
Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 281

Improving SPARQL query performance with algebraic

expression tree based caching and entity caching*

Gang WU1,2, Meng-dong YANG3
(1College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

(2MOE Key Laboratory of Medical Image Computing, Northeastern University, Shenyang 110004, China)

(3School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

E-mail: wugang@ise.neu.edu.cn; mdyang@seu.edu.cn

Received Aug. 8, 2011; Revision accepted Jan. 27, 2012; Crosschecked Feb. 17, 2012

Abstract: To obtain comparable high query performance with relational databases, diverse database technologies have to be
adapted to confront the complexity posed by both Resource Description Framework (RDF) data and SPARQL query. Database
caching is one of such technologies that improves the performance of database with reasonable space expense based on the spatial/
temporal/semantic locality principle. However, existing caching schemes exploited in RDF stores are found to be dysfunctional for
complex query semantics. Although semantic caching approaches work effectively in this case, little work has been done in this
area. In this paper, we try to improve SPARQL query performance with semantic caching approaches, i.e., SPARQL algebraic
expression tree (AET) based caching and entity caching. Successive queries with multiple identical sub-queries and star-shaped
joins can be efficiently evaluated with these two approaches. The approaches are implemented on a two-level-storage structure.
The main memory stores the most frequently accessed cache items, and items swapped out are stored on the disk for future pos-
sible reuse. Evaluation results on three mainstream RDF benchmarks illustrate the effectiveness and efficiency of our approaches.
Comparisons with previous research are also provided.

Key words: SPARQL, Resource Description Framework (RDF), Semantic caching, Algebraic expression tree (AET), Entity
doi:10.1631/jzus.C1101009 Document code: A CLC number: TP392

1 Introduction

Nowadays, the Semantic Web is becoming
popular and has been recognized as a machine-
understandable data Web where explicit semantics is
specified to the information on the Web. Resource
Description Framework (RDF) (Klyne and Carroll,
2004) defines the syntax for data representation and
interchange on the Semantic Web. RDF triple is the
smallest unit of describing a statement about a Web

resource, which has the form of <subject, predicate,
object> (also known as <subject, property, value>).
For example, the fact that product1 with the label
‘label1’ is produced by producer1 could be expressed
as two triples <product1, label, ‘label1’> and <prod-
uct1, producer, producer1>, where product1 and pro-
ducer1 are uniform resource identifiers (URIs) that
identify unique entities, and ‘label1’ is the literal
representing the label. An RDF document containing
multiple triples can be viewed as a directed labeled
graph by simply taking a triple as a graph fragment
that has an edge labeled with predicate and is directed
from a subject node to an object node.

As RDF has a graph-based data model, it is more
suitable for knowledge representation than the rela-
tional model (Wikipedia, 2012). However, to define
queries over such a data model, a new query language

 Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (Nos. 60903010, 61025007, and 60933001), the National Basic
Research Program (973) of China (No. 2011CB302206), the Natural
Science Foundation of Jiangsu Province, China (No. BK2009268), the
Fundamental Research Funds for the Central Universities (No.
N110404013), and the Key Laboratory of Advanced Information
Science and Network Technology of Beijing (No. XDXX1011)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 282

should be proposed. W3C’s SPARQL (Prud′hom-
meaux and Seaborne, 2008) is one of the RDF query
languages. It takes graph pattern matching as the
basic building block. To query products and their
corresponding product labels and producers, one can
write a SPARQL query by specifying a graph pattern
as follows:

Query 1: Select the products and their labels and
producers
SELECT ?product ?p ?l
WHERE{ ?product producer ?p.

?product label ?l }

Here, a graph pattern consists of one or more triple
patterns, which are delimited by period delimiter ‘.’.
Identifiers starting with question mark ‘?’ are vari-
ables, whose values are to be determined during query
evaluation. An equal join on ?product is required to
find triples with variable ‘?product’ appearing as
subject in both triple patterns <?product, pro-
ducer, ?producer> and <?product, label, ?label>.

Although graph pattern matching facilitates a
flexible expression of query semantics on RDF data,
it makes the query evaluation of SPARQL different
from that of SQL. Moreover, the existence of billions
of RDF triples published on the Semantic Web also
challenges the performance of SPARQL query
engines. To obtain comparable high query perform-
ance on large scale RDF data, diverse typical database
technologies like index structures, query optimiza-
tions, and parallelization have to be adapted. This is
necessary to confront the complexity posed by both
RDF data and SPARQL query. They are well studied
and utilized in mainstream RDF stores, e.g., Sesame
(Broekstra et al., 2002), Jena (Wilkinson et al., 2003;
Owens et al., 2008), Virtuoso (Erling and Mikhailov,
2007), RDF-3X (Neumann and Weikum, 2008),
YARS2 (Harth et al., 2007), and Oracle’s RDF_
MATCH (Chong et al., 2005).

Database caching is another such kind of tech-
nique. It improves the performance of database with
reasonable space expense based on the spatial/
temporal locality principle. It has also been widely
developed in the field of DB-based Web 2.0 applica-
tions. There are three kinds of caching granularity
(Dar et al., 1996), i.e., page level, tuple level, and

semantic caching. Since data is usually organized in
pages on the disk, designing a page level caching is
intuitive but may be insensitive to the physical dis-
tribution of the data. The finest granularity level,
tuples caching, can avoid the bad data clustering
problem. However, it will produce more join opera-
tions. Semantic caching is believed to have better
performance than the others (Dar et al., 1996; Li et al.,
2001; Ren et al., 2003). It caches semantic descrip-
tions of previously evaluated queries and corre-
sponding results. A new query can be efficiently an-
swered if the whole or part of it has been previously
cached. Such semantic locality does make sense for
those queries with complex semantics.

Though page level and tuple (triple) level
caching schemes have been naturally exploited in
RDF stores together with other database technologies,
they might not always be the best options. The Berlin
SPARQL BenchMark (BSBM) illustrates a real-world
application case and emulates “the search and
navigation pattern of a consumer looking for a
product” (Bizer and Schultz, 2009). A sequence of
queries are issued to simulate a real-world workload.
Since there are close associations between successive
queries, semantic locality does exist. The intrinsic
expressiveness of RDF data and SPARQL query
language makes it possible to express rich semantics
in Semantic Web applications, and hence to develop
reasonable semantic caching approaches beyond low
level page caching, individual triples caching, and
specific application objects caching. Unfortuanately,
little research has been done on this topic.

In this paper, we focus on improving SPARQL
query performance with semantic caching approaches,
i.e., SPARQL algebraic expression tree (AET) based
caching and entity caching. Successive queries with
multiple identical sub-queries and star-shaped joins
can be efficiently evaluated with the two proposed
approaches, respectively.

The main contributions of this paper include:
1. We develop an efficient and robust approach

that caches intermediate query results based on the
SPARQL AET. The serialization methods for identi-
fying query and intermediate results are described to
explain how the approach speeds up the evaluation of
SPARQL queries with similar sub-queries. Operators
including join, left outer join, union, and filter are
supported.

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 283

2. We propose an entity caching approach which
aggregates triples of the same entity (RDF resource)
according to the ontology. This approach reduces
star-shaped joins during the query evaluation phase
and brings significant performance improvement.

3. We implement both semantic caching ap-
proaches on the Sesame RDF and provide the
evaluation results of query performance on three
benchmarks, LUBM (Guo et al., 2005), SP2Bench
(Schmidt et al., 2008), and BSBM (Bizer and Schultz,
2009), to illustrate the effectiveness and efficiency.

2 Related work

We are concerned about typical techniques of
cache-conscious query processing (Ross, 2009),
which focus mainly on designing efficient query
processing algorithms. The approaches usually im-
prove the performance of the query from four major
aspects: spatial locality, temporal locality, prefetching,
and sampling.

To improve spatial locality, data items accessed
at the same time are organized in the same cache
region. For example, data items can be arranged as
column oriented (e.g., in column-wise databases) or
with specific cache index structures. To improve
temporal locality, techniques like data blocking,
buffering, and cache-sized partitioning are employed.
Prefetching data into a cache can hide the latency
caused by cache miss. Cache sampling is used to
choose appropriate algorithms for future query proc-
essing according to the statistical information ob-
tained from the cached data items. In our work, query
results are blocked in the same semantic region ac-
cording to the semantic description of SPARQL AETs
in our SPARQL AET caching. Our entity caching
approach performs prefetching and data blocking for
those RDF triples related to the same entity (RDF
resource).

Semantic caching was first proposed by Dar et al.
(1996). The approach was designed for a client-server
database, including a client-side caching and re-
placement. The main idea of semantic caching is to
maintain a semantic description of previously evalu-
ated results in the cache for future reuse. Semantic
caching is believed to outperform page caching and
tuple caching approaches (Li et al., 2001). Li et al.

(2001) proposed two semantic caching strategies with
different granularities to tackle the long latency
problem caused by ‘view-like’ query behavior in the
mediator-based database systems. Ren et al. (2003)
provided a formal definition of the semantic caching
model. They presented a query plan tree data structure
to provide a detailed plan of a newly coming query
from a cache. Simulation results showed advantages
in “client-server environment, mobile computing,
heterogeneous systems, Web applications, etc.”.

Besides the relational data model, semantic
caching has been studied in eXtensible Markup
Language (XML) context as well. XCache is a se-
mantic caching system for XQuery processing (Chen
et al., 2002).

Few of the existing RDF stores concentrate on
RDF data caching design. As for Semantic Web ap-
plications, there are only a few researches on very
similar topics. Abadi et al. (2007) proposed an ap-
proach to materialize path expressions like <?book,
author, ?someone>, <?someone, wasBorn, ‘1860’> to
a form like ?book.author:was Born=‘1860’. Oracle’s
RDF_MATCH system (Chong et al., 2005) imple-
ments generic materialized join views to avoid
self-join of a triple table. RDF_MATCH also applies
subject-property matrix materialized join views to
minimize the query processing overheads that are
inherent in the canonical triple based RDF represen-
tation. Castillo et al. (2010) implemented RDF Mat-
View which materializes frequent join patterns based
on the analysis of SPARQL queries. Although se-
mantic caching is an effective means to deal with
view-like query behavior, it is beyond the material-
ized join views after all because it requires cache
replacement strategies be cooperated.

To the best of our knowledge, the most relevant
work in the Semantic Web is Martin et al. (2010),
which introduced a proxy cache layer between a Web
application and an RDF repository, and employed
both triple level query result caching and application
object caching. The caching scheme showed good
results on BSBM (Bizer and Schultz, 2009). Consid-
ering the intrinsic rich semantics resided in Semantic
Web applications, it is possible to design more
meaningful semantic level caching approaches be-
yond low level individual triples caching and specific
application objects caching.

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 284

3 Preliminaries

3.1 Definitions

RDF data is modeled as a directed graph with
labeled nodes and edges, in which the basic element is
the RDF triple. Definition 1 gives the formal defini-
tion.
Definition 1 (RDF triple) Assume U is the set of
URIs, B the set of blank nodes, and L the set of literals.
Triple

t=<s, p, o>(UB)×U×(UBL)

is called an RDF triple. Here, subject s represents an
entity (resource), while predicate p specifies a prop-
erty of the entity and object o the property value. All
subjects and objects constitute the labeled nodes of an
RDF graph and predicate the labeled edges.

SPARQL is a pattern matching based RDF query
language recommended by W3C. Definitions of the
triple pattern and the basic graph pattern (BGP) are
provided as follows.
Definition 2 (Triple pattern) Assume V is an infinite
set of variables disjoint from U, B, and L. Then a
triple

tp=<s, p, o>(UBV)(UV)(UBLV)

is a triple pattern.
Definition 3 (Basic graph pattern, BGP) Assume p1,
p2, …, pn (n≥1) are all triple patterns. Then a set
G={p1, p2, …, pn} is a BGP.

In a BGP SPARQL query, one or more triple
patterns are given to specify the graph pattern. During
the query evaluation phase, a query engine searches
the RDF graph for sub-graphs that match the graph
pattern and returns them as query results. Besides
triple selection, BGP also issues projection and join
operations.
Definition 4 (Projection operation) Given a set of
binding names, N, then the projection operation of a
binding B with binding names set N on binding names
Np is

p(B, Np)={v|vNNp}.

Definition 5 (Join operation) Assume pa and pb are
two triple patterns in one graph pattern. Then a join
operation j(pa, pb, v)=pa⋈v=vpb occurs if and only if a

variable v appears in both pa and pb (as any of s, p,
and o).

The join operation connects multiple triple pat-
terns and divides the evaluation of the graph pattern
into multiple triple pattern evaluations. Besides the
join operation (also known as equi-join), the left outer
join is also supported in SPARQL, as defined in
Definition 6.
Definition 6 (Left outer join operation) Assume pa
and pb are two triple patterns in one graph pattern.
Then a left outer join operation loj(pa, pb, v)=pa⟕v=vpb
occurs if and only if a variable v satisfies either of the
two conditions: (1) v appears in both pa and pb (as any
of s, p, and o)—in this condition loj(pa, pb, v) has the
same output as j(pa, pb, v); (2) v appears only in pa—in
this condition the variables in pb only are all null.

Because a triple pattern cannot express quanti-
tative criteria like the range query, regular expression
matching, etc., the filter operation is introduced in
SPARQL as well.
Definition 7 (Filter operation) A filter operation
f(pin, p) is an operation that outputs the triples in pin
that satisfy the predicate criteria specified in p.
Definition 8 (Union operation) A union operation
u(pa, pb) is the union of the output of two input pat-
terns pa and pb.
Definition 9 (Algebraic expression, AE) Given a
SPARQL query Q, then expression E=(P, O) is an
algebraic expression (AE) of evaluating Q, where P is
the set of triple patterns and O is the set of operations
to be executed during query evaluation. In this paper,
O={j, loj, f, p}.

For instance, Query 1 has the corresponding AE:
p(j(<?product, producer, ?p>, <?product, label, ?p>),
{?product, ?p, ?l}).

In some SPARQL query engines, like Sesame,
AE of a query is usually organized in a tree shaped
structure to be efficiently evaluated. Hence, we call
such a tree structure corresponding to the AE an AET.
The AET of Query 1 is shown in Fig. 1.

As a projection operation is always performed
automatically after a node has been evaluated, pro-
jections are omitted in AET. In this way, an AET can
represent the evaluation process of a SPARQL query.
In this study, we consider AETs of BGP SPARQL
queries with left outer join, union, and filter
operations.

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 285

3.2 SPARQL query evaluation

The evaluation of a SPARQL query is similar to
that of an SQL selection-projection-join query. To
evaluate Query 1, an AET as shown in Fig. 1 may be
generated at the query evaluation phase by query
engines. For the convenience of discussion, we pre-
sent only the SPARQL query evaluation process that
is concerned with the join operation. Other operations
involved in the evaluation, like left outer join, union,
and filter, can be analyzed and applied similarly.

The join order may vary due to the optimization
strategy selected and statistical information provided.
For complex BGP queries, there could be much more
triple patterns specified, which brings more join op-
erations and makes optimal join ordering a challenge.
The tree in Fig. 1 is only an example that helps de-
scribe our caching approaches. Those complex query
optimization techniques beyond the scope of BGP are
not discussed in this paper. Once a SPARQL query is
translated into an AET, the query engine will perform
a post-order traverse in the tree to ensure that all the
sub-AET trees of a node have been evaluated before
evaluating the node itself. Apparently, the output from
the root node is the evaluation result of the query.
Such an evaluation process is usually implemented as
a recursion expansion and will not stop until the en-
gine reaches leaf nodes. The recursion expansion is a
top-down process, while recursion reduction is a
bottom-up one.

As SPARQL queries can be very complex, the
recursive evaluation of AET may be very complex
and involves a lot of join nodes in its AET. Such
queries are quite common in real-world Semantic
Web applications. As join operations usually have

heavy computation loads and consume a large amount
of memory, they are the temporal/spatial bottleneck of
the performance of RDF data management systems,
especially for those dealing with large-scale RDF
data.

4 AET based caching

BSBM demonstrates a scenario which consists
of a sequence of queries mixed to form a typical query
use case. Usually, in one query mix, successive que-
ries probably share the partial/whole semantics. If
previously evaluated query results are maintained in
the cache, it is possible to speed up the query evalua-
tion of future semantically related queries. Based on
this idea, we present an AET query plan based cach-
ing approach that caches intermediate query results
for possible reuse in the future SPARQL queries.

To illustrate our approach, we provide a simple
query mix that consists of two successively issued
SPARQL queries, both derived from Query 1.

Query 2
SELECT ?product ?l ?p ?c
WHERE{ ?product label ?l.

?product producer ?p.
?product comment ?c }

Query 3
SELECT ?product ?l ?p ?prop
WHERE{ ?product label ?l.

?product producer ?p.
?product productProperty ?prop }

By comparison with Query 2, Query 3 has ob-
viously redundant evaluations on triple queries
<?product, producer, ?p> and <?product, label, ?l>,
and the join <?product, producer, ?p>⋈?product=?product

<?product, label, ?l>.
It is more evident when we translate the queries

into AETs. Suppose the corresponding AETs of the
two queries are as shown in Fig. 2. Apparently, they
have a common sub-AET as annotated by the dashed
line. The evaluation result obtained from the sub-AET
is an intermediate query result. If the sub-AET can be
detected and its result cached, redundancy can be
avoided by reusing the intermediate query result.

Fig. 1 The algebraic expression tree (AET) of Query 1
Leaf nodes (identified by rectangle) in an AET are always
triple selection operations, where a triple selection is per-
formed with the specified triple pattern. Non-leaf nodes
(identified by ellipse) are other operations including join, left
outer join, union, and filter

Select <?product,
producer, ?p>

Select <?product,
label, ?l>

Join on ?product=?product

<?product, ?p> <?product, ?l>

Output

n1

n2 n3

<?product, ?p, ?l>

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 286

Deduced from the example, more complex que-

ries will lead to more complex AETs, and likely more
sub-AET evaluation results will be cached. The
cached sub-AET results can be reused if identical
sub-AETs occur in the newly arriving query evalua-
tion. Once the cache is hit, the result of matched sub-
AET can be directly accessed, and hence repeated
issuing of join can be avoided. In fact, queries having
common sub-AETs in their corresponding AETs are
very common in Semantic Web applications. Intui-
tively, caching the result of common sub-AETs can
speed up the evaluation process, thus reducing the
cost of running time and space overhead of the
application.

4.1 Identifying AETs

There are multiple logically equivalent algebraic
expressions for a given query. On one hand, this fact
makes query optimization feasible in a query engine;
on the other hand, it makes the AET based caching

approach confront the challenge of identifying an
AET (or part of AET) so that the query engine can
recognize the identical AET (part) and reuse corre-
sponding cached results. To solve this problem, we
first define the equality of two AETs:
Definition 10 (Equality of two AETs) Assume RA
and RB are the root nodes of two AETs TA and TB,
respectively. Then we have

TA=TB

(.subj .subj) (.pred .pred)

(.obj .obj),

when (is a leaf node) is a leaf node),

.leftChild .leftChild) (.rightChild

.rightChild)),

when (is a non-leaf node)

(is a non-l

A B A B

A B

A B

A B A

B A B

A

B

R R R R

R R

R R

R R R

R R R

R

R

 eaf node),

FALSE, otherwise.

Considering the recursive definition of equality

relation, we define the following recursive rule which
helps to generate an identifier for each unique AET.
Definition 11 (Unique ID of AET) Given the root
node R of an AET T, then T has a unique identifier:

" " .subj"," .pred "," .obj" ",

 when is a leaf node,
ID()=

"("ID(.leftChild)","ID(.rightChild)")",

 when is a non-leaf node.

R R R

R
T

R R R

R

ì < >ïïïïïïíïïïïïïî

According to Definition 11, two AETs can be
identified regardless of the variables. However, there
is still one case left to be considered. Suppose we use
‘?p’ instead of ‘?product’ to represent the variable of
products in Query 2. The new query is lexically dif-
ferent from Query 2, though the two queries have the
same semantics, and hence identical AETs. To solve
the problem, AET is normalized as a preprocessing.
The ID generated from the normalized AET can be
used to identify AETs with the same query semantics.

The variable name normalization is implemented
as a variable labeling method via a pre-order traverse
of the AET. Each time the ID generator meets a triple
pattern p, it assigns an ID id to each variable v in p. It

Select <?product,
producer, ?p>

Select <?producer,
label, ?l>

Join on
?product=?product

<?product, ?p>
<?product, ?l>

n1

n2

n5

Select <?product,
comment, ?c>

Join on ?product=?product

<?product, ?c>

<?product, ?p, ?l, ?c>

Output

n3

n4

<?product, ?p, ?l>

(a)

Select <?product,
producer, ?p>

Select <?producer,
label, ?l>

Join on ?product=?product

<?product, ?p> <?product, ?l>

n6

n7

n10

<?product, ?p, ?l>

Select <?product,
productProperty, ?prop>

Join on ?product=?product

<?product, ?prop>

<?product, ?p, ?l, ?prop>

Output

n8

n9

(b)

Fig. 2 Algebraic expression trees (AETs) of Query 2 (a)
and Query 3 (b)
These two queries have a common sub-AET as annotated by
the dashed lines

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 287

first looks up the name n of v in a global map m which
contains <name, ID> pairs. If a pair <n, id> does exist
in m, the generator assigns the id found to v. Other-
wise, the generator generates a new ID id, and adds
pair <n, id> to m after assigning id to v.

In our example, the output of the normalization
preprocessing is a new AET with expression <?v1,
producer, ?v2>⋈?v1=?v1<?v1, label, ?v3>. Therefore,
the ID of such a normalized AET is J(<?v1, pro-
ducer, ?v2>, <?v1, label, ?v3>) according to the rule
defined in Definition 11. The ID generated can
then be used to identify an AET with unique query
semantics.

4.2 Replacement strategy and cache update

In AET-based caching a conventional version of
the least recently used (LRU) replacement algorithm
is employed. When a cache item is required to be
inserted into the cache repository which is already full,
the least frequently used cache item will be deleted
from the cache repository to yield storage space for
the new item.

As the construction of the AET-based cache re-
pository is closely related to the query engine
evaluation on the AET, computing an updated version
of a cache item affected by triple insertion/removal is
usually not more convenient than reconstructing the
cache item. Since AET-based caching takes effect in a
relatively small query context (the AET of the next
coming query has an identical sub-AET to the pre-
vious one), taking cache update into account is costly
and not worthwhile. In our implementation of the
AET-based caching approach, all cache items imme-
diately become invalid on triple repository update
(triple insertion into or removal from the triple
repository).

4.3 SPARQL query evaluation with AET based
caching

To use the caching approach to improve the
performance of SPARQL query evaluation, some
modifications to the general query evaluation algo-
rithm are needed. A cache lookup operation is in-
serted before evaluating a sub-AET; a cache writing
operation is performed before returning the result of a
sub-AET to its parent node in case of cache miss.
With our caching approach, a SPARQL query engine
works as in Algorithm 1.

The algorithm is recursive. The recursion ex-

pands at line 12 where the evaluation of a node de-
pends on the results of all its children. Before the
recursion, we add the cache lookup operation (lines
7–9): the query engine first computes the ID of the
current sub-AET that takes current_node as its root
node; then it looks up the cache repository with the ID.
The evaluation result will be directly accessed and
returned to the parent node if there is a matched cache
item; in this way the evaluation from current_node
down is avoided. Otherwise, the engine evaluates the
result of the current sub-AET, and returns the result to
the parent node after storing it in the cache repository
(lines 10–17).

5 Entity caching

AET based caching improves the evaluation of
SPARQL queries with an identical sub-AET structure.

Algorithm 1 AET evaluation with caching
Input: A normalized AET Tn
Output: Evaluation result R of input
Global variable: current_node (the node whose result is
being evaluated by the query engine)
Initialization: current_noderoot node Nr of Tn
Function evaluate(T)
1 RTthe root node of Tn
2 If RT is a leaf
3 Issue triple selection RT, Rtresult

4 Return Rt

5 Else
6 Compute the ID of T as id
7 If item <id, content> exists in the cache
8 Access the item, Rccontent

9 Return Rc
10 Else
11 Sc{N1, N2, …, Nn}, where N1, N2, …, Nn are
 direct child nodes of RT
12 Scr{evaluate(N1), evaluate(N2), …,
 evaluate(Nn)}={R1, R2, …, Rn}
13 Execute operation on current_node with Scr,
 Rcresult

14 If cache repository is full
15 Delete an item from the cache with LRU
16 Add item <id, Rc> to the cache
17 Return Rc
End Function
Algorithm: Revaluate(Tn)

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 288

However, for queries with the same semantics but
different join ordering, AET based query caching
does not work well since the corresponding AETs
have different structures. Take the AETs shown in
Fig. 3 as an example. Caching the output of n1 will not
be helpful for the evaluation of Query B because
Query A and Query B have different join orders due to
the query optimization strategies chosen.

Moreover, selecting n properties of an entity

(RDF resource) means n−1 joins are required in the
corresponding AET. In the relational database, a join
operation occurs only when there is an inter-relational
condition restriction. In constant, no join operation is
required when selecting properties within a relation.
This inspired us to materialize those triples related to
the same entity as a view to avoid join operations
when retrieving the information of the entity. Fortu-
nately, the RDF data model can simplify the materi-
alization. We extract and aggregate triples having the
same subject into a tuple containing all properties and
corresponding property values of a specific entity. A
table storing such tuples is shown in Table 1.

We employ a horizontal table schema (Sakr and
Al-Naymat, 2010) to store such tuples for the fol-
lowing two reasons:

1. Flexible ontology representations are allowed
with this table schema. First, for an entity, any possi-
ble property can be null. Second, an entity can have
multiple types and hierarchical types.

2. An intra-entity selection can be conducted via
one single access to the corresponding row in the
table avoiding costly star-shaped joins.

5.1 Cache construction

We explain how cache items are constructed and
filled into the cache repository on cache miss. The
cache repository is initially empty. On evaluating a
query, triple patterns specified in the BGP are grouped
according to subjects. For example, Query 2 in BSBM
retrieves basic information of a specific product by
specifying a set of BGPs and groups (Table 2). For
simplicity, left outer joins (optional) are omitted in
this example.

Table 1 A sparse table storing aggregated RDF triples

ID Type Feature Label Producer Description

Product1 {product} {feature1, feature2} {“p1”} {producer1} -

Feature1 {productFeature} - {“pf1”} - {“description1”}

Feature2 {productFeature} - {“pf2”} - {“description2”}

Producer1 {producer} - {“pp1”} - -

Table 2 Grouped triple patterns and graph representation

ID Triple pattern(s)

Product1 product1 rdfs:label ?label.
product1 rdfs:comment ?comment.
product1 bsbm:producer ?p.
product1 bsbm:productFeature ?f.
product1 bsbm:productPropertyTextual1

?propertyTextual1.
product1 bsbm:productPropertyTextual2

?propertyTextual2.
product1 bsbm:productPropertyTextual3

?propertyTextual3.
product1 bsbm:productPropertyNumeric1

?propertyNumeric1.
product1 bsbm:productPropertyNumeric2

?propertyNumeric2.
?p ?p rdfs:label ?producer.

?f ?f rdfs:label ?productFeature.

Fig. 3 Query A (a) and Query B (b) with different join
orders

Select <?p, type,
product>

Select <?p,
producer, ?producer>

Join on ?p=?p

<?p> <?p, ?producer>

n1

<?p, ?producer>

Output

Select <?p,
type, product>

Select <?p,
label, ?label>

Join on ?p=?p

<?p> <?p, ?label>

<?p, ?label>

Select <?p,
producer, ?producer>

Join on ?p=?p

<?p, ?producer>

<?p, ?label, ?producer>

Output

(a)

(b)

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 289

Triple patterns in which multiple properties of a
specific entity are selected are considered as a group.
Relations are also specified between corresponding
groups. Once grouped, joins are categorized into two
types, i.e., intra-entity (group) join and inter-entity
(group) join. Hence, a query evaluation is divided into
two steps:

Step 1: Entity selection. Each group, which cor-
responds to an entity, is issued independently. Entity
caching is used to achieve speedup.

Step 2: Inter-entity joins, which are performed to
generate the final result of the BGP.

After step 1, each group may have multiple en-
tities (in case of a variable at the subject position)
selected corresponding to the triple pattern specified
in the group. Each entity corresponds to a tuple that
includes the entity’s URI and all its properties. The
tuples are then added to the cache repository table for
possible future reuse.

5.2 Query expansion and triple reducing

The method of constructing our entity cache
ensures simultaneously selecting multiple properties
of an entity, but an entity may be cached partially
rather than totally. For instance, a product has the
following properties: type, label, comment, producer,
productFeature, and productProperty. Suppose a
query selects type, label, comment, and producer of
product1. Then there will be only one tuple
<product1, type:product, label:“product1”, comment:
“comment1”, producer:producer1> in the cache after
the query is answered. Values of productFeature and
productProperty are both null in the cached tuple. At
this time, if there is another query selecting producer,
productFeature, and productProperty of product1,
accesses to both the entity cache and the triple store
are inevitable. This will apparently affect the evalua-
tion performance.

To solve this problem, we have to expand a triple
pattern group to include all property values of an
entity in the cache once the entity is accessed. By this
expansion and prefetching, a single access to the
entity cache item can fulfill entity selection no matter
which properties are selected. Since the entire entity
description has been reserved in the entity cache,
there is no need to store those triples in the triple store
as long as the cache holds the entity. Therefore, with

query expansion, all triples describing the entity are
removed from the triple store to reduce the store size.
Furthermore, a triple write-back is performed when
the entity is obsolete from the cache repository. Ex-
perimental results are provided in Section 6 to show
the performance improvement of this technique.

5.3 Replacement strategy and cache update

The LRU algorithm and its variations have
proved effective and efficient in cache replacement.
In this work, we enhance the LRU with semantic
information. In our replacement approach, if a cache
item is hit, the cache item itself and all the cache items
it refers to are moved to the head of the LRU list. For
example, if item (product1, hasFeature:{feature1,
feature2}, producer:{producer1}) is hit, then items
(feature1, …), (feature2, …), (producer1, …) should
all be moved to the head of the LRU list. The princi-
ple behind this is the locality of data access. In prac-
tical applications, adjacent operations usually have
semantics involvement (e.g., searching for products
that fulfill specified restrictions, and then viewing
product details of some of the search results). Thus,
the data semantically related to the currently accessed
data is more likely to be accessed in the near future.
Compared to plain LRU, LRU with semantics has
more cache hits during the warm cache phase (Fig. 4).

Cache update is what to be concerned about

when triple insertion/removal occurs. Our update
strategy for entity caching is quite simple. Suppose
the current triple to be inserted/removed is <s, p, o>.
Then when entity s is in the triple store, the inser-
tion/removal operation of <s, p, o> is performed on
the triple store; when entity s is in the entity cache, the
insertion/removal operation of property p:o is per-
formed on the cache repository.

Fig. 4 Comparison of cache hit rate between LRU with
semantics and plain LRU

C
a

ch
e

 h
it

ra
te

0

0.2

0.4

0.6

0.8

1.0
Warm cacheWarm-up

Time (h)

LRU without semantics

LRU with semantics

0 1 2

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 290

6 Implementation and evaluation

We use Sesame (Broekstra et al., 2002), a Java-
based RDF framework, to implement our caching
approaches.

Fig. 5 shows the system architecture. A two-
level storage is employed in both AET based caching
and entity caching. The most frequently accessed
cache items are stored in the main memory, and the
swapped out items are stored on the disk for possible
future use.

SPARQL queries are translated into AETs and
sent to the AET cache manager after parsing, and a
lookup is performed in the AET cache repository. The
result is directly returned to its requester on cache hit.
Otherwise, the AET is passed to the entity cache
manager, where AETs are processed and an entity
cache lookup is performed in the entity cache re-
pository. On cache hit, the results are directly sent to
its requester, and the AET cache repository is updated.
Otherwise, the AET is passed to the AET evaluator
and evaluated in a conventional way. Results are re-
turned to all requesters with both the AET cache re-
pository and the entity cache repository updated.

AET based caching stores cache items in a cus-
tom binary format. It uses a deflation compression
algorithm to reduce space consumption.

Entity caching stores tuples as key-value objects
in the main memory. For tuple persistence, the
MySQL (www.mysql.com) database is used. Tuples
are serialized in JSON (www.json.org) and indexed
with Apache Lucene (lucene.apache.org).

Three benchmarks, LUBM (Guo et al., 2005),
SP2Bench (Schmidt et al., 2008), and BSBM (Bizer

and Schultz, 2009), are employed to evaluate our
caching approaches. Here, we first present the metrics
before introducing the evaluation results.

6.1 Evaluation metrics

1. Time improvement. We compare this metric
from three aspects: (1) per-query-mix time consump-
tion without our caching approaches; (2) per-query-
mix time consumption with our caching approaches at
the cache warm-up phase, when few cache hits occur;
(3) per-query-mix time consumption with our caching
approaches at the warm cache phase, when cache hits
occur more frequently and the time consumption
tends to be stable.

2. Cache hit. The count of cache hits is used to
reflect to what extent the cached items are utilized.

3. Eliminated operations. This metric evaluates
how many operations are eliminated.

6.2 Experiment setup

6.2.1 Datasets

LUBM: We tested our caching approaches on
three datasets of different sizes: LUBM(10) (1.3M
triples), LUBM(100) (13.8M triples), and LUBM
(1000) (138M triples).

SP2Bench: We used three SP2Bench datasets of
different scales: 2.5M triples, 10M triples, and 40M
triples.

BSBM: We used three datasets of different sizes:
BSBM(1000) (0.35M triples), BSBM(10 000) (3.5M
triples), and BSBM(100 000) (35M triples).

6.2.2 Evaluation process

For i=1 to 10
 Construct condition C
 Issue query mix Q, which costs time period Ti
Next i
Output average value T of T1, T2, …, T10

Here, condition C and query mix Q are set as follows:
1. In the evaluation of no-cache-query evalua-

tion performance, C=Cn=disabling our caching ap-
proaches and using the original Sesame implementa-
tion; in the evaluation of query evaluation perform-
ance at the cache warm-up phase, C=Cu=enabling our
caching scheme and clearing up the memory/disk
cache repository; in the evaluation of query evalua-

Cache miss

Cached tuples?

Triples

Cache miss Entity tuples

Result

Cache hit
AET cache
manager

Entity cache
manager

Evaluator

AET
Cached sub-AETs?

Triples

Triple pattern

Cache hit

Entity caching

AET based caching

Triple store

Fig. 5 Architecture of the caching system

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 291

tion performance at the warm cache phase, C=Cw=
going on without clearing up the memory/disk cache
repository after the evaluation under Cu.

2. In the evaluation of LUBM, Q=QL=14 queries
provided by LUBM; in the evaluation of SP2Bench,
Q=QS=17 queries provided by SP2Bench; in the
evaluation of BSBM, Q=QB=25 queries provided by
BSBM.

6.2.3 Runtime resources

The evaluation was performed on a HP dx2390
workstation with Q8400 CPU (2.66 GHz, quadruple
core), 4 GB RAM, and 320 GB hard disk drive, run-
ning Windows Server 2008 R2 Enterprise Edition.
JVM version is JDK 1.6.0 Update 12 for x64 archi-
tecture. Java programs are run with -Xmx1024M
command argument.

6.3 Evaluation results

6.3.1 Time improvement and cache hit

Fig. 6 shows the experimental results of time
improvement of our caching approaches on LUBM,
SP2Bench, and BSBM datasets.

Query evaluation at the cache warm-up phase
costs more time with than without our caching ap-
proaches. This can be explained as follows:

1. There are few cache hits during the cache
warm-up phase, so most queries are evaluated in a
conventional way, like in the original Sesame
implementation.

2. Cache building takes extra time.
The latter makes query evaluation at cache

warm-up time a bit slower than in the original Sesame

implementation without a caching scheme.
AET based caching contributes more to the

performance improvement on LUBM and SP2Bench.
The reason is that LUBM and SP2Bench provide
static query mixes.

However, for BSBM performance improvement,
entity caching contributes more to the performance
improvement. The reason for BSBM having a dif-
ferent behavior is that BSBM generates queries dy-
namically, which makes queries in different query
mixes have little in common. As a result, there are few
cache hits in AET based caching. The entity caching
caches entities and is more flexible, and hence
helps a lot in reducing the workload of BSBM query
evaluation.

As for cache hit, as LUBM and SP2Bench pro-
vide static query mixes that contain fixed queries,
both of the two caching approaches have reasonable
cache hits on both benchmarks. Nevertheless, for
BSBM, things become different. AET based caching
leads to a small hit count. Entity caching in the warm
cache phase leads to more hits.

6.3.2 Comparisons with existing approaches

The comparisons with the caching approaches in
Martin et al. (2010) are shown in Fig. 7. In Martin et
al. (2010), TQC stands for the triple-based query
caching technique and OC stands for application
object caching. For LUBM and SP2Bench, TQC
caches only triples, so operations still have to be re-
issued on cache hit. As a result, TQC does not work
well on LUBM or SP2Bench. OC is a caching
mechanism designed for the application layer, where
adjacent queries usually have sub-queries in common.
But LUBM and SP2Bench focus mainly on the
evaluation of RDF stores’ throughput with complex
semantics. As neither benchmark is designed based
on real Web applications, OC does not work well on
LUBM or SP2Bench. For BSBM, things become a
little different: TQC does not perform well, while OC
improves the performance to a considerable degree
(about 50%). BSBM is a benchmark simulating the
context of an electronic business application. Test
queries in BSBM are designed intentionally to have
coherent semantics in a small query context. There-
fore, OC is applicable in improving performance on
BSBM.

Fig. 6 Benchmark test results
The numbers above the columns are the average cache hit
counts in each corresponding experiment configuration

1

10

102

103

104

105

LUBM(1000) SP2Bench(40M) BSBM(100k)

No cache
AC warm-up

AC warm
AC+EC warm-up
AC+EC warm

2

4

5

14

10
7

5

6

17

14

10

43

T
im

e
p

er
 q

ue
ry

 m
ix

 (
s)

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 292

6.3.3 Scalability

The scalability is shown in Fig. 7 as well. The
system with both of our caching approaches (AC+EC)
had the best performance at the warm cache phase in
all the nine datasets. Our caching approaches effec-
tively increased the processing capacity of the Ses-
ame RDF framework. Processing capacity on larger
scale RDF datasets (LUBM(1000), SP2Bench(40M),
BSBM(100k)) was promoted more than on smaller
scale datasets. This ensures that RDF stores with our
caching approaches have higher upper bounds in data
scaling.

6.3.4 Eliminated operations

Our caching approaches sped up query evalua-
tion via elimination of joins, left outer joins, filters,
and unions. According to Fig. 8, operations in LUBM
and SP2Bench were eliminated mainly by AET based
caching because the test queries in these two bench-
marks are static. For BSBM, queries are generated
dynamically; thus, AET based caching did not work
well and few operations were eliminated. However,
entity caching provides a more flexible caching effect,
and as illustrated, is able to eliminate more operations
for BSBM test queries. This operation elimination
ensures the speedup in BSBM query evaluation.

7 Conclusions and future work

In this paper, we present two semantic caching
approaches that take full advantage of the semantics

Fig. 8 Eliminated join operations for LUBM (a),
SP2Bench (b), and BSBM (c)

1

6

1

4

1

0

3

4

5

1 1

3

1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Operations
Eliminated AC
Eliminated AC+EC

2

9

1

6
5

4

7

11

6

2

0 0

5
6

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

17

13

17

11

2

14

12

0

10

1

8

1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
be

r
N

um
be

r
N

um
be

r

1

2

3

4

5

6

7

2

4

6

8

10

12

2

4

6

8
10

12
12

14

16

18

Query index

0

0

0

(a)

(b)

(c)

Fig. 7 Comparisons with existing approaches using
datasets LUBM (a), SP2Bench (b), and BSBM (c)
AC: algebraic expression tree (AET) based caching; EC:
entity caching; TQC: triple-based query caching technique;
OC: object caching

No cache

1

10

102

103

104

105

LUBM(10) LUBM(100) LUBM(1000)

AC

AC+EC

TQC

TQC+OC

T
im

e
pe

r
qu

er
y

m
ix

 (
s)

 1

10

102

103

SP2Bench(2.5M) SP2Bench(10M) SP2Bench(40M)

T
im

e
pe

r
qu

er
y

m
ix

 (
s)

1

10

100

BSBM(1k) BSBM(10k) BSBM(100k)

T
im

e
pe

r
qu

e
ry

 m
ix

 (
s)

(a)

(b)

(c)

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 293

originated from both SPARQL queries and RDF data.
AET based caching caches intermediate results

of SPARQL queries. Cache items are identified by the
sub-AET structure, which ensures the identification
ability of SPARQL query semantics. The AET based
caching effectively improves the evaluation of
SPARQL queries with an identical sub-query. It per-
forms well on query context with similar adjacent
queries.

Entity caching extracts BGP from SPARQL
queries and groups triple patterns included in the BGP
by the subject URIs/variables of the triple patterns.
Triple pattern groups are expanded to fully select the
property values of the object specified by the subject
URI. The entity caching is adaptive and efficient. It
works well on almost all query contexts.

Compared with existing work, both approaches
and their combination can further speed up the
evaluation of SPARQL query mix. The possible rea-
son is that the proposed approaches perform semantic
caching beyond low level page caching, individual
triples caching, and specific application objects
caching.

Our evaluations on three mainstream RDF
benchmarks also reveal that AET based caching is
suitable for the relatively static query mix, while
entity caching plays a role in the dynamic query mix.

This work, however, is still at a very preliminary
stage. Future work includes:

1. Distributed caching. Distributed caching has
been widely applied in mainstream Web 2.0 applica-
tions. As the Semantic Web develops, centralized
local caching will not work on very large scale Se-
mantic Web data. Distributed semantic caching will
therefore become a must in distributed Semantic Web
data infrastructures.

2. Storage and indexing technique. Entity cach-
ing speeds up query evaluation via a new storage and
indexing scheme of Semantic Web objects. This is
applicable on the design of appropriate storage and
index structure for RDF stores.

References
Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J., 2007.

Scalable Semantic Web Data Management Using Vertical
Partitioning. 33rd Int. Conf. on Very Large Data Bases,
p.411-422.

Bizer, C., Schultz, A., 2009. The Berlin SPARQL Benchmark.
Int. J. Semant. Web Inform. Syst., 5(2):1-24. [doi:10.4018/
jswis.2009040101]

Broekstra, J., Kampman, A., van Harmelen, F., 2002. Sesame:
a generic architecture for storing and querying RDF and
RDF schema. LNCS, 2342:54-68. [doi:10.1007/3-540-
48005-6_7]

Castillo, R., Leser, U., Rothe, C., 2010. RDFMatView: In-
dexing RDF Data for SPARQL Queries. Technical Report,
Humboldt University, Berlin, Germany.

Chen, L., Rundensteiner, E.A., Wang, S., 2002. XCache: a
Semantic Caching System for XML Queries. ACM
SIGMOD Int. Conf. on Management of Data, p.618.
[doi:10.1145/564691.564771]

Chong, E.I., Das, S., Eadon, G., Srinivasan, J., 2005. An Effi-
cient SQL-Based RDF Querying Scheme. 31st Int. Conf.
on Very Large Data Bases, p.1216-1227.

Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.,
1996. Semantic Data Caching and Replacement. 22nd Int.
Conf. on Very Large Data Bases, p.330-341.

Erling, O., Mikhailov, I., 2007. RDF Support in the Virtuoso
DBMS. First Conf. on Social Semantic Web, p.59-68.

Guo, Y., Pan, Z., Heflin, J., 2005. LUBM: a benchmark for
OWL knowledge base systems. Web Semant., 3(2-3):158-
182. [doi:10.1016/j.websem.2005.06.005]

Harth, A., Umbrich, J., Hogan, A., Decker, S., 2007. YARS2: a
federated repository for querying graph structured data
from the Web. LNCS, 4825:211-224. [doi:10.1007/978-
3-540-76298-0_16]

Klyne, G., Carroll, J.J., 2004. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Rec-
ommendation. Available from http://www.w3.org/TR/
2004/REC-rdf-concepts-20040212/ [Accessed on Jan. 16,
2012].

Li, L., König-Ries, B., Pissinou, N., Makki, K., 2001. Strate-
gies for Semantic Caching. 12th Int. Conf. on Database
and Expert Systems Applications, p.284-298. [doi:10.
1007/3-540-44759-8_29]

Martin, M., Unbehauen, J., Auer, S., 2010. Improving the
performance of semantic Web applications with SPARQL
query caching. LNCS, 6089:304-318. [doi:10.1007/978-
3-642-13489-0_21]

Neumann, T., Weikum, G., 2008. RDF-3X: a risc-style engine
for RDF. Proc. VLDB Endow., 1(1):647-659.

Owens, A., Seaborne, A., Gibbins, N., Schraefel, M., 2008.
Clustered TDB: a Clustered Triple Store for Jena. Avail-
able from http://eprints.ecs.soton.ac.uk/16974/1/www
2009fixedref.pdf [Accessed on Jan. 16, 2012].

Prud′hommeaux, E., Seaborne, A., 2008. SPARQL Query
Language for RDF. W3C Recommendation. Available
from http://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/ [Accessed on Jan. 16, 2012].

Ren, Q., Dunham, M.H., Kumar, V., 2003. Semantic caching
and query processing. IEEE Trans. Knowl. Data Eng.,

Wu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(4):281-294 294

15(1):192-210. [doi:10.1109/TKDE.2003.1161590]

Ross, K.A., 2009. Cache-Conscious Query Processing. Ency-
clopedia of Database Systems, p.301-304. [doi:10.1007/
978-0-387-39940-9_2151]

Sakr, S., Al-Naymat, G., 2010. Relational processing of RDF
queries: a survey. ACM SIGMOD Rec., 38(4):23-28.
[doi:10.1145/1815948.1815953]

Schmidt, M., Hornung, T., Lausen, G., Pinkel, C., 2008.
SP2Bench: a SPARQL Performance Benchmark. IEEE
25th Int. Conf. on Data Engineering, p.222-233. [doi:10.
1109/ICDE.2009.28]

Wikipedia, 2012. Resource Description Framework. Available
from http://en.wikipedia.org/wiki/Resource_Description_
Framework [Accessed on Jan. 16, 2012].

Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D., 2003.
Efficient RDF Storage and Retrieval in Jena2. First Int.
Workshop on Semantic Web and Databases, p.131-150.

Recommended reading
Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.,

1996. Semantic Data Caching and Replacement. 22nd Int.
Conf. on Very Large Data Bases, p.330-341.

Castillo, R., Leser, U., Rothe, C., 2010. RDFMatView: In-
dexing RDF Data for SPARQL Queries. Technical Report,
Humboldt University.

Neumann, T., Weikum, G., 2008. RDF-3X: a RISC-style en-
gine for RDF. Proc. VLDB Endow., 1(1):647-659.

Martin, M., Unbehauen, J., Auer, S., 2010. Improving the
performance of semantic Web applications with SPARQL
query caching. LNCS, 6089:304-318. [doi:10.1007/978-3-
642-13489-0_21]

Broekstra, J., Kampman, A., van Harmelen, F., 2002. Sesame:
a generic architecture for storing and querying RDF and
RDF schema. LNCS, 2342:54-68. [doi:10.1007/3-540-
48005-6_7]

JZUS (A/B/C) latest trends and developments

 JZUS-A wins the “China Government Award for Publishing” for Journals

This prize is the highest award for the publishing industry in China. It has been award to journals for the
first time, and only 20 journals in China won the prize, 10 science and technology journals and 10 social sci-
ence journals.

 In 2010 & 2011, we opened a few active columns on the website http://www.zju.edu.cn/jzus

 Articles in Press
 Top 10 cited papers in parts A, B, C
 Newest cited papers in parts A, B, C
 Top 10 DOIs monthly
 Newest 10 comments (Open peer review: Debate/Discuss/Question/Opinions)

 As mentioned in correspondence published in Nature Vol. 467: p.167; p.789; 2010, respectively:

JZUS (A/B/C) are international journals with a pool of more than 7600 referees from more than 67 coun-
tries (http://www.zju.edu.cn/jzus/reviewer.php). On average, 64.4% of their contributions come from outside
Zhejiang University (Hangzhou, China), of which 50% are from more than 46 countries and regions.

The publication, designated as a key academic journal by the National Natural Science Foundation of
China, was the first in China to sign up for CrossRef’s plagiarism screening service CrossCheck.

 JZUS (A/B/C) have developed rapidly in specialized scientific and technological areas.

 JZUS-A (Applied Physics & Engineering) split from JZUS and launched in 2005, indexed by
SCI-E, Ei, INSPEC, JST, etc. (>20 databases)

 JZUS-B (Biomedicine & Biotechnology) split from JZUS and launched in 2005, indexed by
SCI-E, MEDLINE, PMC, JST, BIOSIS, etc. (>20)

 JZUS-C (Computers & Electronics) split from JZUS-A and launched in 2010, indexed by
SCI-E, Ei, DBLP, Scopus, JST, etc. (>10)

 In 2010 JCR of Thomson Reuters, the impact factors:

JZUS-A 0.322; JZUS-B 1.027

