
Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1087

A new parallel meshing technique integrated into the conformal

FDTD method for solving complex electromagnetic problems*

Yang GUO†, Xiang-hua WANG, Jun HU†‡
(Centre for Optical and Electromagnetic Research, State Key Lab of MOI, Zhejiang University, Hangzhou 310058, China)

†E-mail: guoyang@coer-zju.org; hujun@zju.edu.cn

Received Apr. 14, 2014; Revision accepted June 18, 2014; Crosschecked Nov. 13, 2014

Abstract: A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm, based on the ray tracing technique,
is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones.
The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization ad-
vantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algo-
rithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10
aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are
validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.

Key words: Finite-difference time-domain (FDTD), Meshing, Parallel, Function language, Surface current distribution
doi:10.1631/jzus.C1400135 Document code: A CLC number: TP391; O44

1 Introduction

Various electromagnetic problems (Shan et al.,
2013; Wang et al., 2014) have been solved using the
finite-difference time-domain (FDTD) method due to
its strong capabilities (Taflove and Hagness, 2000).
However, when it is used to simulate a structure, you
always need to generate its applicable FDTD meshes.
In particular for a conformal FDTD algorithm, an
appropriate meshing is very important because it is
directly related to its simulation accuracy. In fact,
most commercial FDTD softwares, such as XFDTD
(Remcom, USA) and GEMS (2Comu, USA), do have
their own meshing modules, and in addition, there are
some professional meshing tools (Hill, 1996; Yang
and Chen, 1999; Srisukh et al., 2002; Flubacher and

Luebbers, 2003; Benkler et al., 2008).
The real-world model, such as an aircraft or a

ship, often contains millions of surface patches. Thus,
its meshing process would take several hours and
even much longer. Under such circumstances, an
advanced parallel meshing technique will be useful
for shortening the meshing time. To the best of our
knowledge, although parallel FDTD simulations have
been recently achieved (Yu and Mittra, 2000; Guiffaut
and Mahdjoubi, 2001; Lei et al., 2008), there is still a
large area for the improvement of their efficiencies
for quickly solving complex electromagnetic prob-
lems in the presence (absence) of an intentional elec-
tromagnetic interference (IEMI) (Hadi and Mahmoud,
2007; Vaccari et al., 2011; Xiong et al., 2012).

Note that it is not convenient to use the tradi-
tional coding C-language to develop a parallel
meshing algorithm for FDTD simulation. A function
language would be a better choice, as its advantage
for meshing parallelization can be comprehensively
exploited. During the implementation of a parallel
FDTD algorithm, its post-process is also very

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported in part by the National Natural Science Foundation
of China (No. 60831002) and Zhejiang Provincial Natural Science
Foundation of China (No. LZF010001)

 ORCID: Yang GUO, http://orcid.org/0000-0002-5681-0606
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

Guo Yunlong
CrossMark

http://crossmark.crossref.org/dialog/?doi=10.1631/jzus.C1400135&domain=pdf&date_stamp=2015-04-20

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097

1088

important. However, the stair-case error of the Yee’s
FDTD cell often degrades its simulation accuracy
while characterizing the surface current distribution
of an arbitrary perfect electric conductor (PEC)
structure. Under such circumstances, a finite-element
time-domain (FETD) method based on unstructured
meshes should be an alternative, and it can remove the
stair-case error in an FDTD simulation (Kim and
Teixeira, 2011). To relieve such a problem, an ap-
propriate approximation for FDTD meshing can be
employed, and some studies on this topic can be
found (Juntunen and Tsiboukis, 2000; Hsu et al., 2009;
Wang and Yin, 2013). However, for a complex PEC
geometry, the accuracy of an FDTD simulation for its
surface current distribution is still lower in compari-
son with the finite element and integral equation
methods.

In this paper, an efficient parallel FDTD meshing
technique is proposed, and it is further integrated into
the conformal FDTD simulation for handling elec-
trically large 3D structures.

2 Meshing methodology

Traditional meshing techniques usually use

searching-based parity count methods (Hill, 1996);
i.e., one searching origin point is selected for an ar-
bitrary model, and then a line between the origin point
and the center of an FDTD cell is drawn. The FDTD
grid must be inside the model when the interception
point number is odd; otherwise, the grid should be
outside the model. With this approach, some prob-
lems will be caused by singularity and boundary (Hill,
1996); in addition, the searching-based parity count
algorithm is not parallelizable in nature. Here, we
present a flexible parallel ray tracing technique for
FDTD meshing which includes both high efficiency
and high accuracy.

2.1 Ray tracing technique

Most 3D models, which are built using profes-
sional modeling software, are usually described by
their surfaces, and they always consist of a huge
number of triangle pieces. Therefore, it is important to
snip these triangles into the FDTD rectangular
meshes. To do this, we need to first extract all inter-
ception points between the triangles and rectangles.

Fig. 1 shows the ray tracing technique implemented
for treating an almond-shaped model, and when using
a ray to penetrate it, we usually obtain two intercep-
tion points.

In Fig. 1, the coordinates of triangle ABC are

denoted by A=(x1, y1), B=(x2, y2), and C=(x3, y3) in the
ABC local plane. Then an arbitrary location in this
local plane can be represented using the method of
vector superposition, i.e.,

P(x, y)=uA+vB+wC, (1)

where

2 3 3 2 2 3 3 2

2 3 3 1 1 2 2 1 1 3 3 2

3 3 1 1 1 1 3 3

2 3 3 1 1 2 2 1 1 3 3 2

2 1 1 2 2 1 1 2

2 3 3 1 1 2 2 1 1 3 3 2

,

,

.

x y x y xy x y xy x y
u

x y x y x y x y x y x y

xy x y x y xy x y x y
v

x y x y x y x y x y x y

x y xy x y x y x y xy
w

x y x y x y x y x y x y

     
     

      
    

     


    

 (2)

For the point to be inside the triangle, the values
of u, v, and w must be between 0 and 1; otherwise, one
or two of them will be either larger than 1 or smaller
than 0.

According to Eq. (2), it can be determined that
such a ray tracing technique is applicable only for a
2D space. However, for most complex geometrics,
both rays and triangles should be in a 3D space, and
thus we must map them into the 2D space as shown in
Fig. 1. Here, a set of parallel rays is used and a 3D
vector is mapped into a 2D space by removing one of
its components x, y, and z from the triangle vertexes.
Note that some surfaces may be degenerated into lines
under such circumstance. Therefore, a degenerated
detection step should be taken after the mapping
process. The detection function is derived as follows:

Fig. 1 The scheme of ray tracing technique

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1089

At first, the triangle is converted into two inde-
pendent vectors, as described by

1

2

,

.

 
  

v A B

v A C
 (3)

Then, we determine the corner of the two vectors by

1 2
1 2

1 2

() arcco, s ,C 




v v
v v

v v
, (4)

where ||v|| is the length of vector v, defined as

2 2(,) ,x y x y v (5)

and
v1(x1, y1)·v2(x2, y2)=x1x2+y1y2. (6)

Note that in some extreme cases, a triangle may
be parallel with the tracing ray, and then vector v1 or
v2 may be zero. Under such circumstances, the corner
should be defined as zero.

By taking the numerical accuracy of FDTD
meshing into account, we introduce an error tolerance
ε; i.e., the triangle is invalid when |C|≤ε

(10−7 in cur-

rent version). Therefore, this triangle should be
dropped, and this is acceptable because it usually
occurs when the triangle is nearly parallel with the
tracing ray. As explained later in Section 2.3, we can
properly capture this triangle in another direction,
since one triangle surface cannot be parallel with x-,
y-, and z-direction at the same time.

2.2 Parallel FDTD meshing method

The complete parallel FDTD meshing process is
presented as follows:

Collect intersection points: Obtain intersection
points of the ray with each triangle piece, as it is for an
individual element and suitable for executing this
procedure in parallel.

Snip with FDTD grid: Use one algorithm to snip
all intersection points with the FDTD mesh. As
shown in Fig. 2a, the traditional method for snipping
is just to select the grid point which is the nearest to
the intersection point. There are two of three com-
ponents at (x, y, z) fixed by the ray, but only one is
calculated.

Collect interception points and generate mesh:
For an empty shell structure in Fig. 2b, we just collect
all intersection points. For a solid object, however, a
ray may penetrate it several times; i.e., it must Enter->

Leave->Enter->…->Enter->Leave the object. Each
entering time corresponds to a leaving time, and we
split all intersection points into a tuple of (Enter,
Leave) pairs. As shown in Fig. 2c, the ray enters the
object from the second grid, and leaves it from the
fifth grid, and we record it as (2, 5). Then, we expand
each tuple into a grid sequence.

The calculations for all interception points here
are independent of one another, and this procedure
can be naturally parallelized. As we obtain all inter-
ception information for the entire model with multiple
parallel rays, the structure mesh can be completely
reconstructed.

2.3 Meshing for special cases

2.3.1 Parallel surface problem

When the model has some surfaces that are par-
allel with the rays, the ray tracing may provide wrong
mesh information for the structure, as it may result in

Xn
Xn+2

d1 d2

(a)

(b)

(c)

Fig. 2 Schematic of the ray tracing technique
(a) Single ray tracing for a surface patch; (b) Multiple ray
tracings for an empty shell structure; (c) Multiple ray tracings
for a solid structure

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097

1090

no or a large number of intersection points (Fig. 3a).
So, we need to change the ray direction as shown in
Fig. 3b. For a complex 3D model, we always pene-
trate it using a set of parallel rays with multiple di-
rections so as to improve the meshing accuracy. As
mentioned in Section 2.1, we use the orthogonal x-, y-,
and z-direction as the tracing approach to simplify the
3D-2D mapping process.

2.3.2 Edge problem

The edge problem may occur when using the
searching-based parity count method (Hill, 1996); i.e.,
as the ray grazes the model edge, the wrong mesh
information is generated (Fig. 4a). However, our
proposed method does not have such a problem (Fig.
4b). When there is only one interception point, it will
be simply excluded.

2.4 Conformal meshing technique

We know that the traditional searching-based
meshing algorithm often uses model facets to build up
its mesh. In conformal FDTD simulation, as will be
introduced in Section 4, the location of the intercep-
tion point should also be characterized, while the
conventional meshing process just ignores them.
Actually, its realization is very complex, since one
Yee’s cell has 24 independent edges, and the ray
tracing technique must be applied individually for
each one to calculate the distance between the inter-
ception point and the end point of the edge. A 2D

example is shown in Fig. 5, where the interception
points and distances for all edges are recorded.

3 Parallelized implementation

Most FDTD algorithms are often realized using
the traditional languages of C and Fortran. For a par-
allel FDTD simulation, however, the function lan-
guage should provide a better choice, where all var-
iables are unchangeable, i.e., immutable. Here, we
use the Microsoft F# (Microsoft, USA) to show its
difference from the traditional C language.

3.1 Domain decomposition method using function
language

To achieve FDTD parallelization, its iteration
domain has to be at first decomposed. For the C lan-
guage, the general FDTD iteration code is written as

dy

(a) (b)

Fig. 3 Rays are parallel with (a) or perpendicular to (b)
the surface to be meshed

Search
origin

Target grid

(a)

Interception points

(b)

Fig. 4 Wrong (a) and correct (b) FDTD meshing for a 3D
structure

Fig. 5 Schematic of the conformal meshing technique
(a) A Yee-cell in the conformal FDTD algorithm; (b) The
distance between the interception point and the endpoint being
recorded during conformal meshing

Xn Xn+

1

Y
n

Yn+1
Xint

Yint

d
x

(b)

lx

ly

dx

dy

Ex

Ex

Ey Ey
Hz

(a)

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1091

However, for the function language F#, the code is
written as

The significant difference here is that the varia-

bles i, j, and k are aggregated into a three-item tuple
and then transferred together into an iteration function.

For a non-decomposed task, these two versions
seem to have little difference. However, when we try
to decompose the entire problem domain into several
parts, i.e., partition the (i, j, k) sequence, the C lan-
guage must repeat the code several times as

For each part, we must define the range of i, j, and k
individually. Thus, it is difficult to decompose the
domain using a custom decomposing mode. However,
in F# the code can be simplified as

Here, ‘iterFunc’ is the function for iterating an arbi-
trary (i, j, k) list, and the variable ‘gridsArray’ is an
array in which each item is a sequence of (i, j, k) tu-
ples. The sequence of (i, j, k) can be produced using
different methods. Thus, it is possible to decompose
the domain according to the model structure.

3.2 Parallelization using function language

The target for domain decomposition is to par-
allelize both FDTD meshing and simulation. For the
program based on the message passing interface
(MPI), the code in C language is written as

Another normal parallelization technique is
OpenMP, and its parallelization code is written as

These two code snippets indicate that we should

at first obtain the parallel identifier, and then write
two functions so as to obtain the beginning and end-
ing locations of i, j, and k for each part. We need to
manually create a parallel iteration loop to control the
parallelization, and the waiting function must be
placed in a correct position so as to be synchronous
for all processes if MPI is to be used. Functions in F#
can be parallelized more efficiently than those in the
C language, and a sample code is given as

Compared with the code in the previous section,
only one word ‘Parallel’ is added to indicate that all
parts should be iterated in parallel. Neither parallel
control loop nor waiting function is needed.

3.3 Parallelization for meshing process

In the ray tracing technique, each ray is inde-
pendent of one another, and each triangle on the
model surface is also independent. Thus, the paral-
lelization can be based on the rays or triangles and
even considering both. A sample of the final pseudo-
code is presented as follows:

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097

1092

4 Conformal FDTD using proposed meshing
technique

The conformal FDTD method is good at han-
dling arbitrary geometrics (Juntunen and Tsiboukis,
2000; Kong et al., 2012; Wang and Yin, 2013). In the
algorithm, the E-field is updated in the conventional
way, while the updating equation of the H-field needs
to be modified. In a source-free homogeneous iso-
tropic medium, the Faraday law can be expressed as

d

d d ,
dl S

l B s
t

    E (7)

where S is the part of area outside of the PEC part in
the FDTD cell. The parameter l is the integration tour
around the area S. According to Wang and Yin (2013),
we can obtain the updating equation for the H-field:

1/2 1/2
, 1/2, 1/2 , 1/2, 1/2 ()

Δ

, ,
n n

x i j k x i j k
x

t
H H

S i j k
 
    



, 1/2, 1 , , 1 , 1/2, , ,

, 1, 1/2 , 1, , , 1/2 , ,

.
   

   

   
       

n n n n
y i j k y i j k y i j k y i j k

n n n n
z i j k z i j k z i j k z i j k

E l E l

E l E l
 (8)

Here, , ,
n

x i j kl and Sx(i, j, k) should be recorded during

the meshing process. Equation in the y- and z-
direction can be similarly obtained. In an improved
conformal FDTD (Kong et al., 2012; Wang and Yin,
2013) method, the permittivity of free space is
changed into diag(εx, εy, εz), and a Courant coefficient
q is defined. The CFL stability condition is revised as

     2 2 2/ 1 / 1 / 1 / .x y zt q c x y z          (9)

A pair of parameters zy=Δx/Δy and zz=Δy/Δz are in-
troduced, and a spatial resolution coefficient is given
by

2 2 2/ ,R x y z      (10)

where λ=c/f+f0, and f0 is the frequency at which the
numerical dispersion error reaches its minimum. A set
of parameters q, R, zy, and zz were also proposed in
Wang and Yin (2013). Let

max

2 2
1

2 1

max

1

2 2 1

max

2 1

max

1

2 2 1

max

2 2
2

1 π
π 3 arcsin sin ,

3 3

π 1 1 / 1 / ,

sin
1 0.5(1)

si
[]

[

n ,
1 0.5(1)

sin
1 0.5(1)

sin ,
1 0.5(1)

1 .

]

y z

y
y

z
y

y z

A R
R

K R Z Z

K
a

A

K
Z

Z A

K
b

A

K
Z

Z A

K aZ bZ





   
   

  
     


 

    
   


 

    
   

  






















 (11)

Therefore, the best solution for εx, εy, and εz are (Kong
et al., 2012)

2 1

1 1

/ ()

arcsin / sin[/ (1{ },

,

0.5)]

.

x

y x

z x

K K q ab

q K K Q

a

a



 

 

 


 


 
  

 (12)

The Ex-field should be updated by

1

1/2

1/2

1/2

1/2

() ()

()

(

1 / 2, , 1 / 2, ,

1 / 2, 1 / 2,Δ

Δ 1 / 2, 1 / 2,

1 / 2, 1 / 2,Δt
,

Δ 1 / 2, 1 / 2,

)

()

()

n n
x x

n
z

n
x z

n
z

n
x z

E i j k E i j k

H i j kt

y H i j k

H i j k

z H i j k











  

  
   

    
  

   
    





 (13)

and both Ey- and Ez-field can be obtained following a
similar process (suppressed here).

4.1 Surface current calculation

Based on the boundary condition of current
continuity on the PEC surface, the current at point P
can be calculated by

() (

() () () ,

) ()

x y z

x y z

x y z

e e e

n n n

H H H

 
 

    
 
 

J P n P H P

P P P
(14)

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1093

where e is a unit vector, n is the normal vector at P,
and H is the corresponding magnetic field. It can be
expressed as a weighted sum of the neighbor surface
normal vectors, and for an arbitrary surface, we obtain

3 2 1 2

3 2 1 2

1 23 2

c

x x x x

y y y y

z zz z

    
         

      

n . (15)

Thus, the normal vector nv of a triangle vertex v is
calculated by

1

N
i i

v c n n , (16)

where i
cn is the surface vector for triangle i, and αi is

the angle between triangle i and the target vertex.
As FDTD uses the discrete Yee cell, Hx-, Hy-,

and Hz-components are separated into different loca-
tions (Fig. 6). We need to use an interception tech-
nique to obtain their values at the center location. For
the Hx-component, we obtain

11

22

12

21

(1, 1 / 2, 1 / 2),

(1, 3 / 2, 3 / 2),

(1, 1 / 2, 3 / 2),

(1, 3 / 2, 1 / 2),

i j k

i j k

i j k

i j k

   
    
    
    

Q

Q

Q

Q

 (17)

1 11 12
11 12() () ()z

x x x

d d d
H H H

z y y

 
     

P Q Q

2 21 22
21 22) () ,(z

x x

d d d
H H

z y y

 
     

Q Q (18)

where Qij is the location of the neighbour H-field
surrounding P, and dij is the distance between Qij and
P.

In some special cases, one or more neighbour
H-components for a surface vertex may be located
inside the model. Due to shielding effect, the elec-
tromagnetic field in the internal space is always zero.
Numerically, the value has a mutation on the surface
boundary. Under such circumstances, interceptions
will be extended into nine grids, and the final one can
be rewritten as

1
1

1 1

() ()
1 /1 /

1
),

/ /
(

1

N
x x x NN N

u uu u

dd
H H H

d d
 

 
 

P Q Q

(19)

where N is the count of non-zero Hx-component in the
nine surrounding grids.

In Kong et al. (2012), the weight coefficient di
was set to be the distance between the point P and the
neighbor H-field location Qi. However, a more ac-
curate result can be obtained as we set the coefficient
di as the distance between the centers of the grids
where P and Qi belong to them, respectively.

5 Numerical results and discussion

5.1 Mesh algorithm verification

At first, we select a sphere made of eight dif-
ferent material to test our meshing algorithm. Its ra-
dius is set to be 1 m. Fig. 7a shows our mesh result,
with each material rendered using a unique color. It is
evident that the mesh agrees well with the model. We
also capture the cross section of this sphere and show
the detected conformal edge information in Fig. 7b.
The distance between the center of an FDTD cell and
the real edge captured by conformal meshing will be
recorded during this process. Further, we generate the
FDTD mesh of a PEC tank model of 17.4 m×9.3 m×
8.5 m to verify our surface mesh result (Fig. 7c), and
the mesh also agrees well with the model.

5.2 Parallel efficiency analysis

We further use the tank model (Fig. 7c) to verify
the parallel efficiency of our developed parallel
FDTD meshing algorithm. Its efficiency can be de-
fined by a ‘naturally parallel coefficient’ ψ as the

Fig. 6 The point P is the one on the model surface at
which we want to record its current density

z

yx

P

E
H
(i+1/2, j+1/2, k+1/2)

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097

1094

percentage of the execution time that can be paral-
leled (Hill, 1996).

Table 1 shows the time allocation for each step in
the meshing process of a tank model. The value of ψ
is the sum of all steps which are parallelizable (Hill,
1996), and it is about 0.85. In most cases, it is difficult
to measure. However, the final speed-up S can be
easily measured according to S=TNP/TP (Hill, 1996),
where TNP is the time allocation for a non-parallelized
version and TP is the one for a parallelized version.
Therefore, its ideal parallel speed-up value can be
defined as S=NP/[(1−ψ)NP+ψ] (Hill, 1996). Further,
the value of ψ can be calculated by ψ=(NPS−NP)/
(NPS−1).

Table 2 shows the recorded naturally parallel
coefficients for meshing of the tank model. The
hardware is a Dell Vostro 260 workstation with 16 GB
DDR3-1600 MHz memory and an Intel I5-2400 (4
cores) CPU installed, and the operational system is
Windows 8 Enterprise Edition. Our algorithm is im-
plemented using Microsoft F# 3.0 with Visual Studio

2012. In Table 2, S2 and S4 are the speed-up values for
using two and four CPU cores in the same PC, re-
spectively, while ψ2 and ψ4 correspond to their natu-
rally parallel coefficients, respectively.

It is observed that the naturally parallel coeffi-

cient is closely related to the CPU count, and it is
about 60% and 70% for two and four CPU cores,
respectively, while the coefficient for the traditional
searching-based method is only about 47% (Hill,
1996). So, our proposed method has a higher parallel
efficiency.

5.3 Conformal FDTD method for surface current
calculation

To verify our conformal FDTD algorithm, we
first simulate the radar cross section (RCS) of a PEC
sphere with 1-m radius, and make a comparison be-
tween our proposed algorithm, FEKO software
(EMSS, South Africa), and MIE-theory (Fig. 8). We
then calculate its surface current distribution and
compare it with the FEKO software. The incident
wave is a Gaussian pulse and its 3-dB bandwidth is
900 MHz. It is evident that our improved FDTD al-
gorithm achieves good accuracy in capturing the
surface current distribution of a 3D PEC object.

We take a J-10 aircraft as another example
(Fig. 9a). The model is 6.86 m×3.85 m×1.86 m, and

(a) (b)

(c)

Fig. 7 FDTD meshes
(a) A sphere made of eight different materials; (b) Detected
edge information during the conformal meshing process for a
cross-section of the sphere; (c) A tank model. The red marks
are the centers of the FDTD cells, and the blue marks are the
real edges captured by conformal meshing. References to
color refer to the online version of this figure

Table 1 Time cost for each step in the meshing process
of a tank model

Step Parallelizability Time (s) Percentage

Read model No 3.12 7.00%
Build up parallel

rays
Yes 0.65 1.46%

Get interception
points

Yes 37.24 83.55%

Merge results No 1.47 3.21%

Output mesh No 2.09 4.69%

Table 2 Naturally parallel coefficients for meshing the
tank model

Mesh
size

CPU time (s)
S2 S4 ψ2 ψ4

1 2 4

1.0 13.7 7.7 5 1.779 2.765 0.609 0.702

0.5 38.7 21.5 14.1 1.798 2.738 0.615 0.699

0.1 777.8 424.2 265.3 1.833 2.932 0.625 0.720

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1095

the mesh grid size for all directions is chosen to be
0.01 m in Fig. 9b.We use our developed FDTD algo-
rithm together with the commercial CST (CST, USA)
software to simulate its surface current distribution in
the presence of a lightning electromagnetic pulse
(LEMP), as described by

0() (e e),   t tE t E k (20)

where E0 is the peak field value, k is a fixed coeffi-
cient, α and β are parameters to describe the rising-
and falling-edge of the LEMP. Here we choose k=1.06,
α=4.76×106 s−1, and β=4.0×106 s−1. The incident
electromagnetic pulse is from the +Z direction and is
polarized in the +Y direction. Fig. 9c shows that the
predicted surface current distribution of the aircraft
obtained using our algorithm agrees very well with
that of the CST (Fig. 9d).

The third example is the PEC tank model as
shown in Fig. 7c. The FDTD grid size is chosen to be
1/40 m, and the incident wave is the same as that used
in Fig. 10. Figs. 11a and 11b show the steady surface
current distribution when the incident LEMP comes
from +Z and +Y directions, respectively.

Table 3 shows the comparison for the recorded
maximum surface current density between the results
obtained using the developed FDTD and those of the
commercial CST software. The position of the
maximum surface current is marked in Figs. 10 and
11 with a red circle. We would like to say that our
algorithm can achieve good accuracy compared with
CST software.

Finally, we use our parallelized algorithm to
calculate the surface current distribution on an aircraft
carrier with 20 aircrafts. A surface current view is
shown in Fig. 12. It is observed that our algorithm

Table 3 The maximum current density comparison for
different models

Model
Maximum current

density using
CST (A/m2)

Maximum current
density using
FDTD (A/m2)

Relative
error

J-10 0.0372 0.0397 6.72%

Tank 45.2 44.1 2.43%

Fig. 8 Simulated RCS and surface current distributions
of a PEC sphere with 1-m radius
The RCS comparison of E-plane (a) and H-plane (b) using
our proposed algorithm, FEKO, and MIE-theory, respectively

(a)

(b)

(b) (a) (c) (d)

Fig. 9 Simulated surface current distribution of a J-10 aircraft at 300MHz in the presence of an LEMP incidence from
the +Z direction, and polarized in the +Y direction
(a) Original 3DS-Max model of the J-10 aircraft; (b) Its mesh grid view; (c) Surface current distributions obtained by our
algorithm; (d) Surface current distributions obtained by the commercial software CST. The maximum surface current is recorded
at the central breakout, as marked with a circle. References to color refer to the online version of this figure

R
ad

ar
 c

ro
ss

 s
ec

tio
n

(d
B

)
R

ad
ar

 c
ro

ss
 s

ec
tio

n
(d

B
)

Angle (°)

Angle (°)

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097

1096

works well with high efficiency. The scale and sim-
ulation information of such an extremely large
structure is shown in Table 4.

6 Conclusions

In this paper, a complete parallel meshing
method based on the ray racing technique has been
proposed with different meshes demonstrated, such as
regular and conformal ones. We have employed a new
computer language, Microsoft F#, for algorithm
coding to greatly take its parallelization advantage.
An improved conformal FDTD algorithm, integrated
with an improved surface current algorithm, has been
presented with higher simulation accuracy obtained.
In particular, we have tested its efficiency and capa-
bility by simulating a sphere ball made of eight dif-
ferent materials, a PEC tank model, an electrically
large J-10 aircraft model, and an aircraft carrier with
20 aircrafts, respectively. Both surface current and
field distributions have been successfully captured in
the presence of an electromagnetic pulse.

Fig. 10 The surface current obtained by the commercial
FEKO software (a) and our improved algorithm (b)

(b)

(a)

(b)

Fig. 11 Simulated surface current distribution of a PEC
tank model at 200 MHz in the presence of an LEMP
incidence from the +Z direction, and polarized in the +Y
direction
(a) Our algorithm; (b) Commercial CST software. The
maximum surface current occurred at the connection point
between the tank body and header, as marked with a circle.
References to color refer to the online version of this figure

(a)

Table 4 Problem scale and simulation information for
the mother board model with 20 aircrafts

Term Specification

Domain scale 328 m×72 m×59 m

Mesh size 0.1 m×0.1 m×0.1 m

Target frequency 300 MHz

Memory About 80 GB

CPU 48 cores/single core
Run time About 30 h/more than one week

(unfinished)

Fig. 12 Simulated surface current distribution at 300
MHz for a large mother board with 20 aircrafts carried
(here only one aircraft is shown)

Guo et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(12):1087-1097 1097

References
Benkler, S., Chavannes, N., Kuster, N., 2008. Mastering con-

formal meshing for complex CAD-based C-FDTD sim-
ulations. IEEE Antennas Propag. Mag., 50(2):45-57.
[doi:10.1109/MAP.2008.4562256]

Flubacher, R., Luebbers, R., 2003. FDTD mesh generation
using computer graphics technology. IEEE Antennas and
Propagation Society Int. Symp., p.333-336. [doi:10.1109/
APS.2003.1217464]

Guiffaut, C., Mahdjoubi, K., 2001. A parallel FDTD algorithm
using the MPI library. IEEE Antennas Propag. Mag.,
43(2):94-103. [doi:10.1109/74.924608]

Hadi, M.F., Mahmoud, S.F., 2007. Optimizing the compact-
FDTD algorithm for electrically large waveguiding
structures. Prog. Electromagn. Res., 75:253-269. [doi:10.
2528/PIER07060703]

Hill, J., 1996. Efficient Implementation of Mesh Generation
and FDTD Simulation of Electromagnetic Fields. MS
Thesis, Worcester Polytechnic Institute, MA, USA.

Hsu, H.T., Kuo, F.Y., Chou, H.T., 2009. Convergence study of
current sampling profiles for antenna design in the pres-
ence of electrically large and complex platforms using
FIT-UTD hybridization approach. Prog. Electromagn.
Res., 99:195-209. [doi:10.2528/PIER09092404]

Juntunen, J.S., Tsiboukis, T.D., 2000. Reduction of numerical
dispersion in FDTD method through artificial anisotropy.
IEEE Trans. Microw. Theory Tech., 48(4):582-588.
[doi:10.1109/22.842030]

Kim, J., Teixeira, F.L., 2011. Parallel and explicit finite-
element time-domain method for Maxwell’s equations.
IEEE Trans. Antennas Propag., 59(6):2350-2356. [doi:10.
1109/TAP.2011.2143682]

Kong, L.Y., Wang, J., Yin, W.Y., 2012. A novel dielectric
conformal FDTD method for computing SAR distribution
of the human body in a metallic cabin illuminated by an
intentional electromagnetic pulse (IEMP). Prog. Elec-
tromagn. Res., 126:355-373. [doi:10.2528/PIER11112702]

Lei, J.Z., Liang, C.H., Ding, W., et al., 2008. EMC analysis of
antennas mounted on electrically large platforms with

parallel FDTD method. Prog. Electromagn. Res., 84:205-
220. [doi:10.2528/PIER08071303]

Shan, X., Guan, S., Liu, Z., et al., 2013. A new energy har-
vester using a piezoelectric and suspension electromag-
netic mechanism. J. Zhejiang Univ.-Sci. A (Appl. Phys. &
Eng.), 14(12):890-897. [doi:10.1631/jzus.A1300210]

Srisukh, Y., Nehrbass, J., Teixeira, F.L., et al., 2002. An ap-
proach for automatic grid generation in three-dimensional
FDTD simulations of complex geometries. IEEE Anten-
nas Propag. Mag., 44(4):75-80. [doi:10.1109/MAP.2002.
1043151]

Taflove, A., Hagness, S.C., 2000. Computational Electrody-
namics: the Finite-Difference Time-Domain Method (2nd
Ed.). Artech House, Norwood, MA, USA.

Vaccari, A., Lesina, A.C., Cristoforetti, L., et al., 2011. Parallel
implementation of a 3D subgridding FDTD algorithm for
large simulations. Prog. Electromagn. Res., 120:263-292.

Wang, H., Tang, L., Guo, Y., et al., 2014. A 2DOF hybrid
energy harvester based on combined piezoelectric and
electromagnetic conversion mechanisms. J. Zhejiang
Univ.-Sci. A (Appl. Phys. & Eng.), 15(9):711-722. [doi:10.
1631/jzus.A1400124]

Wang, J., Yin, W.Y., 2013. Development of a novel FDTD
(2, 4)-compatible conformal scheme for electromagnetic
computations of complex curved PEC objects. IEEE
Trans. Antennas Propag., 61(1):299-309. [doi:10.1109/
TAP.2012.2216851]

Xiong, R., Chen, B., Han, J.J., et al., 2012. Transient resistance
analysis of large grounding systems using the FDTD
method. Prog. Electromagn. Res., 132:159-175. [doi:10.
2528/PIER12082601]

Yang, M., Chen, Y., 1999. AutoMesh: an automatically ad-
justable, nonuniform, orthogonal FDTD mesh generator.
IEEE Antennas Propag. Mag., 41(2):13-19. [doi:10.1109/
74.769687]

Yu, W.H., Mittra, R., 2000. A conformal FDTD software
package modeling antennas and microstrip circuit com-
ponents. IEEE Antennas Propag. Mag., 42(5):28-39.
[doi:10.1109/74.883505]

