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Abstract: In classic community detection, it is assumed that communities are exclusive, in the sense of either soft
clustering or hard clustering. It has come to attention in the recent literature that many real-world problems violate
this assumption, and thus overlapping community detection has become a hot research topic. The existing work on
this topic uses either content or link information, but not both of them. In this paper, we deal with the issue of
overlapping community detection by combining content and link information. We develop an effective solution called
subgraph overlapping clustering (SOC) and evaluate this new approach in comparison with several peer methods in
the literature that use either content or link information. The evaluations demonstrate the effectiveness and promise
of SOC in dealing with large scale real datasets.
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1 Introduction

Recently, community detection has been a
hot research topic in data mining with many im-
portant applications such as collaborative filtering
(Chen et al., 2008), dynamic recommendation (Tan-
tipathananandh et al., 2007), and social network
analysis (Lin et al., 2010). The majority of the exist-
ing literature on community detection assumes that
the identified communities are exclusive in the sense
that every member in data collection can be in only
one community at the same time, no matter whether
the communities are detected through soft or hard
clustering.

While in certain situations this assumption is
valid, there are many other situations in which mem-
bers may belong to more than one community. In
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other words, there are overlaps among the identified
communities. For example, if we are interested in
detecting the social communities of a college student
population based on their email and phone commu-
nications, we may find that some people belong to
different groups (e.g., a hobby group and a study
group). In the recent literature (Fu and Banerjee,
2008; Lancichinetti et al., 2009; Wang et al., 2010;
Gregory, 2010), the topic of overlapping community
detection has attracted attention in the data mining
area.

In the existing literature, researchers use either
content or link to discover the overlapping communi-
ties. To the best of our knowledge, there has been no
attempt in data mining or machine learning that uses
both content and link information. In this paper, we
develop a subgraph matching technique called sub-
graph overlapping clustering (SOC) using both types
of information to identify the overlapping communi-
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ties in a data collection. SOC is a clustering tech-
nique that does not require any training data. We
demonstrate the effectiveness and promise of the pro-
posed solution through extensive evaluations using
real datasets in comparison with the state-of-the-art
methods.

2 Related works

We review three most related areas, i.e., over-
lapping community detection based on link, content,
and both link and content.

2.1 Overlapping community detection based
on link

In recent years, many approaches to overlapping
community detection or clustering based on link have
been proposed. Palla et al. (2005) used k-clique to
represent the structure of a network and then find
the overlapping clusters, since there are always nodes
belonging to multiple cliques. Baumes et al. (2005)
sought the overlapping subgraphs in two steps. They
used LA to initialize the seed clusters and IS2 to it-
eratively improve these clusters. Zhang et al. (2007)
combined fuzzy c-means clustering based on a spec-
tral feature selection method and a new modular
function to achieve overlapping clustering.

More recently, Gregory (2010) uncovered over-
lapping clusters using the label propagation ap-
proach. Lancichinetti et al. (2009) discovered both
overlapping and hierarchical communities by taking
advantage of local optimization of a fitness func-
tion. Lee et al. (2010) discovered overlapping clus-
ters based on the expansion of clique-seeds and op-
timization of a local fitness function. Kovacs et al.
(2009) introduced ModuLandan which is an integra-
tive network module determination approach. Ahn
et al. (2010) proposed a method based on the fact
that the cluster is defined as a set of edges. Airoldi
et al. (2008) and Yan et al. (2011) used statistical
models to discover the communities. Fortunato and
Castellano (2009) gave a systematic summary.

2.2 Overlapping community detection based
on content

Several approaches to overlapping community
detection based on content have been proposed in
the literature. Banerjee et al. (2005) proposed a

model-based overlapping clustering (MOC), which
is an extension of Segal et al. (2003)’s model and
can assign one object to multiple clusters for the
general model. Fu and Banerjee (2008) used a prob-
ability model named multiplicative mixture models
(MMMs) to find overlapping clusters. The obvious
difference from traditional models is that the latent
variables they used are boolean data, decided by
whether one object belongs to a corresponding clus-
ter. Every object is assumed to be generated from a
part of the product of the component distributions.
Wang et al. (2010) sought overlapping communities
in two steps. First, they viewed every edge (be-
havior) as an item and represented it using different
measures. Second, they used EdgeCluster (Tang and
Liu, 2009) to cluster these edges into k-clusters and
then assigned objects to the corresponding multiple
communities.

2.3 Community detection based on both link
and content

In the field of non-overlapping community de-
tection, the research based on both content and link
information has generated a large body of literature.
Zhu et al. (2007) proposed a matrix factorization
method by dealing with the content matrix and the
link matrix at the same time. Zhou et al. (2009)
generated the attribute vertices to form an attribute
augmented graph, which is a new graph combining
content and link information. Then, they used an
efficient random walk technique to iteratively iden-
tify communities. Zhang et al. (2008) proposed a
relaxation labeling based clustering method to mea-
sure the heterogeneous links. This method can effec-
tively improve clustering based on both content and
link. Yu et al. (2009) performed a spectral cluster-
ing based on kernel fusion combining both types of
information.

Using a probability model based on both content
and link information is also a main research direc-
tion. Cohn and Hofmann (2000) combined PHITS-
PLSA to achieve community detection. Nallapati
et al. (2008) proposed Pairwise-Link-LDA, which
combines LDA and the mixed membership block
stochastic model. They also proposed Link-PLSA-
LDA, which combines PLSA and LDA into a sin-
gle model. Yang et al. (2009) used a discriminative
model based on both content and link analyses to
detect communities, which differentiates itself from
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traditional generative models.

3 Problem definition

We first give the notations to be used in the fol-
lowing. U = {u1, u2, . . . , uN} is a set of objects,
A = {a1, a2, . . . , aM} is a set of attributes, and
ui → aj indicates that aj is an attribute of ui. The
attribute matrix E establishes the content informa-
tion between the objects and the attributes, and in
this study the content means binary attributes. The
adjacency matrix W establishes the link information
among the objects. E is an N × M attribute ma-
trix in a network with all binary entries eij ∈ {0, 1},
where eij = 1 indicates that the ith object has the
jth attribute. W is an N ×N symmetric adjacency
matrix in a network with its entries wij ≥ 0 indicat-
ing the weight of the link between the ith and jth
objects.

According to the above definition, we first con-
struct an object-attribute graph from the original
dataset. The proposed method is based on the data
structure of this object-attribute graph.
Definition 1 (Object-attribute graph) An object-
attribute graph is denoted as G=(U , A, W , E),
where U is the set of the object nodes on one side, A
is the set of the attribute nodes on another side, W is
the set of links among the object nodes, and E is the
set of edges connecting U and A. If e = (ui, aj) ∈ E,
ui ∈ U and aj ∈ A.

Fig. 1 is a simple example of an object-attribute
graph. It is clear that the edges in the graph are the
main source of the observations to the object behav-
ior. For instance, node u4 with both red and blue
attributes belongs to cluster 1 (u1−u4) and cluster 2
(u4−u6). Traditional relational clustering methods,
either hard or soft clustering, fail to identify the fact
that u4 belongs to both cluster 1 and cluster 2, as
through clustering the edges it is clear that two types
of edges can be found and u4 belongs to both types.

We then define the candidate subgraph as
follows.
Definition 2 (Candidate subgraph) Given a
dataset represented as an object-attribute graph,
a set of candidate subgraphs is denoted as Si =

(Ui, Ai,Wi, Ei), 1 ≤ i ≤ L, where every candidate
subgraph is a subgraph of the object-attribute graph.
In addition,

⋃l
i=1 Ui = U and Ui ∩ Uj = ∅ for any

i �= j. Ai is the set of attributes that Ui has, Wi

u2

Red Blue

Attribute

Node

u1

u3

u4

u5

u6

Fig. 1 The object-attribute graph. The upper circle
(red and blue) represents the dimensions of the at-
tributes and the lower circle (u1 −u6) represents the
dimensions of the objects

is the set of links among Ui, and Ei is the set of
edges between Ui and Ai. Moreover, we assume that
the objects are closely connected in the same candi-
date subgraph and that there exist a set of dominant
attributes in one candidate subgraph.

Thus, the problem of overlapping community
detection based on both content and link information
is described as follows:

Input: an object-attribute graph with both the
attribute matrix E (content) and the adjacency ma-
trix W (link).

Intermediate: a stable set of candidate sub-
graphs.

Output: k overlapping communities.

4 Candidate subgraph evaluation

In this section, we first assume the availability
of a candidate subgraph, and then define the meth-
ods to measure the relevance between an object node
and a set of candidate subgraphs and that between
an attribute and a set of candidate subgraphs. These
methods will be used to evaluate the relevance as
part of the community discovery process. The gener-
ation of candidate subgraphs is a part of the iterative
community discovery process and will be described
later in this paper.

4.1 Subgraph attribute modularity measure

Given a set of candidate subgraphs {Si}Li=1 that
come from the object-attribute graph, we first define
a measure of relevance between attribute ai and can-
didate subgraph Sl as Eq. (1), which we call subgraph
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attribute modularity measure (SAMM):

r(ai|Sl) =
1

2ml

∑

ut,ug∈Ul
ut,ug→ai

(

wtg − dtdg
2ml

)

, (1)

where ml denotes the sum of the weights of the links
in Wl, and dt and dg denote the degrees of objects ut

and ug, respectively.
The definition of this metric is motivated from

the modularity measure (Newman and Girvan,
2004). We call an attribute ‘dominant’ if the com-
munity that consists of all the objects having this
attribute in a candidate subgraph has a high value
of modularity. For a clear statement, we can use an-
other description of modularity to denote the above
relevance:

r(ai|Sl) =
Cut(Uai

l , Uai

l )

2ml
−
(
Cut(Uai

l , Ul)

2ml

)2

, (2)

where Uai

l denotes the set of objects u ∈ Ul, u → ai
and Cut(Ui, Uj) =

∑
p∈Ui,q∈Uj

wpq.
Due to the typical sparsity of the graph in a real

world problem, we use a threshold for SAMM and
therefore only those dominant attributes are selected
for further computation.

In summary, we define the computation of
SAMM as follows:

p(ai|Sl) =

⎧
⎪⎨

⎪⎩

exp [λa(r(ai|Sl)− tl)]

Hi
, r(ai|Sl) ≥ tl,

pa
Hi

, otherwise,

(3)
where tl � c/M ×∑M

i=1 r(ai|Sl).
In this definition, tl is the threshold for the

dominant attributes, obtained as the average value
of all the relevances between an attribute and the lth
candidate subgraph, and can be controlled by c. Hi

is a normalization constant, λa is a controllable pa-
rameter, and pa is a positive constant. Specifically,
if the value of the relevance of attribute ai is larger
than tl, the probability of ai belonging to Sl is ex-
ponential with this λa; otherwise, this probability is
equal to a small value pa.

4.2 Variation of the Markov random field

We use a variation of the Markov random field to
measure the relevance between an object node and a
candidate subgraph. The probability that an object
node belongs to a candidate subgraph is defined as

follows:

p(ui|Sl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log

(

λn

∑
i,j∈Sl
j∈N(i)

wij

)

Hi
, N(i) �= ∅,

pn
Hi

, otherwise,

(4)
where Hi is a normalization constant, N(i) is the set
of nodes that are neighbors of ui, λn is a parameter,
and pu is a tiny positive constant. In this definition,
we change the traditional model of exponent (Gao
et al., 2010) to the model of logarithm to keep the
object degrees roughly balanced. If an object has no
neighbor, the probability is set to a small positive
value pu.

After establishing the measures between an at-
tribute and a candidate subgraph and those between
an object and a candidate subgraph, we further de-
fine the relevance between an edge in the object-
attribute graph and an attribute as follows:

p(ui → aj |Sl) = p(eij |Sl) ∝ p(ui|Sl)p(aj |Sl). (5)

5 Overlapping community detection

In this section, we describe first how to obtain
a series of stable candidate subgraphs and then the
method for identifying overlapping communities.

5.1 Stable candidate subgraphs

We assume that both the objects and the at-
tributes are the observed variables. The candidate
subgraphs are the latent variables. We represent
these latent variables as s = {sl}Ll=1. An edge can
be in multiple object-attribute graphs. This fact is
represented as a mixture distribution in the form

p(ui → aj) = p(eij) =

L∑

l=1

πlp(eij |sl = 1), (6)

where πl is the marginal distribution over s, p(sl =
1) = πl,

∑L
l=1 πl = 1.

Motivated by Sun et al. (2009a), we use an
expectation-maximization (EM) algorithm (Bishop,
2006) to maximize the likelihood function p(E|π)
with respect to π. We first give the likelihood for
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the complete data set {E, S}, which takes the form

p(E, S|π) =
N∏

i=1

M∏

j=1

L∏

l=1

p(eij , sl)
wij

=

N∏

i=1

M∏

j=1

L∏

l=1

(
π
sijl
l p(eij |sl = 1)sijl

)wij
,

(7)

where sijl denotes the lth component of sij . We
give different weights for different edges in this equa-
tion. The equation is then mapped into a form of
logarithm:

ln p(E, S|π) =
N∑

i=1

M∑

j=1

L∑

l=1

wijsijl

· [lnπl + ln p(eij |sl = 1)].

(8)

In the E-step, we evaluate the p(S|E, πold):
The posterior distribution of the latent variables

can be denoted as follows:

p(S|E, π) ∝
N∏

i=1

M∏

j=1

L∏

l=1

[πlp(eij |sl)]sijl . (9)

Next, the expected value of sijl is computed as

E[sijl] =

∑
sijl

sijl[πlp(eij |sl = 1)]sijl
∑

sijl
[πlp(eij |sl = 1)]sijl

=
πlp(eij |sl = 1)

∑L
l=1 πlp(eij |sl = 1)

= γ(sijl), (10)

where p(eij |sl = 1) is computed in Eq. (5) and γ(sijl)

is the responsibility of component l for eij .
In the M-step, we evaluate πnew given by

πnew = argmax
π

Q(π, πold), (11)

where

Q(π, πold)

=
∑

s

p(S|E, πold) ln p(E, S|π)

= Es[ln p(E, S|π)]

=

N∑

i=1

M∑

j=1

L∑

l=1

wijγ(sijl) [lnπl + ln p(eij |sl = 1)] .

(12)

To find the best π, we use a Lagrange multiplier:

∂

∂πl

[

Q(π, πold)− λ

(
L∑

l=1

πl − 1

)]

= 0

⇒
N∑

i=1

M∑

j=1

wijγ(sijl)

πl
= λ

⇒ πl =

∑N
i=1

∑M
j=1 wijγ(sijl)

∑N
i=1

∑M
j=1 wij

, (13)

where πl is the parameter we expect to update. The
difference from a typical mixture model is that here
we do not directly use p(S|E) to reassign the candi-
date subgraphs; instead, we use p(S|U) to reclassify
U into the L candidate subgraphs.

p(sl = 1|ui) =
πlp(ui|sl = 1)

∑L
t=1 πtp(ui|st = 1)

, (14)

where we use vector {p(sl = 1|ui)}Ll=1 to denote the
object ui. Next, we use this information to cluster all
the objects and obtain all the candidate subgraphs.
After all the candidate subgraphs are reassigned, the
EM algorithm is performed repeatedly. Finally, we
can identify the L stable candidate subgraphs.

5.2 Clustering the edges

After the edges are represented by the object-
attribute graphs, we cluster these edges into K clus-
ters and obtain the K overlapping communities.
The approach for clustering is the simple k-means
method. Specifically, we use cosine similarity to
measure the distance between an edge and the cor-
responding center of a cluster.

The algorithm of overlapping community de-
tection combining content and link is listed in the
following. We name this approach ‘subgraph over-
lapping clustering’ (SOC). The algorithm can be
downloaded from http://www.isee.zju.edu.cn/dsec/
publication_ch.html.

Initialization is a critical step for the overlap-
ping community detection algorithm. Instead of
randomly building candidate subgraphs at the be-
ginning, we use a global method, i.e., dimensional-
ity reduction, to make a simple assignment for the
objects. Some ordinary attribute will be dominant
and some noise will appear at first, but the following
adjustment of subgraphs will weaken these adverse
effects. The value of πl can be denoted as |Ul|/N ,
where |Ul| is the number of objects in Ul.
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Algorithm 1 Subgraph overlapping clustering
1: Input: Object-attribute graph G = (U,A,W,E),

candidate subgraph number L

2: Output: K overlapping communities
3: Initialization: build L subgraphs, {Sl}Ll=1 and

{πl}Ll=1

4: loop
5: do forward loop, yielding stable subgraphs
6: for Sl ∈ S do
7: For each aj ∈ A, compute p(aj|sl = 1)

8: For each ui ∈ Ul, compute p(ui|sl = 1)

9: end for
10: //E-step:
11: for eij ∈ E do
12: Compute {γ(sijl)}Ll=1

13: end for
14: //M-step:
15: For each l, compute πl

16: for ui ∈ U do
17: Compute {p(sl = 1|ui)}Ll=1

18: end for
19: //Update: Reassign the subgraphs
20: end loop
21: Cluster the edges based subgraphs

6 Experiments

In this section we report the experiments on
one synthetic dataset and two real datasets. The
two real datasets are collected from DBLP and New-
movie (Tang et al., 2009), respectively. We compare
the proposed method with two state-of-the-art ap-
proaches, correlational learning (Wang et al., 2010)
and COPRA (Gregory, 2010). The correlational
learning approach detects overlapping communities
only based on content information and COPRA only
based on link information.

Setting of the parameters: λa and λn are the
main parameters that should be set in this algorithm.
We set λa = 4, λu = 0.2 for DBLP and synthetic
data and λa = 4, λu = 0.3 for Newmovies, to balance
the weights of content and link information. The
other parameters are set as c = 0.3, pa = 0.1, and
pn = 0.2.

6.1 Synthetic data

To generate the link information, we assume
that the distribution of the object degrees follows
the power-law, which is consistent with the charac-
teristics of the typical sparse and local density dis-
tribution in a real-world network. It is observed that

objects in an overlapping community in a network
typically have more neighbors than other objects in
the network. Thus, in the synthetic dataset these
objects have a higher probability to own a higher
degree. To generate the content information, we
generate different dominant attributes in different
communities with overlapping objects having multi-
ple attributes.

The structure of the synthetic dataset is de-
scribed in Fig. 2. The five overlapping communities
{Ci}5i=1 are the main body of the synthetic dataset.
{ai}10i=1, which are the dominant attributes, exist in
the five communities. O1 is a set of overlapping
objects existing in C1, C2, and C5 and owning the
attributes of these three communities. O2 is a set of
overlapping objects existing in C2 and C3 and own-
ing the attributes of these two communities; similarly
for O3.

a1a2 a3a4 a5a6 a7a8

a9a10 O1
O2 O3

C1

C2 C3

C4

C5

Fig. 2 A simple structure of the synthetic data

Specifically, we generate a synthetic dataset that
has 3600 objects for five communities, where two
communities have 1000 objects and the other three
communities have 800 objects. O1, O2, and O3 all
have 200 objects. Next, we generate the degree of
every object based on the power-law and set the
maximum degree of overlapping objects as twice that
of the common objects. A link is supposed to exist
only between two objects in the same community.
We assign 70% of the objects with one attribute and
other objects with two attributes in one community.

6.1.1 Evaluation using an extension of NMI

To evaluate the clustering accuracy, we use the
normalized mutual information (NMI) as the perfor-
mance metric, which is a powerful metric for testing
the similarity between the clustering results. Since
NMI applies only to the classic clustering scenario
where communities detected are exclusive to each
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other, to accommodate overlapping community de-
tection, we adopt an extension of the classic NMI
proposed by Lancichinetti et al. (2009):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(X |Y )norm =

1

|CX |
∑

k

minl ∈ {1, 2, · · · , |CY |}H(Xk|Yl)

H(Xk)
,

H(Y |X)norm =

1

|CY |
∑

k

minl ∈ {1, 2, · · · , |CX |}H(Yk|Xl)

H(Yk)
,

NMI = 1− 1

2
[H(X |Y )norm +H(Y |X)norm] ,

(15)
where H(X |Y ) and H(Y |X) are the conditional en-
tropies, and |CX | and |CY | are the numbers of the
related clusters. The definition states as follows. We
first fix a cluster in a clustering and seek its most
similar cluster in another clustering based on the mu-
tual information. Next, we compute the extension of
the NMI based on the average of the information.

In the experiments, we first cluster the synthetic
data into five overlapping clusters based on the three
approaches mentioned above. Next, we evaluate all
the three methods based on different levels of noise;
each noise level is generated with 50 iterations. The
noise is generated by randomly adding edges in E

and/or links in W . The ratio of the number of noisy
edges to the number of noisy links is controlled in
the range of 0− 0.5. Finally, we evaluate the perfor-
mance of the three methods based on different levels
of missing data. We randomly drop 0 − 30% of the
synthetic data and report the results.

Fig. 3 shows the performance of the three over-
lapping community detection methods based on dif-
ferent levels of noise and missing data. The accuracy
of SOC is higher than that of correlational learning
by 10%− 12% in case of noisy data and by up to 8%

in case of missing data. SOC performs much better
than COPRA in these two situations. The results
also indicate that SOC has stable performance at
the presence of noise or missing data.

6.1.2 Evaluation using an extension of modularity

We also evaluate the efficiency of the three meth-
ods using an extension of the modularity metric
(EQ). The modularity metric (Newman and Girvan,
2004) measures the goodness of a clustering method
in comparison with a random graph. Again, the

modularity metric is only for classic clustering meth-
ods where the communities are assumed to be exclu-
sive. To accommodate the overlapping communities
we use an extension of the existing modularity metric
proposed in Shen et al. (2009):

EQ =
1

2m

K∑

i=1

∑

v,w∈Ci

1

OvOw

(

Avw − kvkw
2m

)

, (16)

where Ov is the number of the clusters to which ob-
ject v belongs and kv is the degree of object v. The
setting of the different noise levels and missing data
levels is the same as in the previous section.
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Fig. 3 Extension of normalized mutual information
(NMI) for detecting the three approaches with differ-
ent levels of noise (a) and different levels of missing
data (b)

In Fig. 4, the black line is the ground truth, and
can be considered as the baseline. The EQ of SOC
is higher than that of correlational learning by up
to 7% with respect to noisy data and by up to 5%

with respect to missing data. COPRA fails to seek
any overlapping cluster, as the synthetic dataset is
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not a real social network, even though it follows the
power-law.

Ground truth
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Fig. 4 Extension of modularity for detecting the three
approaches with different levels of noise (a) and dif-
ferent levels of missing data (b)

6.2 DBLP

We use the DBLP database from Sun et al.
(2009b) and extract two object-attribute graphs, i.e.,
an author-conference graph and a paper-word graph.

6.2.1 Author-conference graph

To build the author-conference graph, we as-
sume that if an author has at least one paper in a
certain conference, there exists an edge from this au-
thor to the conference and that if two authors have
jointly published one paper, there is a link between
them. In this experiment, we set the weight as a
binary value. The author-conference graph is com-
posed of 28 702 authors and 20 conferences. These
20 conferences mainly come from four fields:

Database: EDBT, ICDE, PODS, SIGMOD, and
VLDB.

Data mining: ICDM, KDD, PAKDD, PKDD,
and SDM.

Machine learning: AAAI, ECML, ICML, and
IJCAI.

Information retrieval: ECIR, SIGIR, WWW,
and WSDM.

Others: CVPR and CIKM (As we know, CVPR
and CIKM belong to multiple fields).

Figs. 5a and 5b give a detailed description of
this graph. The distribution of authors based on
their behavior or degrees almost follows the power-
law.
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Fig. 5 Author-conference graph. (a) Distribution of
authors based on the number of conferences they at-
tend; (b) Distribution of authors based on the number
of neighbors they own; (c) Extension of modularity
for the different numbers of clusters in the author-
conference graph

We evaluate the efficiency of the three ap-
proaches using the extension of modularity (EQ)
with different numbers of clusters. Each evaluation
is run 50 times.

Fig. 5c shows that SOC performs much better
than the other approaches, indicating that the ap-
proach combining content and link information re-
flects much more accurately the structure of the real
network than methods using either content or link
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information. Specifically, we have the following two
observations:

1. SOC is more sensitive to overlapping commu-
nities. For example, we cluster the author-conference
graph into four overlapping communities and find
that the correlational learning approach assigns sev-
eral authors who work mainly in two fields to all
the communities with the total number of overlap-
ping objects much higher than that of SOC. COPRA
sometimes assigns these authors to only one commu-
nity, which is an obvious mistake.

2. SOC uses the concept of candidate subgraphs
based on the two types of information to capture the
‘local closeness’ of a real social network. In contrast,
correlational learning considers only the global infor-
mation while COPRA considers only the neighbor-
hood information of the objects in a network.

Fig. 6 is another evaluation for measuring the
similarity among the conferences. The four labels
around the circle represent the four different fields;
the central labels denote CVPR and CIKM, which
belong to multiple fields. It is obvious that the simi-
larity among the conferences within the same field is
much higher than that among the conferences across
different fields. In this experiment, we define the
similarity as follows:

Conf .i =

{ |Conf.i ∩ Ck|
|Conf.i|

}K

k=1

,

sim < Conf .i,Conf .j >=
Conf .i

‖Conf .i‖ · Conf .j
‖Conf .j‖ ,

where |Conf.i| denotes the number of the authors
publishing papers in the ith conference, |Conf.i ∩
Ck| denotes the number of the authors assigned to
the kth community, and Conf .i is a K-dimensional
vector representing the ith conference. In addition,
we design a threshold which distinguishes between a
strong similarity and a weak similarity, and set its
value as an average in between. The number of the
clusters K does not influence the final result. We set
it as 4 here.

Fig. 6 shows that SOC and correlational learn-
ing can both cluster the conferences and assign them
to proper fields. They assign CVPR to both ‘data
ming’ and ‘machine leaning’ fields. We also find that
SOC assigns CIKM to ‘data mining’, ‘machine learn-
ing’, and ‘information retrieval’ fields at the same
time but correlational learning assigns CIKM only

(a)

(b)

Fig. 6 Similarity among the conferences in DBLP. (a)
Performance of SOC; (b) Performance of correlational
learning

to the ‘information retrieval’ field. This fact means
that the dominant attributes (i.e., the conferences)
in the corresponding clusters are not strong. SOC
assigns the conferences to appropriate clusters based
on the dominate attributes. Since COPRA does not
have the content information, we cannot include it
in this experiment.

6.2.2 Paper-word graph

In the process of building the paper-word graph,
we set that if two papers are written by the same au-
thor, there exists a link between them. We assume
that an author works in one specific field in general,
which means that if two papers are in different fields
and are written by the same author, these two fields
may have a relationship. There are about 28 500

papers and 9500 effective words in this graph. To
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simply extract the semantics, we use a simple tech-
nique of dimensionality reduction to transform an
ordinary set of words into 50 bags of words. We then
use the topic words to replace the words to describe
the papers. In this experiment, we do not use these
bags of words for correlational learning because it
can directly deal with high-dimensional data by sin-
gular value decomposition (SVD).

We give the statistics about the paper-word
graph in Figs. 7a and 7b. The majority of the papers
has 2–6 topic words and the distribution based on
the neighbors follows the power-law. Every paper
has about 26 neighbors.
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Fig. 7 Paper-word graph. (a) Distribution of papers
based on the number of words they have; (b) Distri-
bution of papers based on the number of neighbors
they own; (c) Extension of modularity for the differ-
ent numbers of clusters in the paper-word graph

We evaluate the efficiency of the three ap-
proaches using the extension of modularity (EQ) in
the paper-word graph with different numbers of clus-
ters, and each evaluation is run 50 times. Fig. 7c
shows that when the number of clusters is larger
than 10, the performance of SOC is much better than
those of the other two approaches. COPRA has the
best result when the clustering number is four, be-
cause in this situation the papers come mainly from

four fields and this setting is useful for propagating
the proper labels to the corresponding objects. Cor-
relation learning fails to find the overlapping clus-
ters. There are a huge number of attributes in this
experiment and some of them may not be useful al-
though all the words are filtered at first. Therefore,
using only the global information which is the map-
ping based on SVD fails to build the relationship
among the objects.

6.3 Newmovies

Newmovies is a heterogeneous network consist-
ing of movies, actors, directors, writers, and various
relationships among them. It is divided mainly into
two parts. The first part is content information.
Every actor, actress, or film (object) has a short pre-
sentation from Wikipedia pages and the total num-
ber of objects is about 34 200. The second part is
link information. If two actors, actresses, or films
exist in the same Wikipedia page, there is a link be-
tween them. To analyze this huge social network, we
build an object-word graph based on both content
and link information. In this experiment we also use
the dimensionality reduction technique to transform
the ordinary set of words into 100 bags of words.

We first give the statistics of the object-word
graph in Figs. 8a and 8b. It is shown that the
majority of the objects has 1–4 topic words. The
distribution based on the neighborhood follows the
power-law and the average degree of the objects is
about 7.

We use extension of modularity to evaluate the
performance of these three approaches with different
numbers of clusters, and each evaluation is run 50

times. Fig. 8c shows that the result of overlapping
clusters found by SOC is much better than by the
other two approaches.

6.4 Algorithm complexity

To perform the evaluation of algorithm com-
plexity, we compute the running time of 50 itera-
tions for the three overlapping clustering algorithms
in the author-conference graph. Fig. 9 shows that
the running time of correlational learning is the
least and that of subgraph overlapping clustering is
the longest. The reason is that our approach uses
both content and link data and a complex statistical
model.
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Fig. 8 Object-word graph. (a) Distribution of objects
based on the number of words they have; (b) Distri-
bution of objects based on the number of neighbors
they own; (c) Extension of modularity for the differ-
ent numbers of clusters in the object-word graph

7 Conclusions

We deal with the issue of combining content and
link information for discovering overlapping commu-
nities and develop an effective approach, subgraph
overlapping clustering (SOC), for community detec-
tion. SOC uses a candidate subgraph strategy that
combines modularity theory and the Markov random
field to develop an appropriate assignment for edges
(social behavior or action). The candidate subgraph
trained by an EM algorithm is a stable iterative pro-
cess. We also demonstrate that SOC reflects the
‘local denseness’ for real social networks. Experi-
ments on large databases of DBLP and Newmovies
demonstrate that SOC successfully generates high
quality overlapping communities in comparison with
the peer methods in the literature that use either
content or link information.

There are two directions for future research.
First, we would seek a more powerful concept about
the subgraph to make a more accurate description
of social behavior. Second, we would seek a suitable
concept to represent the overlapping communities in
complex and huge social networks.
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Fig. 9 Running times of 50 iterations for the different
numbers of clusters in the author-conference graph
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