 

 JZUS-A (Applied Physics & Engineering) split from JZUS and launched in 2005, indexed by 
SCI-E, Ei, INSPEC, JST, etc. (>20 databases) 

 JZUS-B (Biomedicine & Biotechnology) split from JZUS and launched in 2005, indexed by 
SCI-E, MEDLINE, PMC, JST, BIOSIS, etc. (>20) 

 JZUS-C (Computers & Electronics) split from JZUS-A and launched in 2010, indexed by 
SCI-E, Ei, DBLP, Scopus, JST, etc. (>10) 

 In 2010 JCR of Thomson Reuters, the impact factors:  

JZUS-A 0.322; JZUS-B 1.027 


