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Abstract:    A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm, based on the ray tracing technique, 
is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones. 
The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization ad-
vantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algo-
rithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10 
aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are 
validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship. 
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1  Introduction 
 

Various electromagnetic problems (Shan et al., 
2013; Wang et al., 2014) have been solved using the 
finite-difference time-domain (FDTD) method due to 
its strong capabilities (Taflove and Hagness, 2000). 
However, when it is used to simulate a structure, you 
always need to generate its applicable FDTD meshes. 
In particular for a conformal FDTD algorithm, an 
appropriate meshing is very important because it is 
directly related to its simulation accuracy. In fact, 
most commercial FDTD softwares, such as XFDTD 
(Remcom, USA) and GEMS (2Comu, USA), do have 
their own meshing modules, and in addition, there are 
some professional meshing tools (Hill, 1996; Yang 
and Chen, 1999; Srisukh et al., 2002; Flubacher and 

Luebbers, 2003; Benkler et al., 2008).  
The real-world model, such as an aircraft or a 

ship, often contains millions of surface patches. Thus, 
its meshing process would take several hours and 
even much longer. Under such circumstances, an 
advanced parallel meshing technique will be useful 
for shortening the meshing time. To the best of our 
knowledge, although parallel FDTD simulations have 
been recently achieved (Yu and Mittra, 2000; Guiffaut 
and Mahdjoubi, 2001; Lei et al., 2008), there is still a 
large area for the improvement of their efficiencies 
for quickly solving complex electromagnetic prob-
lems in the presence (absence) of an intentional elec-
tromagnetic interference (IEMI) (Hadi and Mahmoud, 
2007; Vaccari et al., 2011; Xiong et al., 2012).  

Note that it is not convenient to use the tradi-
tional coding C-language to develop a parallel 
meshing algorithm for FDTD simulation. A function 
language would be a better choice, as its advantage 
for meshing parallelization can be comprehensively 
exploited. During the implementation of a parallel 
FDTD algorithm, its post-process is also very  
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important. However, the stair-case error of the Yee’s 
FDTD cell often degrades its simulation accuracy 
while characterizing the surface current distribution 
of an arbitrary perfect electric conductor (PEC) 
structure. Under such circumstances, a finite-element 
time-domain (FETD) method based on unstructured 
meshes should be an alternative, and it can remove the 
stair-case error in an FDTD simulation (Kim and 
Teixeira, 2011). To relieve such a problem, an ap-
propriate approximation for FDTD meshing can be 
employed, and some studies on this topic can be 
found (Juntunen and Tsiboukis, 2000; Hsu et al., 2009; 
Wang and Yin, 2013). However, for a complex PEC 
geometry, the accuracy of an FDTD simulation for its 
surface current distribution is still lower in compari-
son with the finite element and integral equation 
methods. 

In this paper, an efficient parallel FDTD meshing 
technique is proposed, and it is further integrated into 
the conformal FDTD simulation for handling elec-
trically large 3D structures.  

 
 

2  Meshing methodology 
 
Traditional meshing techniques usually use 

searching-based parity count methods (Hill, 1996); 
i.e., one searching origin point is selected for an ar-
bitrary model, and then a line between the origin point 
and the center of an FDTD cell is drawn. The FDTD 
grid must be inside the model when the interception 
point number is odd; otherwise, the grid should be 
outside the model. With this approach, some prob-
lems will be caused by singularity and boundary (Hill, 
1996); in addition, the searching-based parity count 
algorithm is not parallelizable in nature. Here, we 
present a flexible parallel ray tracing technique for 
FDTD meshing which includes both high efficiency 
and high accuracy.  

2.1  Ray tracing technique 

Most 3D models, which are built using profes-
sional modeling software, are usually described by 
their surfaces, and they always consist of a huge 
number of triangle pieces. Therefore, it is important to 
snip these triangles into the FDTD rectangular 
meshes. To do this, we need to first extract all inter-
ception points between the triangles and rectangles. 

Fig. 1 shows the ray tracing technique implemented 
for treating an almond-shaped model, and when using 
a ray to penetrate it, we usually obtain two intercep-
tion points. 

 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 1, the coordinates of triangle ABC are 

denoted by A=(x1, y1), B=(x2, y2), and C=(x3, y3) in the 
ABC local plane. Then an arbitrary location in this 
local plane can be represented using the method of 
vector superposition, i.e., 

 
P(x, y)=uA+vB+wC,                    (1) 

where 
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   (2) 

 

For the point to be inside the triangle, the values 
of u, v, and w must be between 0 and 1; otherwise, one 
or two of them will be either larger than 1 or smaller 
than 0. 

According to Eq. (2), it can be determined that 
such a ray tracing technique is applicable only for a 
2D space. However, for most complex geometrics, 
both rays and triangles should be in a 3D space, and 
thus we must map them into the 2D space as shown in 
Fig. 1. Here, a set of parallel rays is used and a 3D 
vector is mapped into a 2D space by removing one of 
its components x, y, and z from the triangle vertexes. 
Note that some surfaces may be degenerated into lines 
under such circumstance. Therefore, a degenerated 
detection step should be taken after the mapping 
process. The detection function is derived as follows: 

Fig. 1  The scheme of ray tracing technique 
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At first, the triangle is converted into two inde-
pendent vectors, as described by  

 

1

2

,

.

 
  

v A B

v A C
                             (3) 

 

Then, we determine the corner of the two vectors by 
 

1 2
1 2

1 2

( ) arcco, s ,C 




v v
v v

v v
,                    (4) 

 

where ||v|| is the length of vector v, defined as 
 

2 2( , ) ,x y x y v                     (5) 

and 
v1(x1, y1)·v2(x2, y2)=x1x2+y1y2.            (6) 

 

Note that in some extreme cases, a triangle may 
be parallel with the tracing ray, and then vector v1 or 
v2 may be zero. Under such circumstances, the corner 
should be defined as zero. 

By taking the numerical accuracy of FDTD 
meshing into account, we introduce an error tolerance 
ε; i.e., the triangle is invalid when |C|≤ε

 
(10−7 in cur-

rent version). Therefore, this triangle should be 
dropped, and this is acceptable because it usually 
occurs when the triangle is nearly parallel with the 
tracing ray. As explained later in Section 2.3, we can 
properly capture this triangle in another direction, 
since one triangle surface cannot be parallel with x-, 
y-, and z-direction at the same time.  

2.2  Parallel FDTD meshing method 

The complete parallel FDTD meshing process is 
presented as follows:  

Collect intersection points: Obtain intersection 
points of the ray with each triangle piece, as it is for an 
individual element and suitable for executing this 
procedure in parallel. 

Snip with FDTD grid: Use one algorithm to snip 
all intersection points with the FDTD mesh. As 
shown in Fig. 2a, the traditional method for snipping 
is just to select the grid point which is the nearest to 
the intersection point. There are two of three com-
ponents at (x, y, z) fixed by the ray, but only one is 
calculated.  

Collect interception points and generate mesh: 
For an empty shell structure in Fig. 2b, we just collect 
all intersection points. For a solid object, however, a 
ray may penetrate it several times; i.e., it must Enter-> 

Leave->Enter->…->Enter->Leave the object. Each 
entering time corresponds to a leaving time, and we 
split all intersection points into a tuple of (Enter, 
Leave) pairs. As shown in Fig. 2c, the ray enters the 
object from the second grid, and leaves it from the 
fifth grid, and we record it as (2, 5). Then, we expand 
each tuple into a grid sequence.  

The calculations for all interception points here 
are independent of one another, and this procedure 
can be naturally parallelized. As we obtain all inter-
ception information for the entire model with multiple 
parallel rays, the structure mesh can be completely 
reconstructed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3  Meshing for special cases  

2.3.1  Parallel surface problem 

When the model has some surfaces that are par-
allel with the rays, the ray tracing may provide wrong 
mesh information for the structure, as it may result in 

 

Xn
Xn+2 

d1 d2 

(a)

 

(b)

 

(c)

Fig. 2  Schematic of the ray tracing technique 
(a) Single ray tracing for a surface patch; (b) Multiple ray 
tracings for an empty shell structure; (c) Multiple ray tracings 
for a solid structure 
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no or a large number of intersection points (Fig. 3a). 
So, we need to change the ray direction as shown in 
Fig. 3b. For a complex 3D model, we always pene-
trate it using a set of parallel rays with multiple di-
rections so as to improve the meshing accuracy. As 
mentioned in Section 2.1, we use the orthogonal x-, y-, 
and z-direction as the tracing approach to simplify the 
3D-2D mapping process. 

2.3.2  Edge problem 

The edge problem may occur when using the 
searching-based parity count method (Hill, 1996); i.e., 
as the ray grazes the model edge, the wrong mesh 
information is generated (Fig. 4a). However, our 
proposed method does not have such a problem (Fig. 
4b). When there is only one interception point, it will 
be simply excluded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4  Conformal meshing technique 

We know that the traditional searching-based 
meshing algorithm often uses model facets to build up 
its mesh. In conformal FDTD simulation, as will be 
introduced in Section 4, the location of the intercep-
tion point should also be characterized, while the 
conventional meshing process just ignores them. 
Actually, its realization is very complex, since one 
Yee’s cell has 24 independent edges, and the ray 
tracing technique must be applied individually for 
each one to calculate the distance between the inter-
ception point and the end point of the edge. A 2D 

example is shown in Fig. 5, where the interception 
points and distances for all edges are recorded.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3  Parallelized implementation 
 

Most FDTD algorithms are often realized using 
the traditional languages of C and Fortran. For a par-
allel FDTD simulation, however, the function lan-
guage should provide a better choice, where all var-
iables are unchangeable, i.e., immutable. Here, we 
use the Microsoft F# (Microsoft, USA) to show its 
difference from the traditional C language. 

3.1  Domain decomposition method using function 
language 

To achieve FDTD parallelization, its iteration 
domain has to be at first decomposed. For the C lan-
guage, the general FDTD iteration code is written as 

 
 

 

 

 

dy 

(a) (b)

Fig. 3  Rays are parallel with (a) or perpendicular to (b)
the surface to be meshed 

Search 
origin 

Target grid 

(a) 

Interception points

(b) 

Fig. 4  Wrong (a) and correct (b) FDTD meshing for a 3D
structure 

Fig. 5  Schematic of the conformal meshing technique
(a) A Yee-cell in the conformal FDTD algorithm; (b) The 
distance between the interception point and the endpoint being
recorded during conformal meshing 
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However, for the function language F#, the code is 
written as 

 
 
 
 
 
The significant difference here is that the varia-

bles i, j, and k are aggregated into a three-item tuple 
and then transferred together into an iteration function. 

For a non-decomposed task, these two versions 
seem to have little difference. However, when we try 
to decompose the entire problem domain into several 
parts, i.e., partition the (i, j, k) sequence, the C lan-
guage must repeat the code several times as 

 
 
 
 
 
 
 
 
 
 
 

 
For each part, we must define the range of i, j, and k 
individually. Thus, it is difficult to decompose the 
domain using a custom decomposing mode. However, 
in F# the code can be simplified as 
 
 

 

 

Here, ‘iterFunc’ is the function for iterating an arbi-
trary (i, j, k) list, and the variable ‘gridsArray’ is an 
array in which each item is a sequence of (i, j, k) tu-
ples. The sequence of (i, j, k) can be produced using 
different methods. Thus, it is possible to decompose 
the domain according to the model structure. 

3.2  Parallelization using function language 

The target for domain decomposition is to par-
allelize both FDTD meshing and simulation. For the 
program based on the message passing interface 
(MPI), the code in C language is written as 
 

 
 
 
 
 

Another normal parallelization technique is 
OpenMP, and its parallelization code is written as 

 
 

 

 

 

 
These two code snippets indicate that we should 

at first obtain the parallel identifier, and then write 
two functions so as to obtain the beginning and end-
ing locations of i, j, and k for each part. We need to 
manually create a parallel iteration loop to control the 
parallelization, and the waiting function must be 
placed in a correct position so as to be synchronous 
for all processes if MPI is to be used. Functions in F# 
can be parallelized more efficiently than those in the 
C language, and a sample code is given as 
 
 

 

 

Compared with the code in the previous section, 
only one word ‘Parallel’ is added to indicate that all 
parts should be iterated in parallel. Neither parallel 
control loop nor waiting function is needed. 

3.3  Parallelization for meshing process 

In the ray tracing technique, each ray is inde-
pendent of one another, and each triangle on the 
model surface is also independent. Thus, the paral-
lelization can be based on the rays or triangles and 
even considering both. A sample of the final pseudo- 
code is presented as follows: 
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4  Conformal FDTD using proposed meshing 
technique 
 

The conformal FDTD method is good at han-
dling arbitrary geometrics (Juntunen and Tsiboukis, 
2000; Kong et al., 2012; Wang and Yin, 2013). In the 
algorithm, the E-field is updated in the conventional 
way, while the updating equation of the H-field needs 
to be modified. In a source-free homogeneous iso-
tropic medium, the Faraday law can be expressed as 

 
d

d d ,
dl S

l B s
t

    E                    (7) 

 
where S is the part of area outside of the PEC part in 
the FDTD cell. The parameter l is the integration tour 
around the area S. According to Wang and Yin (2013), 
we can obtain the updating equation for the H-field: 
 

1/2 1/2
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 (8) 

 

Here, , ,
n

x i j kl  and Sx(i, j, k) should be recorded during 

the meshing process. Equation in the y- and z- 
direction can be similarly obtained. In an improved 
conformal FDTD (Kong et al., 2012; Wang and Yin, 
2013) method, the permittivity of free space is 
changed into diag(εx, εy, εz), and a Courant coefficient 
q is defined. The CFL stability condition is revised as 
 

     2 2 2/ 1 / 1 / 1 / .x y zt q c x y z           (9) 

 
A pair of parameters zy=Δx/Δy and zz=Δy/Δz are in-
troduced, and a spatial resolution coefficient is given 
by 
 

2 2 2/ ,R x y z                   (10) 

 
where λ=c/f+f0, and f0 is the frequency at which the 
numerical dispersion error reaches its minimum. A set 
of parameters q, R, zy, and zz were also proposed in 
Wang and Yin (2013). Let  
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       (11) 

 
Therefore, the best solution for εx, εy, and εz are (Kong 
et al., 2012) 
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The Ex-field should be updated by 
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     (13) 

 
and both Ey- and Ez-field can be obtained following a 
similar process (suppressed here). 

4.1  Surface current calculation 

Based on the boundary condition of current 
continuity on the PEC surface, the current at point P 
can be calculated by 
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where e is a unit vector, n is the normal vector at P, 
and H is the corresponding magnetic field. It can be 
expressed as a weighted sum of the neighbor surface 
normal vectors, and for an arbitrary surface, we obtain 

 

3 2 1 2

3 2 1 2

1 23 2

c

x x x x

y y y y

z zz z
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n .                (15) 

 
Thus, the normal vector nv of a triangle vertex v is 
calculated by 
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N
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v c n n ,                       (16) 

 

where i
cn  is the surface vector for triangle i, and αi is 

the angle between triangle i and the target vertex. 
As FDTD uses the discrete Yee cell, Hx-, Hy-, 

and Hz-components are separated into different loca-
tions (Fig. 6). We need to use an interception tech-
nique to obtain their values at the center location. For 
the Hx-component, we obtain 
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where Qij is the location of the neighbour H-field 
surrounding P, and dij is the distance between Qij and 
P. 

In some special cases, one or more neighbour 
H-components for a surface vertex may be located 
inside the model. Due to shielding effect, the elec-
tromagnetic field in the internal space is always zero. 
Numerically, the value has a mutation on the surface 
boundary. Under such circumstances, interceptions 
will be extended into nine grids, and the final one can 
be rewritten as 

 

1
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1 1
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d d
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 

P Q Q   

(19) 

 
where N is the count of non-zero Hx-component in the 
nine surrounding grids.  

In Kong et al. (2012), the weight coefficient di 
was set to be the distance between the point P and the 
neighbor H-field location Qi. However, a more ac-
curate result can be obtained as we set the coefficient 
di as the distance between the centers of the grids 
where P and Qi belong to them, respectively. 

 
 
 
 
 
 
 
 
 
 

 
 

5  Numerical results and discussion 

5.1  Mesh algorithm verification 

At first, we select a sphere made of eight dif-
ferent material to test our meshing algorithm. Its ra-
dius is set to be 1 m. Fig. 7a shows our mesh result, 
with each material rendered using a unique color. It is 
evident that the mesh agrees well with the model. We 
also capture the cross section of this sphere and show 
the detected conformal edge information in Fig. 7b. 
The distance between the center of an FDTD cell and 
the real edge captured by conformal meshing will be 
recorded during this process. Further, we generate the 
FDTD mesh of a PEC tank model of 17.4 m×9.3 m× 
8.5 m to verify our surface mesh result (Fig. 7c), and 
the mesh also agrees well with the model. 

5.2  Parallel efficiency analysis 

We further use the tank model (Fig. 7c) to verify 
the parallel efficiency of our developed parallel 
FDTD meshing algorithm. Its efficiency can be de-
fined by a ‘naturally parallel coefficient’ ψ as the  
 

Fig. 6  The point P is the one on the model surface at 
which we want to record its current density 
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percentage of the execution time that can be paral-
leled (Hill, 1996).  

Table 1 shows the time allocation for each step in 
the meshing process of a tank model. The value of ψ 
is the sum of all steps which are parallelizable (Hill, 
1996), and it is about 0.85. In most cases, it is difficult 
to measure. However, the final speed-up S can be 
easily measured according to S=TNP/TP (Hill, 1996), 
where TNP is the time allocation for a non-parallelized 
version and TP is the one for a parallelized version. 
Therefore, its ideal parallel speed-up value can be 
defined as S=NP/[(1−ψ)NP+ψ] (Hill, 1996). Further, 
the value of ψ can be calculated by ψ=(NPS−NP)/ 
(NPS−1). 

Table 2 shows the recorded naturally parallel 
coefficients for meshing of the tank model. The 
hardware is a Dell Vostro 260 workstation with 16 GB 
DDR3-1600 MHz memory and an Intel I5-2400 (4 
cores) CPU installed, and the operational system is 
Windows 8 Enterprise Edition. Our algorithm is im-
plemented using Microsoft F# 3.0 with Visual Studio 

2012. In Table 2, S2 and S4 are the speed-up values for 
using two and four CPU cores in the same PC, re-
spectively, while ψ2 and ψ4 correspond to their natu-
rally parallel coefficients, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is observed that the naturally parallel coeffi-

cient is closely related to the CPU count, and it is 
about 60% and 70% for two and four CPU cores, 
respectively, while the coefficient for the traditional 
searching-based method is only about 47% (Hill, 
1996). So, our proposed method has a higher parallel 
efficiency. 

5.3  Conformal FDTD method for surface current 
calculation 

To verify our conformal FDTD algorithm, we 
first simulate the radar cross section (RCS) of a PEC 
sphere with 1-m radius, and make a comparison be-
tween our proposed algorithm, FEKO software 
(EMSS, South Africa), and MIE-theory (Fig. 8). We 
then calculate its surface current distribution and 
compare it with the FEKO software. The incident 
wave is a Gaussian pulse and its 3-dB bandwidth is 
900 MHz. It is evident that our improved FDTD al-
gorithm achieves good accuracy in capturing the 
surface current distribution of a 3D PEC object. 

We take a J-10 aircraft as another example  
(Fig. 9a). The model is 6.86 m×3.85 m×1.86 m, and 

(a) (b) 

(c)

Fig. 7  FDTD meshes 
(a) A sphere made of eight different materials; (b) Detected 
edge information during the conformal meshing process for a 
cross-section of the sphere; (c) A tank model. The red marks
are the centers of the FDTD cells, and the blue marks are the 
real edges captured by conformal meshing. References to 
color refer to the online version of this figure 

Table 1  Time cost for each step in the meshing process 
of a tank model 

Step Parallelizability Time (s) Percentage

Read model No 3.12 7.00% 
Build up parallel 

rays 
Yes 0.65 1.46% 

Get interception 
points 

Yes 37.24 83.55%

Merge results No 1.47 3.21% 

Output mesh No 2.09 4.69% 

 

Table 2  Naturally parallel coefficients for meshing the 
tank model 

Mesh 
size 

CPU time (s) 
S2 S4 ψ2 ψ4 

1 2 4 

1.0 13.7 7.7 5 1.779 2.765 0.609 0.702

0.5 38.7 21.5 14.1 1.798 2.738 0.615 0.699

0.1 777.8 424.2 265.3 1.833 2.932 0.625 0.720
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the mesh grid size for all directions is chosen to be 
0.01 m in Fig. 9b.We use our developed FDTD algo-
rithm together with the commercial CST (CST, USA) 
software to simulate its surface current distribution in 
the presence of a lightning electromagnetic pulse 
(LEMP), as described by 

 

0( ) (e e ),   t tE t E k                (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where E0 is the peak field value, k is a fixed coeffi-
cient, α and β are parameters to describe the rising- 
and falling-edge of the LEMP. Here we choose k=1.06, 
α=4.76×106 s−1, and β=4.0×106 s−1. The incident 
electromagnetic pulse is from the +Z direction and is 
polarized in the +Y direction. Fig. 9c shows that the 
predicted surface current distribution of the aircraft 
obtained using our algorithm agrees very well with 
that of the CST (Fig. 9d). 

The third example is the PEC tank model as 
shown in Fig. 7c. The FDTD grid size is chosen to be 
1/40 m, and the incident wave is the same as that used 
in Fig. 10. Figs. 11a and 11b show the steady surface 
current distribution when the incident LEMP comes 
from +Z and +Y directions, respectively. 

Table 3 shows the comparison for the recorded 
maximum surface current density between the results 
obtained using the developed FDTD and those of the 
commercial CST software. The position of the 
maximum surface current is marked in Figs. 10 and 
11 with a red circle. We would like to say that our 
algorithm can achieve good accuracy compared with 
CST software. 

Finally, we use our parallelized algorithm to 
calculate the surface current distribution on an aircraft 
carrier with 20 aircrafts. A surface current view is 
shown in Fig. 12. It is observed that our algorithm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  The maximum current density comparison for 
different models 

Model
Maximum current 

density using 
CST (A/m2) 

Maximum current 
density using 
FDTD (A/m2) 

Relative 
error 

J-10 0.0372 0.0397 6.72%

Tank 45.2 44.1 2.43%

Fig. 8  Simulated RCS and surface current distributions
of a PEC sphere with 1-m radius 
The RCS comparison of E-plane (a) and H-plane (b) using 
our proposed algorithm, FEKO, and MIE-theory, respectively

(a)

(b) 

 

 

(b) (a) (c) (d)

Fig. 9  Simulated surface current distribution of a J-10 aircraft at 300MHz in the presence of an LEMP incidence from
the +Z direction, and polarized in the +Y direction 
(a) Original 3DS-Max model of the J-10 aircraft; (b) Its mesh grid view; (c) Surface current distributions obtained by our
algorithm; (d) Surface current distributions obtained by the commercial software CST. The maximum surface current is recorded
at the central breakout, as marked with a circle. References to color refer to the online version of this figure 
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works well with high efficiency. The scale and sim-
ulation information of such an extremely large 
structure is shown in Table 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6  Conclusions 
 

In this paper, a complete parallel meshing 
method based on the ray racing technique has been 
proposed with different meshes demonstrated, such as 
regular and conformal ones. We have employed a new 
computer language, Microsoft F#, for algorithm 
coding to greatly take its parallelization advantage. 
An improved conformal FDTD algorithm, integrated 
with an improved surface current algorithm, has been 
presented with higher simulation accuracy obtained. 
In particular, we have tested its efficiency and capa-
bility by simulating a sphere ball made of eight dif-
ferent materials, a PEC tank model, an electrically 
large J-10 aircraft model, and an aircraft carrier with 
20 aircrafts, respectively. Both surface current and 
field distributions have been successfully captured in 
the presence of an electromagnetic pulse. 

Fig. 10  The surface current obtained by the commercial
FEKO software (a) and our improved algorithm (b) 

(b) 

(a) 

(b) 

Fig. 11  Simulated surface current distribution of a PEC
tank model at 200 MHz in the presence of an LEMP
incidence from the +Z direction, and polarized in the +Y
direction 
(a) Our algorithm; (b) Commercial CST software. The
maximum surface current occurred at the connection point
between the tank body and header, as marked with a circle.
References to color refer to the online version of this figure

 

(a)

Table 4  Problem scale and simulation information for 
the mother board model with 20 aircrafts 

Term Specification 

Domain scale 328 m×72 m×59 m 

Mesh size 0.1 m×0.1 m×0.1 m 

Target frequency 300 MHz 

Memory About 80 GB 

CPU 48 cores/single core 
Run time About 30 h/more than one week 

(unfinished) 

Fig. 12  Simulated surface current distribution at 300
MHz for a large mother board with 20 aircrafts carried
(here only one aircraft is shown) 
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