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that EnPSAS has a small condition number and can apply covariance localization more easily than other ensemble-based 3D-Var 
methods. 
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1  Introduction 
 

The three-dimensional variational (3D-Var) 
method (Parrish and Derber, 1992; Gustafsson et al., 
2001; Haben et al., 2011a) is one of the most sig-
nificant schemes in data assimilation (DA) for a dy-
namic system, and it seeks an optimal solution by 
minimizing a cost function 
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where xb is the background state vector, yo is the ob-
servation vector, h(·) denotes the observation operator, 
and B and R are background and observation error 
covariances, respectively. However, there are some 

major shortcomings of 3D-Var: (1) The background 
error covariance is static, i.e., not flow-dependent, 
without dynamic information from new observations; 
(2) The condition number of the Hessian matrix is 
generally large, which yields slow convergence and 
an inaccurate solution (Haben et al., 2011b). There-
fore, preconditioning technology and ensemble-based 
covariance are introduced. 

Hamill and Snyder (2000) proposed a hybrid 
method that replaces the static background error co-
variance with a weighted sum of the original covari-
ance and a sampling ensemble covariance. Lorenc 
(2003) presented another hybrid scheme by setting 
two sets of control variables, one of which was pre-
conditioned upon the square root of the ensemble 
covariance. A similar hybrid framework was pro-
posed by Buehner (2005), in which the ensemble 
covariance was incorporated into the 3D-Var system. 
Wang et al. (2007) pointed out that these hybrid  
ensemble-3D-Var schemes are theoretically equiva-
lent. By combing the full-rank static covariance and 
the flow-dependent ensemble covariance, the schemes 
can obtain a better estimate than 3D-Var. However, 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

* Project supported by the National Natural Science Foundation of 
China (No. 41105063) and the Special Fund for Meteorological Sci-
entific Research in the Public Interest (No. GYHY20100615) 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013 



Leng et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):634-641 635

these systems employ two separate DA algorithms, 
variational and ensemble, which will introduce large 
computation. 

There are also some other methods (Zupanski, 
2005; Liu et al., 2008; Tian et al., 2011; Pan et al., 
2012), which replace static background error co-
variance only with ensemble forecast covariance, 
rather than the combination of static covariance and 
ensemble one, and we call them ensemble-based 
3D-Var. It is easy to execute these methods in DA 
systems, and the optimal solution can be obtained in 
the ensemble perturbation space or the observation 
space, rather than the state space. Therefore, the 
computational cost of minimization can be signifi-
cantly reduced. 

It is known that state- and observation-based 
variational methods are similar to Kalman filters 
without ensemble approximations (Jazwinski, 1970; 
van Leeuwen and Evensen, 1996). We here want to 
prove that after introducing ensemble approximation, 
several presented ensemble-based 3D-Var methods 
are also equivalent to the ensemble transformation 
Kalman filter (ETKF). Another interesting issue with 
the ensemble-based methods is that nonlinear obser-
vations can be taken into account, either in an ad-hoc 
manner or more natural. In this paper, first, we com-
pare three ensemble-based 3D-Var methods and show 
their theoretical equivalence to ETKF upon ensemble 
mean analysis and updated ensemble anomalies (per-
turbations), in a linear framework; second, a new 
method called the ensemble PSAS method (EnPSAS) 
is proposed, which has some notable advantages; 
third, we present a discussion on what the nonlinear 
observation operator does in the different methods. 
 
 
2  Proof of equivalence 

2.1  ETKF 

ETKF, presented by Bishop et al. (2001), was 
often used as a basic and significant ensemble-based 
deterministic approach (Hunt et al., 2007; Wang et al., 
2008; Yang et al., 2009; Janjić et al., 2011). There are 
two main steps in ETKF: 

Step 1: Update the state vector 
 

a b T T 1 o b( ) ( ( )),h   x x PH R HPH y x    (2) 

where xa and xb denote the analysis state and the 
background state (the ensemble mean of forecasts 
here), respectively, H is the tangent linear approxi-
mation of operator h(·), and P indicates the ensemble- 
based forecast error covariance. 

Step 2: Update the ensemble anomalies  
(perturbations) 

 
a 1/2 1/2 T/2( ) ( ) , P P I C                 (3) 

 
where Pa is the analysis error covariance matrix, (·)1/2 
indicates a square root matrix, I denotes the identity 
matrix, and C equals (HP1/2)TR−1HP1/2. 

In the following, we want to prove that  
ensemble-based 3D-Var (En3DVAR), maximum 
likelihood ensemble filter (MLEF), and ensemble- 
based 3D-Var processing in the observation space 
(En3DPOS) are all theoretically equivalent to ETKF, 
under the linearity assumption. 

2.2  En3DVAR 

Generally speaking, in the traditional 3D-Var, 
the condition number of the Hessian matrix is large, 
which results in slow convergence. To solve this 
problem, Lorenc (1997) presented a method named 
the preconditioning control variable method. Since B 
is a symmetric positive definite matrix, it can be de-
composed as B=B1/2(B1/2)T. A new control variable ζ 
is then introduced: 

 
b 1/2δ .  x x x B ζ                     (4) 

 
Substituting Eq. (4) into Eq. (1), one can obtain a new 
cost function 
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The Hessian matrix of the function is I+ 
(B1/2)THTR−1HB1/2, which has a relatively small con-
dition number (Haben et al., 2011b). For the defini-
tion of the condition number, refer to Appendix A. 

However, there is still a shortcoming of not using 
a flow-dependent background error covariance as in 
3D-Var. Liu et al. (2008) extended Lorenc’s method 
and replaced the background error covariance B with 



Leng et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(8):634-641 636 

an ensemble-based covariance P in the so-called 
En4DVAR. The analysis solution is calculated in the 
ensemble perturbation space, rather than the state 
space, which greatly reduces the computation cost. 
En3DVAR is a reduced version from the original 
En4DVAR. We now give proof of theoretical 
equivalence between En3DVAR and ETKF. 

In En3DVAR, the forecast error covariance P is 
defined as 

 
1/2 1/2 T( ) ,P P P                         (6) 

where  
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I indicates the number of ensemble members. Here, 
we call P1/2 the forecast ensemble anomalies (per-
turbations). Like in Eq. (4), control variable ζ is  
introduced: 
 

b 1/2δ .  x x x P ζ                     (8) 

 
Substituting Eq. (8) into Eq. (1), and using a linear 
approximation 
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where δyo=yo−h(xb), one can obtain a new cost  
function 
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(10) 
and its gradient 
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where  
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Although linear approximation is made in Eq. (9), 
there is no need to use explicit H, due to the use of  
Eq. (13). The Hessian matrix is I+C, according to  
Eq. (11). 

Given the solution ζa of function (10), the 
analysis increment can be calculated as follows: 
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The last identity can be derived using Sherman- 
Morrison-Woodbury formulation (Golub and van 
Loan, 1996). 

Denote the true state by xt, and calculate the 
analysis ensemble anomalies as follows: 

 
t a t b a b 1/2 t a( ) ( ) ( ),      x x x x x x P ζ ζ  (15) 

a t a t a T

1/2 t a t a T 1/2 T

1/2 ,a 1/2 T

( )( )

( )( ) ( )

( ) ,

  

  

 ζ

P x x x x

P ζ ζ ζ ζ P

P P P

        (16) 

a 1/2 1/2 ,a 1/2 1/2 T/2( ) ( ) ( ) ,  ζP P P P I C           (17) 

 
where Pζ,a denotes the analysis error covariance with 
respect to ζ, and it equals the inversion of the Hessian 
matrix of cost function (10). 

One can see that both the analysis state and the 
analysis ensemble anomalies have the same forms as 
those in ETKF. 

2.3  MLEF 

By maximizing the likelihood of the posterior 
probability distribution, MLEF obtains its analysis 
solution from minimization of a cost function (Zu-
panski, 2005; Zupanski et al., 2008). MLEF is also 
one of the deterministic ensemble filters, since it 
makes use of non-perturbed observations. 
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In MLEF, a new control variable ζ is defined as 
follows: 

 

b 1/2 T/2δ ( ) ,   x x x P I C ζ         (18) 

 
where C is the same as that in Eq. (12). 

By substituting for x in Eq. (1) using xb+ 
P1/2(I+C)−T/2ζ, one can obtain a different cost  
function: 
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and its gradient 
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If h(·) is linear, the gradient can be rewritten as 
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The Hessian matrix is simply set to be I, whose 

condition number is 1 and much smaller than that of 
the traditional 3D-Var (Haben et al., 2011b). 

With the solution ζ, one can obtain an analysis 
increment 
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The last identity is the same as that in Eq. (14). 

Calculate the analysis error covariance and en-
semble anomalies: 
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where Pζ,a=I. Then 
 

a 1/2 1/2 T/2( ) ( ) . P P I C  

 
It is shown that MLEF has the same form as the 

transformation used in ETKF. 
Note that if we define 
 

T/2
En3DVar MLEF( ) , ζ I C ζ              (24) 

 
and substitute Eq. (24) into Eq. (10), we can obtain a 
transformation from En3DVAR to MLEF. 

2.4  En3DPOS 

If we define the state increment as shown in 
PSAS (Cohn et al., 1998), 
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and substitute it into Eq. (1), a new cost function and 
its gradient can be obtained: 
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The optimal solution is 
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and the analysis increment is 
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The analysis anomalies can be calculated as follows: 
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One can see that this method is also equivalent to 
ETKF. 

Note that this method solves the variational 
problem in the ensemble-based observation space, not 
in the ensemble perturbation space. 
 
 
3  Ensemble PSAS 
 

PSAS is another precondition method of 3D-Var, 
which defines the same δx as that in Eq. (25). How-
ever, PSAS has a different cost function and a dif-
ferent gradient from Eqs. (26) and (27): 
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In the following, we will introduce a new  

ensemble-based 3D-Var filter deriving from PSAS. 
Define 
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Using Eq. (34) to substitute for w in Eq. (32), we can 
obtain a new cost function 
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and its gradient 
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From Eqs. (36) and (37), one can see that the Hessian 
matrix of the cost function is simply set to be I, as in 
MLEF. Accurate solution θa can be obtained by 
minimizing Eq. (36) with anticipated quick conver-
gence. The analysis increment is 
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Analogous to the calculations in Eqs. (15)–(17), the 
analysis anomalies can be obtained: 
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where the analysis error covariance Pθ,a with respect 
to θ equals the identity matrix. We call this new 
method EnPSAS. 

The optimal analysis xa is equivalent to that in 
ETKF; however, the analysis anomalies are much 
different from those in ETKF. In our method, the 
transformation matrix is an I×M matrix, whereas the 
size of transformation in ETKF is I×I, in which M is 
the dimension of the observation vector. 
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4  Discussions 
 

When ensemble-based variational methods are 
employed, nonlinear observations can be taken into 
account in a more actual way, rather than ad-hoc as in 
ETKF. 

In MLEF, there is no linearization assumption of 
the observation operator; that is, the full nonlinear 
operator is used in the whole algorithm. In En3DVAR, 
the nonlinear observation operator is linearized near 
xb, as shown in Eq. (9); however, when calculating 
HP1/2, the full nonlinear operator is used, according to 
Eq. (13). Similarly, in En3DPOS, the nonlinear op-
erator employs a linear approximation when calcu-
lating h(x), but one can use the full nonlinear operator 
to compute HP1/2. In EnPSAS, the cost function is 
derived under the assumption of linearity; however, it 
also uses the full nonlinear operator when computing 
HP1/2. By updating the background state and the 
background error covariance, one can obtain a more 
accurate solution from iterations of minimizing the 
cost function. 

Note that if a nonlinear h(·) is used, the solution 
can be close to the actual minimum of the cost func-
tion, while the updated ensemble-based covariance 
represents only the inverse of the Hessian, not the 
posterior covariance. This is because the true poste-
rior probability density function (PDF) is not  
Gaussian. 

Spatial localization is another important issue in 
ensemble-based filters. In EnPSAS, HPHT and PHT 
can be localized easily in the following way: 

T( ) HPH , T( ) PH , where    denotes a Schur 

product (Hamill et al., 2001). The correlation coeffi-
cient could respond to the distance between observa-
tion points or between each observation point and 
each grid point, respectively. In contrast, the local-
ization implementation of (HP1/2)TR−1HP1/2, a matrix 
which should be calculated in those three schemes 
(En3DVAR, MLEF, En3DPOS), is much different. 
One way to make the localization is to use a method 
with a truncated correlation matrix (Buehner, 2005; 
Liu et al., 2009); however, it is more expensive in 
computation and will introduce inaccurate correlation. 
Another way is to consider only the observations from 
a region around the location, as in Hunt et al. (2007) 
and Yang et al. (2009). Note that the latter scheme 
uses local ensemble anomalies for each grid point, 

and the observations are chosen within a certain dis-
tance to the grid point. 

The total computation cost of EnPSAS may be 
higher than that of En3DVAR or MLEF (computa-
tional costs of these methods are shown in Appendix 
B), since its solution is obtained in the observation 
space, not in the ensemble perturbation space, and the 
transformation matrix has larger size than that in 
ETKF. 
 
 
5  Summary 
 

In this paper we have compared three ensemble- 
based 3D-Var methods. The results showed that they 
are theoretically equivalent to ETKF, with both the 
analysis state and ensemble anomalies having the 
same forms as those of ETKF. 

Note that MLEF can be transformed from 
En3DVAR, but with a better Hessian matrix whose 
condition number is much smaller than En3DVAR’s. 
For MLEF and En3DVAR, the minimization problem 
is solved in the ensemble perturbation space, whereas 
for En3DPOS, the analysis solution is obtained in the 
observation space.  

In addition, we presented a new method named 
EnPSAS, which also minimizes the cost function in 
the observation space. Although EnPSAS is more 
expensive than MLEF, it is still worth using it in some 
DA systems where the dimension of the observation 
vector is much smaller than that of the state vector. 
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Appendix A: Condition number 
 

The condition number is a property of a matrix 
or a problem. A high condition number may result in 
slow convergence to the solution, even divergence. 

Assuming that A is an invertible matrix, we can 
define the condition number 

 
κ(A)=||A||·||A−1||, 

 
where ||·|| denotes the norm defined in the square- 
summable sequence space L2, and the condition 
number satisfies 

 
κ(A)≥1. 

 
Another equivalent definition can be written as 

 

max

min

( )
( ) ,

( )







A
A

A
 

 
where λmax(A) and λmin(A) are the maximum and 
minimum eigenvalues of A, respectively. 
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Appendix B: Computational costs 
 

With the assumption of linear systems and 
Gaussian error distribution, only a single iteration is 
needed in variational methods, and the step length is 
equal to unity (Zupanski, 2005). Assume δyo and δxa 
are inexpensive to apply. Thus, the main computa-
tional cost results from calculating J and (Pa)1/2. 

One can obtain C=VΛVT, where V is the eigen-
vector matrix and Λ denotes the eigenvalue matrix. 
Thus, (I+C)−T/2=V(I+Λ)−1/2VT. 

Similar decomposition can be made for (I+D)−T/2. 

1. En3DVAR 

1) Calculate J=(I+C)ζ−(HP1/2)TR−1δyo. 
1.1) Form HP1/2. Cost: O(MNI). 
1.2) Compute C=(HP1/2)TR−1HP1/2. Assume R−1 

is inexpensive to apply. Cost: O(M2I+MI2). 
The cost of calculating J: O(MNI+M2I+MI2). 
2) Calculate (Pa)1/2=P1/2(I+C)−T/2. 
2.1) Form C. Cost: O(MNI+M2I+MI2). 
2.2) Calculate the eigenvalue decomposition of 

C. Cost: O(I3). 
2.3) Apply to P1/2. Cost: O(NI2). 
The cost of calculating (Pa)1/2: O(MNI+M2I+MI2 

+I3+NI2). 
The total cost: O(MNI+M2I+MI2+I3+NI2). 

2. MLEF 

1) Calculate J=ζ−(I+C)−1/2(HP1/2)TR−1δyo. 
1.1) Form HP1/2. Cost: O(MNI). 
1.2) Form C=(HP1/2)TR−1HP1/2. Cost: O(M2I+ 

MI2). 
1.3) Calculate the eigenvalue decomposition of 

C. Cost: O(I3). 
 
 
 
 
 
 
 
 
 
 
 
 
 

The cost of calculating J: O(MNI+M2I+MI2+ 
I3). 

2) Calculate (Pa)1/2=P1/2(I+C)−T/2. 
The cost of calculating (Pa)1/2: O(MNI+M2I+MI2 

+I3+NI2). 
The total cost: O(MNI+M2I+MI2+I3+NI2). 

3. En3DPOS 

1) Calculate J=HPHTR−1[(R+HPHT)w−δyo]. 
1.1) Form HPHT. Cost: O(MNI+M2I). 
1.2) Apply to R−1. Cost: O(M3). 

The cost of calculating J: O(MNI+M2I+M3). 
2) Calculate (Pa)1/2=P1/2(I+C)−T/2. 
The cost of calculating (Pa)1/2: O(MNI+M2I+ 

MI2+I3+NI2). 
The total cost: O(MNI+M2I+MI2+M3+I3+NI2). 

4. EnPSAS 

1) Calculate J=θ−(I+D)−1/2R−1/2δyo. 
1.1) Form D=R−1/2HPHTR−T/2. Cost: O(MNI+ 

M2I). 
1.2) Compute the eigenvalue decomposition of 

D: O(M3). 
1.3) Apply (I+D)−1/2 to R−1/2. Cost: O(M3). 

The cost of calculating J: O(MNI+M2I+M3). 
2) Calculate (Pa)1/2=P1/2(HP1/2)TR−T/2(I+D)−T/2. 
2.1) Form R−T/2(I+D)−T/2. Cost: O(MNI+M2I+ 

M3). 
2.2) Apply to (HP1/2)T. Cost: O(M2I). 
2.3) Apply to P1/2. Cost: O(MNI). 
The cost of forming the analysis anomalies: 

O(MNI+M2I+M3). 
The total cost: O(MNI+M2I+M3). 
 
 


