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Abstract: Sequential prefetching schemes are widely employed in storage servers to mask disk latency and improve
system throughput. However, existing schemes cannot benefit parallel disk systems as expected due to the fact that
they ignore the distinct internal characteristics of the parallel disk system, in particular, data striping. Moreover,
their aggressive prefetching pattern suffers from premature evictions and prolonged request latencies. In this paper,
we propose a strip-oriented asynchronous prefetching (SoAP) technique, which is dedicated to the parallel disk
system. It settles the above-mentioned problems by providing multiple novel features, e.g., enhanced prediction
accuracy, adaptive prefetching strength, physical data layout awareness, and timely prefetching. To validate SoAP,
we implement a prototype by modifying the software redundant arrays of inexpensive disks (RAID) under Linux.
Experimental results demonstrate that SoAP can consistently offer improved average response time and throughput
to the parallel disk system under non-random workloads compared with STEP, SP, ASP, and Linux-like SEQPs.
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1 Introduction

The large scale parallel disk system plays an
important role in dealing with data intensive appli-
cations by providing both high throughput and large
capacity. However, it remains a performance bot-
tleneck in modern storage systems due to the long
disk access latencies, causing execution to stall for
milliseconds during a cache miss. The most efficient
way to mask this latency is prefetching, where the
required disk blocks are previously loaded into the
cache before they are requested. Recently, consid-
erable prefetching techniques have been studied in
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a variety of areas, such as processors (Kamruzza-
man et al., 2011), Web architectures (Lymberopoulos
et al., 2012), databases (Bowman and Salem, 2005),
file systems (Zhang et al., 2009), and storage con-
trollers (Hartung, 2003). In this paper, we focus on
the sequential prefetching technique for the parallel
disk system, especially for the striped disk arrays.

In storage systems, the most popular prefetch-
ing technique is sequential prefetching, which pre-
dicts the future request patterns by sequential
stream detection. The efficiency of sequential
prefetching attributes to two factors, namely high
prediction accuracy and low fetch cost. As sequen-
tial accesses are common in practical workloads,
the future requests could be predicted by analyzing
the recorded access information. That is, the more
the access information recorded, the more accurate
the prediction. Besides, file systems and databases
tend to contiguously store the file data on disks.
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The sequential prefetching technique commonly per-
forms aggressive large-size prefetching for sequential
streams because the accesses to sequentially placed
disk blocks can achieve a throughput an order of
magnitude higher than can randomly placed disk
blocks. By doing this, the high cost of disk seek
latency can be amortized by a large amount of se-
quential blocks. This is why the prefetching cost is
extremely low.

State-of-the-art sequential prefetching schemes
such as STEP (Liang et al., 2007), TAP (Li et al.,
2008), and AMP (Gill et al., 2007) perform well in
single disk systems. However, these schemes suffer
from two limitations when they are applied to par-
allel disk systems. First, they neglect the most im-
portant characteristics of the parallel disk system, in
particular, internal striping knowledge. As we know,
the parallel disk system achieves uniform load bal-
ance across all disks by data striping, which splits
the logical sequential user data into strips and then
stripes them across the disks. Note that, the strip
(RAID Advisory Board, 1999) is a set of continu-
ous blocks residing in an individual disk and a stripe
is divided into several strips. As a result, we can
find that the parallelism nature of the parallel disk
system is achieved at the expense of logical ‘sequen-
tiality loss’. For instance, when a prefetching request
arrives in a RAID-5 system, the controller issues mul-
tiple I/O demands for the disks to concurrently serve
it. Since the requested data is located across differ-
ent disks, the prefetching request experiences mul-
tiple positioning time, thus increasing the prefetch-
ing cost. Therefore, a desirable prefetching scheme
must employ the striping knowledge and adapt the
prefetching operation to the physical data layout of
the parallel disk system, thus exploiting the limited
physical sequentiality.

Second, for conventional sequential prefetching
techniques, prefetching strength becomes increas-
ingly aggressive so as to amortize disk seek latency,
and the requested blocks are required to be fetched
synchronously. As a result, considering the relatively
small prefetch cache, the already prefetched blocks
are likely to be evicted before they are requested to
make room for the new prefetching requests, which
are known as ‘premature evictions’. Moreover, it is
not necessary to fetch all the blocks in a prefetching
request simultaneously because the expected access
time of the prefetched blocks is varying according

to the arrival rate and the average request length of
the corresponding sequential stream. So, a desirable
prefetching scheme should give consideration to the
access time difference of the prefetched blocks and
load them asynchronously.

In this paper, we propose a strip-oriented asyn-
chronous prefetching (SoAP) technique to improve
the system latency and throughput of the parallel
disk system. Different from other conventional se-
quential prefetching approaches, SoAP is dedicated
to the parallel disk system and has several novel fea-
tures. In summary, SoAP makes the following key
contributions:

1. It uses a tool named the ‘relationship graph’
to predict the hit probability of a prefetching request
for a given stream, and integrates this tool into a
cost-benefit model to adapt the prefetching length
to the system load as well as disk status. Such a
model can significantly increase the prediction accu-
racy of prefetching and avoid the waste of idle disk
bandwidth.

2. It provides a strip-oriented prefetching
scheme, where the strip is used as the basic granu-
larity for prefetching. In particular, all the prefetch-
ing requests must be aligned in the strip, and then
split into multiple strip-level sub-requests, each of
which contains a complete strip and is then deli-
vered to an individual disk for scheduling. By doing
this, prefetching operations are optimized according
to the physical data layout of parallel disk systems,
thus exploiting the maximum physical sequentiality.

3. It also proposes an asynchronous schedul-
ing mechanism as a solution to resolve the afore-
mentioned premature eviction. Specifically, the
sub-requests of a prefetching request is not per-
formed synchronously. Instead, each prefetching
sub-request is associated with two timestamps, ac-
cording to which the disk-level scheduling thread
asynchronously and timely loads the corresponding
strip into cache. This is also helpful in alleviating the
bandwidth competition between user demands and
prefetching requests.

We have implemented the SoAP algorithm in
the software RAID module under Linux. Our re-
sults demonstrate that SoAP can deliver improve-
ments in both average response time and through-
put compared to conventional sequential prefetching
schemes, hence proving that it is more efficient for
the parallel disk system.
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2 Background and motivation

In this section, we present the background
knowledge and the observations that motivate our
work in this paper.

2.1 Sequentiality and prefetching

Sequentiality is a common characteristic of prac-
tical I/O workloads, which accesses data contigu-
ously. The ubiquity of sequentiality derives from the
fact that file systems and databases tend to contigu-
ously store file data on storage disks. Hence, many
common file operations such as copy, scan, backup,
and recovery lead to sequential accesses. Addition-
ally, some important benchmarks exhibit strong se-
quentiality, such as TPC-D (Hsu et al., 2001) and
SPC-2 (Storage Performance Council, 2011).

A stream is a sequence of I/O requests of an
application. It is considered to be sequential if the
corresponding data is accessed contiguously. Due
to the semantic gap between the file system and
the storage sub-system, the only available informa-
tion for sequential stream detection is logical block
addressing (LBA). Therefore, sequential prefetching
schemes can be easily deployed without any hint of
applications or file systems. By mining the history
of the past accesses, in particular the LBAs, the
sequential prefetching schemes are able to achieve
high prediction accuracy. Since they are less sophis-
ticated than other kinds of forecasting techniques,
these schemes are widely adopted in practical stor-
age systems.

Existing sequential prefetching schemes are
mainly divided into three classes, namely prefetch
always (PA), prefetch on a miss (PoM), and prefetch
on a hit (PoH) (Li et al., 2008; Bhatia et al., 2010).
First, PA does not need a prediction module and
always fetches contiguous data of a request. Assum-
ing there is abundant cache space, it will achieve
the highest hit rate but lowest efficiency. This is
because a lot of prefetched data will never be ac-
cessed. In contrast, PoM only prefetches data on a
miss, and thereby its miss rate is high. Additionally,
the prefetching of random requests with little spatial
locality will pollute the cache. PoH is popular in
practice because it achieves both high hit rate and
cache size economy. In PoH, a trigger mechanism
(Gill et al., 2007) is employed to avoid cache misses.
Specifically, when PoH prefetches a set of disk blocks

into the cache pages on a cache hit or miss, it chooses
a trigger page by a ‘trigger offset’ before the end of
the prefetched set. After that, when the trigger page
is hit by a future request, a next prefetching request
for this stream is activated.

2.2 Performance impact of sequentiality loss

Sequential prefetching schemes are mostly
device-oriented, where prefetching operations should
be issued with respect to the physical data layout.
Unlike the single disk system, the parallel disk sys-
tem has a distinct characteristic that the available
physical sequentiality is limited in each strip. If a
sequential I/O sequence exceeds the bounds of the
strip, then the physical sequentiality is interrupted,
which is known as ‘sequentiality loss’.

Sequentiality loss is a major cause of the poor
performance of conventional sequential prefetching
schemes. Specifically, the service time of the disk
consists of two parts: positioning time and transfer
time. The ratio of transfer time to service time de-
termines the bandwidth efficiency of the disks. If a
prefetching request needs only one positioning op-
eration, then it reasonably improves the bandwidth
efficiency and reduces the cost of prefetching. Oth-
erwise, if the prefetching request is performed in the
parallel disk system where user data is striped, then
it needs to consume more positioning time, and thus
the prefetching cost increases significantly. As il-
lustrated in Fig. 1, a prefetching request with eight
blocks is issued by a sequential prefetching scheme
and then separately performed under two different
conditions: a single disk system or a parallel disk
system consisting of two disks with the strip size
of four blocks and the stripe size of eight blocks.
The prefetching request consumes only one position-
ing time (Fig. 1a). In contrast, the prefetching re-
quest has to suffer from two positioning operations to
transfer the same amount of data (Fig. 1b). Conse-
quently, we could find that the bandwidth efficiency
of the disks in the parallel disk system is much lower
than that of the single disk system on account of
sequentiality loss. To make matters worse, conven-
tional prefetching algorithms use the block rather
than the strip as the basic granularity of prefetching.
As a result, the prefetching I/Os may involve only a
part of a strip, which further incurs more disk traf-
fic. This observation motivates our work in Section
3.2.3, where we use a strip-oriented scheme to adapt
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the prefetching granularity to the physical data lay-
out of the parallel disk system.

(b)

(a)

Disk

Block 0
Block 1
Block 2

...
Block 6
Block 7

...

Positioning 
time

Transfer time

Disk 0 Disk 1

... ...

S
tri

pe
 0

Strip N Strip N+1

Parallel system

Fig. 1 The effect of physical data layout on prefetch-
ing performance. (a) Performing the prefetching re-
quest (eight disk blocks) in a single disk system; (b)
Performing the prefetching request (eight disk blocks)
in a parallel disk system

2.3 Performance impact of synchronous fetch-
ing

In parallel disk systems, the block set belong-
ing to a prefetching request must be fetched syn-
chronously with strict deadlines. For example, in a
RAID system, the driver splits a prefetching request
into multiple prefetching sub-requests and then de-
livers them to corresponding disks as soon as pos-
sible. After that, the thread handling these sub-
requests keeps waiting until all the sub-requests are
completed. During this process, all the involved
disks serve these prefetching sub-requests with strict
deadlines. This exemplifies what we call ‘syn-
chronous fetching’.

Synchronous fetching focuses on the parallelism
of the executions of prefetching sub-requests to
achieve fast data access. However, as sequential
prefetching schemes are becoming increasingly ag-
gressive in reducing the potential miss rate, the syn-
chronous manner incurs several disadvantages. First,
this will cause the above-mentioned premature evic-
tion, where the prefetched data may be evicted be-

fore cache hit. Second, the average cost of misses
is increased since the aggressive prefetching over-
loads the disks. Last, the average response time will
be prolonged since bandwidth competition between
prefetching and user requests increases the queuing
length of the disks.

In practice, we observe that the prefetched
blocks have different expected time for future ac-
cesses. It is related to the corresponding stream’s
attributes, such as request arrival rate and average
request length. In addition, we find that prefetching
cannot help when the system is overloaded. That
is, absorbing the idle disk bandwidth is the most
efficient way to improve prefetching. These observa-
tions motivate the work in this paper. In Section 3.3
we will show the proposed asynchronous scheduling
scheme which asynchronously prefetches the desired
blocks timely and economically but not immediately.

3 Design of the SoAP technique

The proposed SoAP technique is composed of
three main modules. First, the sequential stream
detection module is responsible for the detection of
the sequential stream in the I/O workload. Second,
the prefetching module is responsible for the gener-
ation and split of the prefetching request. It is the
key module in SoAP, including novel features such
as the leveraging of the relationship graph and the
cost-benefit model. Last, the scheduling module is
responsible for the scheduling of the prefetching sub-
requests on the basis of disk. At the end of this
section, the pseudocode of SoAP is described to put
them all together.

3.1 Sequential stream detection

The role of the sequential stream detection mod-
ule is to detect sequential access pattern from the
workload. It serves two primary purposes: existing
stream extension and new stream identification.

For the first purpose, a stream data structure
is used to represent the run-time object associated
with each identified sequential stream. This struc-
ture keeps attributes describing the corresponding
stream, e.g., the timestamp of the most recent re-
quest, the average request length, the average inter-
arrival rate, and the LBA of the next expected con-
tiguous request. We define the LBA of the next ex-
pected request as ‘trigger’, which serves as the index
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of the stream. All the streams are organized by a
hash linked list named ‘StreamQueue’, using their
triggers as the keys and the pointers of the stream
structures as the values. When a new request arrives,
the request address is searched in the hash table to
see if any stream would be triggered. If so, it means
an extension of a stream occurs. As a result, an up-
date to the located stream is performed and a next
prefetching operation is issued consequently.

For the second purpose, a particular address ta-
ble referred to as ‘HistoryTable’ is used to record the
I/O access history for further mining. When an in-
coming request does not extend any existing stream,
its LBA is searched in HistoryTable. If an address
is hit, then it suggests that two consecutive requests
should be found and a new stream be created. Af-
ter that, the hit address is required to be removed
from the HistoryTable. Otherwise, if no address is
hit, the LBA of the expected succeeding request is
inserted into the HistoryTable for future sequential
stream detection.

The sequential stream detection module in-
volves both space and time overhead. To avoid
excessive space overhead, the HistroyTable records
only the LBA information of each request, which
just occupies several bytes. In addition, two con-
stant upper bounds are set to limit the number of
streams in StreamQueue and the address entries
in HistoryTable. Note that, LRU and FIFO are
used in StreamQueue and HistoryTable respectively
as the replacement policies. Considering that the
StreamQueue and HistoryTable are both organized
by the hash table, operations involving search and
replacement can be completed in O(1) time.

3.2 Prefetching module

The prefetching module will be activated when
a new stream is detected or an existing stream
is triggered. It determines the suitable prefetch-
ing length and the appropriate prefetching moment
when generating a prefetching request. In this mod-
ule, a relationship graph is employed to evaluate the
hit probability of a prefetching request based on the
sequentiality strength of the I/O workload. In addi-
tion, a cost-benefit model is proposed to facilitate the
determination of the prefetching length. Finally, an
algorithm splitting a prefetching request into strip-
oriented sub-requests is provided to achieve the be-
nefits from independency.

3.2.1 Relationship graph

Prior studies demonstrate that there is a strong
correlation between the accessed length and the re-
maining length of a sequential stream. In addition,
this correlation is stable for a given type of workload,
such as workload of database (Hsu et al., 2001) and
networked storage server (Liang et al., 2007). In-
spired by these observations, we propose to use the
relationship graph to mine this correlation. Depend-
ing on this graph, SoAP is allowed to evaluate the
hit probability of a prefetching request to adjust the
prefetching length.

As shown in Fig. 2, every vertex of the rela-
tionship graph represents a unique length, which is
identified in units of strip. For example, a workload
whose maximum stream length is n will build n ver-
tices according to all the possible lengths. Each ver-
tex has two fields: Len and Count. The former field
represents the current length. The latter field speci-
fies the count of streams whose lengths are equal to
or larger than its Len field. The locality strength be-
tween the accessed length and the remaining length
of a stream is represented as a weighted edge. For
example, the degree of edge(A,B) being 2 means
that there have been two completed streams whose
length has grown from 1 to 3. We use P (x, y) to rep-
resent the hit probability of a prefetching request. In
this function, x represents the current stream length,
and y the prefetching length. Considering a stream
whose current length and prefetching length are both
1, the hit probability of this prefetching operation
is P (1, 1) = edge(A,A)/A.Count = 40%; when the
prefetching length increases to 3, the hit probability
drops to P (1, 3) = edge(A,C)/A.Count = 10%.

When a sequential stream is evicted from the
StreamQueue, SoAP interprets that this stream has

(a) (b)

Fig. 2 Construction of the relationship graph. (a)
Original state of the relationship graph; (b) Updating
the relationship graph with a sequential stream with
length of 5
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been completed. Subsequently, the relationship
graph should be updated by the length of this com-
pleted stream. An example is provided in Fig. 2 to
illustrate the process of updating. The original graph
in Fig. 2a consists of 10 sequential streams including
6 streams with length 1, 2 streams with length 2,
1 stream with length 3, and 1 stream with length
4. Subsequently, a sequential stream with length
5 is completed, which activates the graph updating
procedure. In this procedure, one new vertex of E
should be built since the maximum stream length is
5. After that, every vertex whose Len field is less
than 5 needs to increase the Len count by 1. Addi-
tionally, for any edge(X,Y ), if X.Len + Y.Len ≤ 5,
then the edge weight is increased by 1.

In practice, the overhead of maintaining a rela-
tionship graph is negligible in SoAP for two reasons.
First, the update frequency of the relationship graph
is relatively low since the update is activated only
when a stream is completed. Second, there is an
upper bound for the maximum number of the ver-
tices in the relationship graph to avoid unnecessary
overhead incurred by the vertex generations due to
some extremely long streams, such as scan and flush.
Assuming this constant upper bound is represented
as n, it can be calculated that the main memory
consumption is 4n2 bytes, and the time complexity
of updating the relationship graph is O(n2) in the
worst case. Considering that the strip size is large,
the value of stream length normalized by strip is
commonly much smaller than the upper bound n in
real workloads. Thereby, the cost of graph update is
just low.

3.2.2 Cost-benefit model

The key issue for SoAP is to determine an opti-
mal prefetching length. Without a proper strategy,
the prefetching length can be either too conservative
or too aggressive. In case of conservative prefetch-
ing, costly physical accesses to magnetic disks can-
not be avoided because the prefetched blocks are too
few. In case of aggressive prefetching, the prefetch-
ing suffers from inaccurate prediction, which incurs
bandwidth waste, cache pollution, and premature
eviction of prefetched blocks (Liang et al., 2007). To
address this problem, we exploit a cost-benefit model
to make an acceptable tradeoff between prefetching
length and the hit probability, thus maximizing the
earning of prefetching.

In our model, the metric for cost-benefit evalu-
ation is time. We use queuing theory to model the
prefetching and disk system. The related notations
are presented in Table 1. Specifically, disk service
time includes seek time, rotation time, and transfer
time. Considering the broken physical sequentiality
in the parallel disk system, the rotation time has no
direct relationship with the logical address distance
between two requests. Thus, we refer to the time
combining rotation time and data transfer time as
track time (TT). The cost of prefetching can be rep-
resented as ρ × (ST + TT), where ρ represents the
service intensity of the disk. It could be calculated as
ρ = λ/μ. After a prefetching sub-request is passed
to the disk, there is a probability of 1−ρ to complete
and hide the I/O time without disturbing the user
requests. However, the arrival rate λ and the service
rate μ are difficult to derive. Therefore, SoAP as-
signs a queue for each disk to store the waiting user
requests, and detects the queue length periodically
to monitor the system load status. According to the
average queue length L, we derive ρ as L/(L+ 1).
Consequently, the cost and benefit of prefetching can
be formulated as follows:

Cost = ρ · (ST + TT)

=
L

L+ 1
· (ST + TT).

(1)

Table 1 Notations for the cost-benefit model

Notation Description

ST Seek time
TT Track time: rotation time and transfer time
P The probability of prefetching data requested
λ The arrival rate of requests
μ The service rate of disk
ρ The service intensity of disk
L The length of request queue of disk
S A sequential stream
S.Len The current length of a stream
S.avgRL The average request length of a stream
EPlen The expected prefetching length

The benefit of prefetching derives from the
avoidance of the costly disk accesses. Assuming
prediction accuracy is constant, the more aggressive
the prefetching, the more the disk access it avoids.
However, in practice, the hit probability decreases
with increasing prefetching length. Since the hit
probability could be queried from the relationship
graph, the benefit and earning of a prefetching can
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be formulated by Eqs. (2) and (3), where function
P (S.Len,EPlen) represents the hit probability of a
prefetching request with prefetching length EPlen in
a stream whose current length is S.Len.

Benefit =

⌈
P (S.Len,EPlen) · EPlen

S.avgRL

⌉
· (ST + TT),

(2)
Earning = Benefit− Cost

=

(⌈
P (S.Len,EPlen) · EPlen

S.avgRL

⌉
− L

L+ 1

)

· (ST + TT).
(3)

To maximize the earning, we use an iterative
method to determine the optimal prefetching length.
Starting from EPlen = 1 with a step 1, a loop iterates
to calculate the earnings of prefetching until EPlen

is equal to the upper bound n of the relationship
graph. By doing this, the prefetching length which
brings the highest earning can be considered to be
optimal.

3.2.3 Strip-oriented prefetching

Strip-oriented prefetching serves two main pur-
poses. One is to adapt the prefetching to the physical
data layout of the parallel disk system. The other is
to determine when to prefetch blocks into the cache
to avoid the next cache miss.

For the first purpose, SoAP breaks a prefetching
request into multiple sub-requests, each of which con-
tains a complete strip. That is, the base address of a
sub-request must be aligned to a multiple of the strip
size, and two sub-requests never overlap in the I/O
address space. Fig. 3 shows a case example of split-
ting a prefetching request A into three sub-requests.
The rationale of choosing strip as the granularity of
prefetching is that the maximum physical sequential-
ity of LBA is limited in the strip. Additionally, con-
tiguous strips in a prefetching request are generally
expected to be accessed in monotonically increasing
time points by incoming user requests.

For the second purpose, when generating sub-
requests, each of them is associated with two time-
stamps, namely expectedT and expiredT. The ex-
pectedT represents the expected time when the
prefetched strip will be requested by future user de-
mands. The expiredT represents the time thresh-
old, beyond which the sub-request should be can-

Prefetching request A

Sub-request 0 
(strip unit)

Sub-request 1 
(strip unit)

Sub-request 2 
(strip unit)

Disk 0 Disk 1 Disk 2

Request A

Expected time
Expired time

Strip No. N
Sub-request 0

Request A

Expected time
Expired time

Strip No. N +1
Sub-request 1

Request A

Expected time
Expired time

Strip No. N +2
Sub-request 2

Fig. 3 The procedure of splitting a prefetching re-
quest A into multiple sub-requests

celled. Note that, ‘Time’ here refers to the logical
time, which is measured by the number of total I/O
accesses. Using Eq. (4), we derive the expectedT
of the sub-requests in a prefetching request, where
currentT is the current system time, SS represents
the strip size, S.avgT represents the average arrival
interval of the stream, and i represents that it is the
ith sub-request in the prefetching request.

expectedTi = currentT +
2 · i · SS · S.avgT

EPlen
. (4)

In Eq. (4), we set expectedT to twice the in-
terval time to avoid premature degradation of the
sub-request. The expiredT is set to five times the ex-
pectedT, where the fault cancelling rate of prefetch-
ing sub-requests is only 1%–3% in experiments with
this setting.

With the increase of currentT, the sub-request
with the least expectedT is believed to be the most
urgent one that needs to be performed as soon as
possible. This is because the less expectedT im-
plies the sooner coming of a user request. However,
once currentT exceeds expectedT, the prefetching
sub-request becomes inactive because the sequential
stream it belongs to is supposed to be complete.

To manage the sub-requests, SoAP associates
each disk with three queues: a dispatching queue
(referred to as ‘D-Queue’), an active queue (referred
to as ‘A-Queue’), and an inactive queue (referred
to as ‘I-Queue’). D-Queue is used to store the user
requests, A-Queue is used to store the arriving sub-
requests whose expectedT is larger than currentT,
while I-Queue is used to store the inactive sub-
requests whose expectedT is exceeded by currentT.
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Within these three queues, the pending I/O requests
within them are sorted by the fields of LBA, expect-
edT, and expiredT, respectively. The newly gen-
erated sub-requests are always inserted into the A-
Queues of corresponding disks in descending order
of expectedT. To manage the three queues and the
scheduling, each disk is associated with a monitoring
thread (Fig. 4).
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...

...

Thread 0
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Fig. 4 The management of sub-requests

3.3 Asynchronous scheduling

Asynchronous scheduling involves several poli-
cies to determine the opportunities for performing
sub-requests. They are chosen carefully to meet the
strict requirements, such as being within the disk idle
time or meeting certain spatial locality. Different
from conventional prefetching schemes, the desired
strips for a prefetching request are not synchronously
fetched into cache. Instead, they are asynchronously
loaded by the sub-requests according to three as-
pects: the arrival rate of the stream, load status
of the disk, and the requirements of the scheduling
opportunities.

Two main scheduling policies are designed in
our implementation. The first is called ‘contiguous
scheduling’. Specifically, when a user request arrives
in a disk on a cache miss, both A-Queue and I-Queue
are searched to investigate if any sub-request has
data intersection with it. If any is found, the sub-
request will be inserted into D-Queue for emerging
and performing.

Another policy called ‘insertion scheduling’ is il-
lustrated in Fig. 5. The sub-request M is inserted

into the D-Queue because its LBA is between the
LBAs of user requests B and C. The rationale be-
hind this policy is that the disk head moving in a
straight line around the disk surface facilitates the
reduction of expensive seek cost. Note that, SoAP
searches only the A-Queue and finds the sub-requests
with the least expectedT. Hence, it does not need to
traverse the whole A-Queue because the queue has
already been sorted by the expectedT.

A

User-request in D-Queue 

C
B

Sub-request in A-Queue

N
M

If LBN(B)<LBN(M)<LBN(C),
M is inserted into the dispatching queue

D-Queue eueuQ-AeueuQ-A

N
M A

C

B

D-Queue
Insertion

scheduling

)2()1(

M

Fig. 5 The insertion scheduling policy

Update is required when there is an insertion
in A-Queue or I-Queue. In this procedure of A-
Queue, if a sub-request’s expectedT is less than the
currentT, then it is degraded into I-Queue. This
degradation continues until the expectedT of the
sub-request residing in the front of A-Queue is larger
than the currentT. Similarly, for I-Queue, if a sub-
request’s expiredT is less than the currentT, then it
will be evicted from I-Queue, which means this sub-
request is cancelled. The eviction operation contin-
ues until the expiredT of the sub-request residing in
the front of I-Queue is larger than currentT.

The monitoring thread periodically examines
the instant length of the D-queue to examine whether
the disk is idle. When D-queue’s depth is not larger
than 1, it is interpreted that the disk is idle. Then,
the thread removes the sub-request in the front of
A-Queue and inserts it into the D-Queue for exe-
cution. The chosen sub-request is considered to be
the most urgent one in A-Queue, because it has the
least expectedT. In this way, SoAP absorbs the idle
bandwidth using sub-requests.

The advantages of asynchronous scheduling
come from several aspects. First, it alleviates the
premature evictions of the prefetched blocks, which
is especially important due to the fact that the
prefetching techniques are becoming increasingly ag-
gressive. Second, it targets absorbing the idle band-
width, thus minimizing the prefetching cost. Last, it
makes disk access more sequential through the per-
forming of scheduling policies.



Liu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):799-815 807

It is important to make sure that the cost of
asynchronous scheduling is low. To illustrate the
related overhead of scheduling, we assume that the
parallel disk system has Nd disks, each of which has
two queues to maintain the sub-requests. Therefore,
the total main memory capacity consumed by these
queues is 2NdSsubLavg bytes in total, where Ssub is
the size of the sub-request, and Lavg is the average
number of pending sub-requests in a queue. It is ob-
vious that the larger the Lavg, the larger the memory
consumption. Fortunately, we find that Lavg is gen-
erally less than 10 in our experiments. As a result,
only tens of KB main memory is occupied to accom-
modate these queues. Similarly, as the depth of the
queues is small, the computation overhead is negli-
gible.

3.4 SoAP pseudocode

The pseudocode of SoAP is listed in Algo-
rithms 1 and 2. Algorithm 1 focuses on handling
the prefetching request generation, while Algorithm
2 addresses thread-level scheduling of sub-requests.
We then describe how the SoAP algorithm performs.

In Algorithm 1, there are two important func-
tions, PrefetchExecutor() and Prefetch(). Whenever
a new request arrives, it should be handled by the
function PrefetchExecutor(). First, the curT is in-
creased by one at the start. After that, PrefetchEx-
ecutor() examines if the request generates a cache
hit. If there is a cache hit, then this function tra-
verses the streamQueue to check which stream is
triggered. Consequently, a corresponding prefetch-
ing operation is issued. Otherwise, if this request
generates a cache miss, then its predecessor request
is searched in the HistoryTable. If it is found, then
a new sequential stream is detected, which will be
consequently recorded in the streamQueue. Subse-
quently, a prefetching request for this stream is is-
sued. Otherwise, if there is no cache hit, then the
request is inserted into the HistoryTable for future
stream detection, and it is then served from the disk.

Function Prefetch() is activated when a new se-
quential stream is detected or an already detected
sequential stream is triggered. To adaptively ad-
just the prefetching length to the load status, SoAP
achieves the prefetchLength using the function Cost-
Benefit(). By virtue of the relationship graph and
the cost-benefit model, this function derives the op-
timum prefetching length. Consequently, the bounds

Algorithm 1 Main prefetching procedure
PrefetchExecutor(req)

1: currentT + +

2: if req ∈ Cache then
3: for any stream si ∈ StreamQueue do
4: if si is triggered by req then
5: UpdateStream(si, req)
6: Prefetch(si, req, triggerOffset)
7: break
8: end if
9: end for

10: else if reqpre ← HistoryTableHit(req, strideRange)
then

11: snew ← NewStream(reqpre, req)
12: Prefetch(snew, req, triggerOffset)
13: else
14: Fetch req from disks
15: HistoryTableInsert(req)
16: end if

HistoryTableHit(req,strideRange)
1: for any r ∈ RequestTable do
2: if req.Addr ∈ [r.Addr + r.Len, r.Addr + r.Len +

strideRange] then
3: Remove r from HistoryTable
4: return r

5: end if
6: end for
7: return NULL

NewStream(reqpre, req)
1: s← new stream
2: sevict ← EnQueue(StreamQueue, s)
3: UpdateRelationGraph(sevict.len)

Prefetch(s, req, trigOff)
1: prefetchLength← CostBenefit(s)× stripeSize

2: endAddr← req.Addr+req.Len+prefetchLength−1

3: s.Trigger← endAddr− trigOff

4: endAddr = endAddr + stripSize − endAddr mod
stripSize

5: for any Sub-requesti ∈ [req.Addr, endAddr] do
6: compute its expectedT and expiredT

7: deliver Sub-requesti to corresponding disk

8: end for

of a prefetching request should be aligned in the strip.
The trigger for the stream is also updated for the
next prefetching operation. Finally, the prefetch-
ing request is split into multiple sub-requests and
consequently delivered to the corresponding threads
dedicated to the disks.
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Algorithm 2 Asynchronous scheduling procedure

ThreadScheduler(req)
1: while A-Queue.Front.expectedT ≤ currentT do
2: req=DeQueue(A-Queue)
3: Insert(I-Queue, req)
4: end while
5: while I-Queue.Front.expiredT ≤ currentT do
6: DeQueue(I-Queue)
7: end while
8: if req is a prefetching sub-request then
9: Insert(A-Queue, req)

10: else if req is a user request then
11: Insert(D-Queue, req)
12: for any Sub-requesti ∈ A-Queue or I-Queue do
13: if Sub-reqi ∩ req �= NULL then
14: Insert(D-Queue, Sub-reqi)
15: end if
16: end for
17: if A-Queue.front ⊆ [D-Queue.front.LBA,

D-Queue.rear.LBA] then
18: Insert(D-Queue, A-Queue.front)
19: end if
20: if D-Queue.depth ≤ 1 then
21: Insert(D-Queue, A-Queue.front)
22: end if
23: end if

Algorithm 2 provides the details of per-disk
thread-level scheduling for user I/Os and prefetch-
ing sub-requests. Whenever a sub-request arrives in
a disk, it is handled by ThreadScheduler(). First of
all, the A-Queue and I-Queue should be updated to
degrade the inactive sub-requests from A-Queue and
to cancel the time-out sub-requests from I-Queue.
After that, if the arriving request is a prefetching
sub-request, then it is inserted into the rear of A-
Queue. Otherwise, if it is a user I/O, then con-
tinuous scheduling will be used for A-Queue and I-
Queue, and insertion scheduling will be applied for
A-Queue to exploit spatial locality. Additionally, if
the depth of D-Queue is less than or equal to 1, then
it means the disk is or will be idle. Consequently,
the prefetching sub-request in the front of A-Queue,
which is most urgent, will be inserted into D-Queue.

4 Experimental methodology

We have implemented a prototype of SoAP
based on Linux of kernel version 2.6.11. Several mod-
ules have been added in the Linux Software RAID
(MD) to support the proposed scheme. The default

cache size is 512 MB and the adopted replacement
policy is LRU. To evaluate our design, we conducted
the experiments on a 3.0 GHz Intel Xeon computer
with 1 GB RAM and 5 Seagate ST3250310AS SATA
disks by default, each of which has 250 GB capacity,
7200 r/min rotation speed, and 8.5 ms average seek-
ing time. We configure these disks as RAID-5 in our
experiments. Note that a small portion of the disks’
capacity has been used for holding workload traces
and trace replaying tools.

The evaluation of our design is driven by a tool
called RAIDmeter (Tian et al., 2007). It deals with
the replaying of traces in the environment of parallel
disk systems. In detail, RAIDmeter reads the I/O
operations from traces and then creates correspond-
ing requests. After that, these requests are passed
to the block storage devices according to their time-
stamps.

In our experiments, two types of traces are used,
namely Financial and Web Searching. Both of them
derive from Storage Performance Council (2011). Fi-
nancial traces are characterized by the sequential
access pattern because they were obtained from on-
line transaction processing (OLTP) applications run-
ning at a large financial institution. Unlike Financial
traces, Web traces were collected from the searching
engine workload, which is more random although it
exhibits some spatial locality in the access pattern.
For each type of workload, we randomly select parts
of the trace files, which are labelled as Fin1–2 and
Web1–3. To evaluate the performance under heavy
load, we decompose a trace into multiple sub-traces
and set their start time as the same time to generate
sufficient I/O requests. These scaled up traces are
denoted as Finx-n or Webx-n, where n represents
the number of sub-traces replayed simultaneously.

We also use the benchmark IOzone to simulate
the forward sequential reads. IOzone is a file system
benchmark to measure a variety of file operations,
such as sequential and random read, write, create,
and delete. In our experiment, it is set with a varied
number of concurrent processes ranging from 1 to 20.
Moreover, its address space is limited within a fixed
file size of 4 GB, and the block size is set to 4 KB.

We compare SoAP with existing techniques, in-
cluding SEQP (Bovet et al., 2005), SP, STEP (Liang
et al., 2007), and ASP (Baek and Park, 2008) with
respect to the key metrics of response time and
throughput. SEQP is similar to the Linux’s default
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sequential prefetching algorithm in the kernel. We
vary the upper bound of the prefetching request size
(prefetching threshold) in SEQP to achieve its best
performance. SP is a scheme that always prefetches
all blocks of the strip to which the requested blocks
belong on a cache miss. Although SP is designed
for parallel disk systems, it involves several prob-
lems such as poor prediction accuracy and band-
width waste. STEP is a recently proposed sequen-
tial prefetching algorithm. It takes advantage of the
sequentiality in disk accesses to maximize the earn-
ings. ASP is similar to SP, except that it adopts a
culling cache management scheme that culls the un-
requested prefetched blocks earlier. It also has an
online cost estimation model that deactivates strip
prefetching when the hit rate of ASP is lower than
that of no prefetching.

5 Performance evaluation and discus-
sions

In this section, we present a number of measure-
ments illustrating the performance improvements
with SoAP.

5.1 Real-world trace performance

In Fig. 6, we examine the performance of various
prefetching techniques in terms of average response
time using real traces, including Financial and Web
Searching. In case of sequential Financial traces,
SoAP is convincingly the best as expected. It out-
performs STEP by 32.8%, SEQPs by 22.3%–43.6%,
ASP by 43%, and SP by 100%. Among all these
techniques, SP performs the worst because it always
fetches a full strip on a cache miss and does not have
any prediction module. ASP performs better than
SP due to the contribution from culling cache man-
agement which evicts the unrequested prefetched
blocks earlier. However, it still fails to solve the prob-
lem of low prefetching accuracy, thus wasting the
precious bandwidth. STEP performs better than SP
because it determines the prefetching length based
on a cost-benefit model. However, this model is de-
signed for the single disk system instead of the par-
allel disk system. Note that the SEQPs have varied
upper bounds for prefetching length. The results
show that the optimum bound should be around 128
KB.

For random Web Searching traces, all the
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Fig. 6 The average response time test with different
prefetching strategies and workloads

prefetching algorithms perform similarly, because
there are few sequential streams supporting the
prefetching. Even so, SoAP still performs better
than others due to its cost-benefit model. The
relationship graph provides a low hit probability
for prefetching, thus deactivating the prefetching in
SoAP. ASP performs almost the same as SoAP be-
cause it has an online cost estimation model that de-
activates strip prefetching when the hit rate of ASP
is lower than that of no prefetching.

Fig. 7 provides the throughput comparison be-
tween SoAP and other prefetching schemes using
two sets of traces. For Financial traces, we can see
that the throughput of SoAP is consistently higher
than those of other schemes. Specifically, SoAP
outperforms SEQP32 by 100%, and SEQP512 by
71.1%. Meanwhile, it achieves up to 29.4% and
53.6% throughput improvements over ASP and SP,
respectively. Since Financial traces are considered
to be composed of multiple interleaved sequential
streams, these results demonstrate SoAP’s efficiency
in improving sequential accesses. Note that the
throughput of SEQP32 is the lowest. We infer that
it suffers from the small upper bound of prefetch-
ing depth, which might induce much more disk I/Os
than other schemes, especially under workloads with
high sequentiality.

Even for Web Searching workload, which is
somewhat unfair for SoAP since there is little sequen-
tiality to employ, SoAP still achieves better through-
put than STEPs and SP. However, we can see that
ASP outperforms SoAP by 1.6%–4.7%. Although
it is marginal, we still need to explain why this oc-
curs. The first reason is that ASP will stop strip-
prefetching in the random workloads. In contrast,
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SoAP still tries to prefetch the small streams in Web
workload, which benefits the response time but at
the cost of throughput. The other reason is that
SoAP consumes extra main memory for stream de-
tections, which do not benefit the performance under
random workloads.

5.2 Benchmark performance

Fig. 8 depicts the aggregate throughput
achieved by different prefetching schemes under
workloads generated by benchmark Iometer. We
set the strip size of RAID-5 as 64 KB and vary
the number of concurrent replay processes from 1 to
20, each of which generates forward reads. The key
observation is that strip-ware prefetching schemes
are more suitable for high concurrency. We can see
that, in case of fewer than eight concurrent processes,
STEP performs better than SP and ASP. When the
count of concurrent processes is more than eight,
the strip-aware algorithms perform better than all
strip-unaware algorithms, such as STEP and SE-
QPs. The reason why STEP is more efficient than
SP and ASP under low concurrency is that STEP
can perform more aggressive prefetching for sequen-
tial streams with high confidence than SP and ASP,
whose prefetching upper bound is a consistent strip.
However, when the concurrency of workload is high,
the prefetched data of aggressive prefetching may be
prematurely evicted from cache before they are re-
quested. Besides, the prefetching requests’ bounds
of STEP are not aligned in the strip, thus incur-
ring more disk traffic. As expected, SoAP is univer-
sally the best under different numbers of concurrent
processes. This is due to the fact that SoAP is a
prefetching technique which is stream-aware, physi-
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Fig. 8 The throughput test with different prefetching
strategies and benchmark Iometer

cal data layout aware, and prefetching-in-time.
Although SP, ASP, and SoAP are all strip-

oriented prefetching techniques, SoAP outperforms
SP by 64.2% and ASP by 60.7% on average. The
performance disparities are owing to the large differ-
ences between them. First, SoAP is a sequential
prefetching scheme with a stream detection mod-
ule to generate the prefetching request, and a cost-
benefit model to determine the prefetching length.
In contrast, SP and ASP have no prediction module
at all. They focus on the simplicity and low over-
head at the expense of poor prediction accuracy and
high miss rate. This is why ASP uses adaptive cache
culling (ACC) to evict the unrequested prefetched
data in time. Thus, they cannot settle the prob-
lem of premature eviction, and hence the ghost strip
cache has to be implemented. Second, the prefetch-
ing length upper-bound of ASP and SP is the strip
size. Even after incorporating the MSP, the prefetch-
ing granularity of ASP is neither the strip size nor
the stripe size. In contrast, the prefetching length
of SoAP is adjustable and can be optimized as any
multiple of the stripe size to obtain the maximum
benefit. Last, SoAP is implemented as a prefetch-
on-hit scheme, where there is only one cache miss
for all the requests in a sequential stream. Unlike it,
ASP and SP are prefetch-on-miss techniques, thus
suffering a high miss rate in practice.

5.3 Scalability study

For parallel disk systems, system scalability is
an important factor that directly relates to system
performance. We study the scalability of the parallel
disk system running various prefetching schemes by
changing the numbers of trace replay processes and
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disks.
In Fig. 9, we examine the system average res-

ponse time under various prefetching schemes with
five disks while the number of trace replay processes
increases from 1 to 16. The system average response
time increases when the number of replay processes
increases. This is because the larger the number
of trace replay processes, the heavier the system
loads. Note that SoAP scales much better than other
prefetching algorithms because its cost-benefit model
is workload adaptive. Specifically, it outperforms
SEQPs by 21.5%–47.1%, STEP by 16.9%–43.4%, SP
by 24.9%–58.4%, and ASP by 9.7%–31.9%.
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Fig. 9 The average response time test with an in-
creasing arrival rate and a constant disk number of
five

The number of disks in a parallel disk system
is especially important for system scalability since it
determines the maximum available parallelism. In
Figs. 10a and 10b, we examine the system aver-
age response time under various prefetching schemes
with a constant number of trace replay processes
while the number of disks increases from 3 to 8.
These disks are organized as RAID-5 with the strip
unit size of 64 KB. We can observe that for all these
schemes the average response time decreases when
the number of disks increases. However, SoAP is
more efficient and scalable than other schemes under
both light and heavy load, because it could adapt the
prefetching length according to the disks’ load status,
thus absorbing the idle bandwidth for prefetching.

Figs. 10c and 10d show the increase of through-
put when the number of disks increases from 3 to 8
under workload Fin1-8 and Fin2-8. We can see that
the increasing number of disks provides speedup in
system throughput. It is clear that SoAP is more
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Fig. 10 The performance test with a varied disk num-
ber. (a) Fin1-1; (b) Fin1-4; (c) Fin1-8; (d) Fin2-8

scalable than other schemes. Although ASP+MSP
exhibits most close performance, SoAP still outper-
forms it by 15.4%–18.5% under Fin1-8, and 9.4%–
22.8% under Fin2-8.

5.4 Sensitivity study

In this subsection, we evaluate the impacts of
the strip size on system performance using differ-
ent prefetching schemes. The strip size determines
the maximum physical sequentiality, thus impacting
the performance of prefetching schemes. To evaluate
the sensitivity of SoAP to the strip size, we set the
experiment platform with a varied strip size and a
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constant disk number of five in Fig. 11.
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Fig. 11 The average response time test with a varied
strip size and a constant disk number of five under
Fin1-8

The results show that the average response time
of all prefetching schemes changes when the strip
size decreases from 64 KB to 16 KB. This is be-
cause the parallel disk system with a small strip size
achieves higher parallelism but more sequentiality
loss. As a result, the same length prefetching re-
quest incurs more disks’ accesses than using a large
strip size, hence increasing the cost of prefetching.
Under workload Fin1-8, we can see that SoAP is
more adaptive to the change of the strip size, and it
consistently outperforms other algorithms. Specifi-
cally, SoAP outperforms STEP by 34%, SEQP512
by 43.2%, and ASP by 26.4% with 64 KB strip size.
Even with 16 KB strip unit, SoAP achieves bet-
ter response time than STEP by 39.3%, SEQP512
by 45.7%, and ASP by 20.3%. The reason is that
SoAP is designed to adapt the physical data layout
by virtue of strip-oriented prefetching and it could
flexibly adjust the prefetching length according to
the cost-benefit model.

5.5 Cost-benefit model

It is very necessary to understand how the cost-
benefit model affects the prefetching in SoAP, be-
cause this model plays an important role in deter-
mining the optimal prefetching length according to
the load status. In Fig. 12, we examine the average
prefetching length of several prefetching schemes un-
der increasing system load. We set the strip size of
RAID-5 as 16 KB and vary the number of concurrent
replay processes from 1 to 10. SoAPnoM represents
the SoAP prefetching without disk status monitor-
ing. We can see that the average prefetching length

of SoAPnoM and SEQPs fluctuates slightly, and the
trend is to level off. It indicates that these schemes
are not sensitive to the workload. In contrast, the
prefetching length of SoAP has a clear relationship
with the system load. With the load increasing, the
prefetching length decreases. This is because there
will be less idle bandwidth when the disk traffic is
heavy, and prefetching will not help when the sys-
tem is overloaded.
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5.6 Effectiveness of maintaining two queues of
prefetching sub-requests

In SoAP, we maintain two queues, namely A-
Queue and I-Queue, to accommodate the active
and inactive sub-requests, respectively. With time
changing, degradation and eviction operations are
performed based on the comparison between the
currentT and the timestamps of sub-requests. Dif-
ferent queues support different scheduling policies.
For example, the insertion and continuous schedul-
ing policies are both available for A-Queue, while
only the continuous scheduling policy is available for
I-queue. This mechanism guarantees that the active
sub-requests will be fetched in time and the inactive
sub-requests will be performed when a cache miss
hits them. In this experiment, we take a closer look
at whether this double-queue mechanism is worth-
while.

In Fig. 13, SoAP is compared with a modified
version of itself, where all the sub-requests includ-
ing active and inactive ones are treated in the same
way. In the modified one-queue SoAP, if a prefetch-
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ing sub-request stays in the queue for a predefined
time without any access, then it will be directly can-
celled. We run this experiment with varied load un-
der trace Fin2. As we can see, SoAP outperforms the
one-queue SoAP by 11.3% in average response time
when the load reaches Fin2-8. Even under Fin2-1,
there is a performance gap of 8.6%. These results
indicate that SoAP with one queue is more sensi-
tive to the changes of load. That is, when the load
becomes heavier, the one-queue SoAP still tries to
perform the inactive sub-requests, leading to worse
performance compared with SoAP. As a result, it is
believed that the two-queue mechanism in SoAP is
necessary and effective.
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Fig. 13 The performance test of maintaining two sub-
request queues

5.7 Idle bandwidth absorption

By asynchronous scheduling, SoAP absorbs the
idle bandwidth of the disks for performing prefetch-
ing. By doing this, it reduces the bandwidth com-
petition between user requests and prefetching sub-
requests and lowers the prefetching cost. The bene-
fit can be reflected by the average response time of

user I/Os. For example, when the load bursts in a
disk, the prefetching I/Os assigned to this disk will
be performed later according to the time limit of its
expectedT. As a result, the response time curve of
user requests could be smoother. In Fig. 14, we eval-
uate the efficiency of idle bandwidth absorbing in
SoAP. In this experiment, five disks are configured
at the RAID-5 level with the strip unit size of 64 KB.
Moreover, a 100 s trace is selected from Fin1, which
is further divided into 50 equally sized intervals.

As shown in Fig. 14, although SEQP and SP
improve the performance of response time, they can-
not efficiently alleviate the load bursts. In contrast,
SoAP not only improves the latency but also re-
duces time peaks during load bursts by asynchronous
scheduling. Thus, it satisfies the needs of the users
who are sensitive to request latency.

6 Related works

Sequential prefetching is the most popular
prefetching scheme in modern data storage systems,
and has been studied by many researchers. Most of
these studies focus on achieving low prefetching cost,
high prediction accuracy, and cache size economy.

6.1 Lower prefetching cost

For the storage system, the main cost of
prefetching derives from the time it takes to bring
the required disk blocks into memory. By identifying
the sequential access pattern, sequential prefetch-
ing schemes commonly issue aggressive large-size
prefetching requests to reduce the prefetching cost.
For example, STEP (Liang et al., 2007) is inclined to
perform aggressive prefetching to hide disk access
latency and reduce the number of expensive disk
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Fig. 14 The average response time test with different prefetching strategies under Fin1
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operations. AMP (Gill et al., 2007) gradually and
heuristically adjusts the prefetching degree and trig-
ger distance on a per-stream basis so as to achieve the
highest possible aggregate throughput. Specifically,
the size of the prefetching request is incremented by
a fixed size whenever the last prefetching page is ac-
cessed. On the other hand, the prefetching size is
reduced whenever the last prefetching pages reach
the end of the LRU queue, which means that they
will never be used. This algorithm always tries to
maximize the prefetching degree until the cache ca-
pacity is insufficient. However, these schemes are
suboptimal for the parallel disk system since they
fail to consider the problems of sequentiality loss and
synchronous fetching.

6.2 Improving prediction accuracy

Prediction accuracy is usually regarded as im-
portant due to the high penalty of miss prediction
such as disk bandwidth waste, cache pollution, and
pre-hit eviction of prefetched data (Liang et al.,
2007). Some studies proposed enhanced I/O in-
terface to facilitate the prediction by getting more
semantic information from applications. Cao et al.
(1996) proposed to integrate application-controlled
prefetching, caching, and scheduling for file systems.
Chang and Gibson (1999) suggested leveraging the
application hints by speculative execution without
modifying the code. However, these schemes in-
volve considerable computation overhead or recon-
struction of applications.

History-based prediction, which allows an easier
deployment, has been extensively studied. C-Miner
(Li et al., 2004) performs prefetching by mining the
correlation between data blocks. TAP (Li et al.,
2008) adopts a table based prefetching approach,
where only the addresses of the accessed blocks are
stored. Therefore, there is more possibility for TAP
to identify potential sequential streams in the work-
load by reserving more history information. STEP
(Liang et al., 2007) also uses a table to detect the
sequential streams. This table is organized as a bal-
anced tree and each node represents a detected or
new sequential stream. Similarly, we use a hash ta-
ble in SoAP to store the history information. Un-
like them, we use the relationship graph and a cost-
benefit model to assist our decision in prefetching so
as to improve the prediction accuracy.

6.3 Prefetch cache management

Since cache is the scarce resource in the com-
puter system, many studies focus on how to effi-
ciently manage the prefetched data. The SARC
algorithm (Gill and Modha, 2005) splits the cache
into prefetch cache and re-reference cache. It focuses
on balancing the cache allocation between them to
adapt to the sequentiality of the workload. Li and
Shen (2005) proposed a prefetch cache sizing scheme
based on a gradient descent-based greedy algorithm.
TAP (Li et al., 2008) uses a downward pressure ap-
proach to reduce the prefetch size when the cache hit
rate is stable. It also evicts the data of the previous
request on a cache hit of the arriving request in the
already detected sequential steam. The purpose is
to keep the prefetch cache as small as possible while
keeping a stable hit rate. SoAP does not implement
any replacement algorithm for cache management,
because it is not the focus of this work. Instead, it
can flexibly accommodate the many cache replace-
ment schemes proposed in other studies.

6.4 Prefetching for the parallel disk system

The most similar study to SoAP is ASP (Baek
and Park, 2008), which is also dedicated to the par-
allel disk system. ASP observes that independence
loss is the main cause of the poor performance of
prefetching in the parallel storage system; thus, it
proposes a strip prefetching approach to exploit the
sequentiality in the single disk. It also improves
cache utilization by balancing the prefetched pages
and accessed pages, where it tends to cull the use-
less prefetched data earlier. However, ASP handles
cache miss in an over simple way, where the com-
plete strip will be read when a cache misses hitting
any of its blocks. As a result, ASP has the prob-
lem of low prediction accuracy. Additionally, it is
unable to solve the problem of synchronous fetching.
Unlike ASP, SoAP performs prefetching by sequen-
tial stream detection with high prediction accuracy
and asynchronously schedules the prefetching sub-
requests.

7 Conclusions

The parallel disk system, which plays a central
role in the storage sub-system, has its own distinct
physical data layout, where logical contiguous blocks
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are physically sequential only if they are in the same
strip. This special feature introduces both chal-
lenges and opportunities for the design of sequen-
tial prefetching techniques. Considering the tech-
nology trend that storage servers are equipped with
more processors and increased memory capacity, it
is worthwhile to incorporate more sophisticated and
powerful sequential prefetching schemes to improve
the performance of sequential accesses.

In this study, we have introduced the relation-
ship graph as a tool to determine the hit probability
of a prefetching request in a stream with a given
length. Moreover, we have incorporated this tool
into our cost-benefit model in order to explore the
optimal prefetching length according to the system
load status and sequentiality degree, which avoids
the performance penalty and cache pollution caused
by inaccurate prefetching.

We have designed a strip-oriented prefetching
scheme to adapt the prefetching operation to the
physical data layout of the parallel disk system, by
which every prefetching request must be aligned in
the strip and then split into multiple sub-requests.
Thus, the basic granularity is based on the strip size,
which allows exploiting the maximum available phy-
sical sequentiality.

We have also implemented an asynchronous
scheduling policy along with two queues to man-
age the prefetching sub-requests of each disk. Based
on the timestamps of each sub-request and the ob-
servation of disks’ load status, scheduling policies
are performed to load the desired data timely and
economically.

We believe that the insight of SoAP is widely ap-
plicable not only in parallel disk systems, but in any
system that has striping mechanism and sequential
workload.
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