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Abstract: In this paper, we aim to illustrate the concept of mutually trustworthy human-machine knowledge automation
(HM-KA) as the technical mechanism of hybrid augmented intelligence (HAI) based complex system cognition, management,
and control (CMC). We describe the historical development of complex system science and analyze the limitations of human
intelligence and machine intelligence. The need for using human-machine HAI in complex systems is then explained in detail.
The concept of “mutually trustworthy HM-KA” mechanism is proposed to tackle the CMC challenge, and its technical
procedure and pathway are demonstrated using an example of corrective control in bulk power grid dispatch. It is expected that
the proposed mutually trustworthy HM-KA concept can provide a novel and canonical mechanism and benefit real-world
practices of complex system CMC.
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1 Introduction

1.1 Review of complex system science

The science of complex systems is the interdis‐
ciplinary fusion of complexity science and system
science. In general, a complex system has the following
characteristics: openness (the system continuously

exchanges matter, energy, and information with its
ambient environment); component complexity (the
system has a complex, hierarchical architecture and
operational process, and the system components are
inter-connected, interactive, and heterogeneous); emer‐
gence (the system may develop new and unforeseen
characteristics in the process of its operation); self-
organization and adaptivity (when exchanges occur
between the system and its environment, the system
can adjust its own architecture, functionalities, and
behaviors to actively form the capability of self-
learning and self-adaptivity). As a result, the research
objects of complex systems include system function‐
alities, behaviors, and their relations, and system charac‐
teristics of emergence, self-organization, autonomy, and
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self-evolution. The theory, approaches, and techniques
of complex systems are applied with profound impact
in the areas of managing and controlling real-world
complex systems, such as living, aerospace, Earth
systems, social organization, economic, military, and
complex engineering systems.

The development of complex system science has
a history going back over 100 years and roughly
experienced six eras. It was represented by the evolu‐
tionary theory and statistical physics from the 1930s
to the 1950s, by the system theory (von Bertalanffy,
1968), cybernetics (Wiener, 1948), and informatics
(Shannon, 1948) from the 1950s to the 1960s, by the
dissipative structure theory (Prigogine and Lefever,
1973), catastrophe theory (Thom, 1975), and syner‐
getics (Haken, 1977) from the 1970s to the 1980s, by
the chaos (Lorenz, 1963), fractal genometry (Mandel‐
brot, 1989), and critical phenomena theories (Binney
et al., 1992) from the 1980s to the 1990s, and by
the complex adaptive system theory (Holland, 1995),
multi-agent simulation theory, and artificial life and
society theory from the 1990s to the 2000s, providing
the main contributions to the science. After 2000,
with the rapid development of data science and artifi‐
cial intelligence (AI), research of complex systems
has entered the era of “data science,” represented by
the complex system analysis by big data and AI (Hey
et al., 2009), complex network theory (Manoj et al.,
2018), parallel system theory, and the Artificial sys‐
tems, Computational experiments, and Parallel execu‐
tion (ACP) approach as shown in Fig. 1 (Wang, 2004).

A large number of complex system modeling,
simulation, management, and control approaches have
been developed (Thurner et al., 2018). These include
mechanism, statistical and regression analysis, analytic
hierarchical decomposition methods, Monte-Carlo

analysis, grey system analysis, fuzzy sets, and artificial
neural networks recently. Popular approaches include
composite modeling, hybrid modeling, agent-based
modeling, Petri-net-based modeling, Markov process
based models, bootstrap-based models, cellular autom‐
ata, complex adaptive systems, complex self-organizing
systems, and fractal theory. The control approaches
in complex systems also experienced multiple phases
of development, including synthetic multi-modal linear
control (which uses multiple system modes and the
corresponding linear controller to cope with complex
scenarios) and nonlinear control (which suffers from
modeling limitations). Recently, intelligent control
becomes a mainstream approach for complex systems,
including fuzzy control, adaptive dynamic program‐
ming, expert systems, and knowledge-aided intelligent
control (Miller and Page, 2007; Liu et al., 2008;
Sayama, 2015; Manoj et al., 2018; Thurner et al.,
2018; Wang and Chen, 2020).

1.2 Complex systems and human-machine hybrid
augmented intelligence (HM-HAI)

The transition of complex system cognition,
management, and control (CMC) theory and approaches
into big data and AI-based technology is in progress.
The new generation of information technology brings
new opportunities for complex system research and
application. However, its limitations in applicability
are also fully revealed:

1. Machine learning models of the new genera‐
tion of AI, represented by deep neural networks, rely
mostly on training by big data. As a result, a large
volume of unbiased numerical or semantical train‐
ing data is essential for AI-based complex system mod‐
eling and analysis. Most machine learning models rely
on labeled data for supervised or semi-supervised
learning. As a result, a huge amount of work on data
labeling is necessary to train usable AI models. This
creates a major barrier for AI applicability. In fact, for
real-world complex system applications, it is usually
difficult to acquire a massive amount of unbiased,
labeled data for model training.

2. The lack of explainability and interpretability
also brings severe issues for AI applicability to critical
management and control problems. On one hand, AI
usually relies on deep neural networks for decision-
making. However, these models are usually large-scale
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Fig. 1 The parallel system theory and the Artificial systems,
Computational experiments, and Parallel execution (ACP)
approach
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models and opaque to human minds. On the other
hand, most real-world critical decisions in complex
systems need expandability and interpretability to
ensure their safety and completeness.

3. Although transfer learning techniques exist
and are under development, their applicability is very
limited. Usually, trained AI models from certain data‐
sets and with dedicated purposes are not universal or
transferrable. As a result, it is difficult to transfer a
model from one problem or scenario to another.

In a nutshell, current AI techniques are normally
applicable to decision problems with sufficient training
data, clear objectives, and distinct boundary conditions
of problem definition. However, complex system CMC
problems are usually highly abstract and ambiguous,
and cannot be solved solely by AI tools.

In 1999, Science published the special issue on
complex systems, with the tag line “beyond reduc‐
tionism” (Gallagher and Appenzeller, 1999). How‐
ever, this does not mean that reductionism should be
abandoned. The analysis of complex systems needs to
follow the scientific principle of integrating holism and
reductionism (Liu et al., 2008). Therefore, as com‐
plex systems usually possess a large number of hier‐
archical components and organizations, their analysis at
different hierarchies also needs different methodolo‐
gies and approaches. Some of the complex system
CMC tasks are beyond human cognition capability,
while some CMC tasks are highly abstract and cannot
be solved by current AI techniques. As a result, human
intelligence or machine intelligence alone cannot solve
all the complex system problems given the limitation
of the current state-of-the-art technologies.

There is an obvious and huge barrier between
the current needs of complex system analysis and the
limitations of machine intelligence. Complex system
problems have the characteristics of complexity, uncer‐
tainty, relevance, and openness, all of which rely on
human intelligence for high-level, abstract thinking.
Human cognition capability is limited, information
processing bandwidth is low, processing speed is low,
and the ability of accurate calculation is limited. There‐
fore, complex system CMC based solely on human
intelligence usually cannot support secure, efficient,
and accurate decisions and operations. These need
assistive tools such as computing, simulation, and AI
for broadening cognition bandwidth and enhancing

decision efficiency. As a result, in the process of com‐
plex system management and control, especially on
critical decisions and execution, human minds need to
divide problems into the ones with clear boundaries
for machine intelligence based problem solvers. Also,
it is human responsibility for how to design appropriate
mechanisms for acquiring a vast amount of unbiased
and high-quality data for robust training and model‐
ing processes.

To tackle the above challenges brought by
CMC, human-machine hybrid augmented intelligence
(HM-HAI) has recently emerged as a new form of
AI; i.e., human intelligence and machine intelligence
are mixed aiming to enhance each other, and they are
coordinated, integrated, and used throughout the process
of system CMC (Zheng et al., 2017). In Zheng et al.
(2017), two sub-forms of HM-HAI were proposed.
One was “human-in-the-loop hybrid augmented intelli‐
gence,” and the other was “cognitive computing-based
hybrid augmented intelligence.” The conclusion was
that “hybrid-augmented intelligence is one of the impor‐
tant directions for the growth of AI.” The proposed
human-machine knowledge automation (HM-KA)
mechanism focuses on the “human-in-the-loop hybrid
augmented intelligence.”

In this paper, we aim to study the mechanism of
HM-HAI on complex system CMC, namely HM-KA,
which is achieved by integrating and coordinating
human and machine knowledge and intelligence in
the task process of complex systems.

2 Overall problem of HM-HAI for complex

system CMC

The core issue of HM-HAI for complex system
CMC is to study the interaction among three groups
of entities and design their coordinative operation
schemes, i. e., solve the CMC game problem among
the group of human intelligent agents, the group of
machine intelligent agents, and the group of complex
system component agents.

Neither human intelligence nor machine intelli‐
gence is able to completely understand and analyze a
complex system, and neither can thoroughly under‐
stand each other. As a result, these two groups of dif‐
ferent agents do need to coordinate and collaborate to
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the largest extent to achieve the goal of CMC for the
complex system. Therefore, this CMC problem belongs
to the category of complex mixed games of coopera‐
tive and non-cooperative multiple parties as shown
in Fig. 2. In this problem, the task of HM-HAI is
to minimize the information incompleteness among
human intelligence, machine intelligence, and the
systems, while improving and optimizing the coordi‐
nation in the CMC game.

In the complex system CMC, the complexity,
relevance, and criticality of the systems are three im‐
portant evaluation criteria:

1. Complexity refers to the numbers of compo‐
nents, relevant feedback paths, and predictable and
non-predictable events in the systems.

2. Relevance refers to the degree of closeness
among components in the system. In a system with
high relevance, one component can affect many other
components, and the state changes of one part of the
system can promptly affect other parts of the system.

3. Criticality refers to the complex system CMC
decisions’ real-time properties that must be satisfied,
and also refers to the decision degree of significance
in terms of the impact on society, economy, security,
and other areas, when the decisions are being made
and executed.

Both human intelligence and machine intelligence
are driven by these three system characteristics in the
CMC operation of complex systems.

2.1 Human intelligence for complex system CMC

CMC of a complex system requires enormous and
various resources. CMC based on human intelligence

is usually based on organized, systematic human intelli‐
gence groups. Through information exchange and
knowledge collaboration, human intelligence groups
may accomplish the CMC task of a complex system.
Currently, most real-world complex system CMC
processes are performed in such a way, including
examples of social organization, economic manage‐
ment, and military combat systems.

With the development of the human society, re‐
quirements on the complexity, relevance, and criticality
of the CMC of various complex systems continue to
increase. The organized and systematic human intelli‐
gence agent based CMC begins to face great chal‐
lenges. Specifically, the increasing system complexity
requires decentralized CMC schemes with an increas‐
ing number of teams and team members, and also
demands flexibility in the CMC structure for the
system, so that it can authorize CMC staff to process
local problems in a timely manner. Therefore, in a
system with high complexity, it is normal for a large
number of people to be working together with different
roles and in different positions to analyze the system
and implement decisions. High relevance of the system
determines that one decision made by an operator
often relies on the aggregation of information and
knowledge from multiple relevant system components.
At the same time, an operator’s decision may affect
many other sub-systems. Therefore, high-quality and
centralized processing is required by system CMC.

The distributed CMC structure required by the
high degree of system complexity and the centralized
CMC structure required by the high degree of system
relevance form a major contradiction in the complex
system CMC. Furthermore, criticality adds a new
dimension of difficulty to this contradiction.

Complex systems with high criticality require
decisions to be accurate, error-free, and made and
executed within specified real-time requirements. This
makes very strict demands on the CMC mechanism.
On some occasions, such as situations where the system
information and knowledge exceed the cognitive
bandwidth of human beings or the response time
requirements are far below the human response time
limitation, the criticality requirements become very
difficult to achieve for human agent groups. Therefore,
in general, human intelligence based CMC of complex
systems is performed in a certain distributed and
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centralized form, and operated through a certain CMC
process to organize the team and team members to
conduct cognition tasks at different dimensions and
levels of sub-systems and sub-operation processes.
The cognition results are then aggregated according‐
ly, CMC decisions are made subsequently, and the
executive management, control, and orders are deli-
vered to each sub-group, sub-system, and operator. The
increasing requirements on complexity, relevance, and
criticality of various complex systems make informa‐
tion aggregation increasingly difficult and also put
forward increasingly stringent real-time requirements
and high accuracy for the CMC decisions.

With the continuous emergence and development
of new complex systems, the human intelligent agent
group based complex system CMC mode is facing
severe challenges. Although this mode is being contin‐
uously supported by advanced tools from communi‐
cation, computation, and simulation technologies, the
cost and efficiency of operating a system with more
human agents and larger organized groups in response
to complexity have become unrealistic because of
the prohibitive personnel number and cost, as well as
inefficiency and impossibility of coordination. In a
system with high degree of relevance, the amount of
information aggregated from and shared by all sub-
systems and sub-components is too large and far
exceeds the cognitive bandwidth of human minds.
For criticality, the response time of human agents is
severely limited. Moreover, human cognition and
decision-making performance vary dramatically with
different psychological, physiological, and social
factors, and most of the time, they are not entirely
controllable. Therefore, it is necessary to introduce
machine intelligence into the current human agent
group-centered complex system CMC paradigm to
build essential hybrid augmented intelligence and
knowledge automation with human-machine mutual
trust.

2.2 Machine intelligence for complex system CMC

The CMC of complex systems by machine intel‐
ligence is still at the frontier exploration stage. As
mentioned above, under the current technological
circumstances, machine intelligence is able to solve
computational problems such as classification, reasoning,
and decision-making with sufficient training samples

and labeled data and well-defined numerical and
semantic computing targets. However, in complex
system CMC, the applications of machine intelligence
are still influenced by the aforementioned complexity,
relevance, and criticality requirements and criteria. As a
result, only organized and systematic groups and teams
of machine agents with coordinative intelligence can
realize cognitive control of complex systems.

Recently, the concept of Internet of Minds (IoM)
has been proposed and practiced in real-world applica‐
tions (Wang and Zhang, 2017; Wang et al., 2018). The
IoM, based on the technologies of Internet and Internet
of Things, using knowledge automation systems as
the core system, aims to accomplish critical knowl‐
edge engineering tasks including obtaining, expressing,
exchanging, and coordinating knowledge. IoM also
aims to establish connections of intelligent entities at
the semantic level. The ultimate goal of IoM is to
support and complete knowledge-related functional‐
ities and services that require large-scale coordination
and collaboration, especially in complex system CMC.

Technically, IoM aims to reach collaborative
knowledge automation and collaborative cognitive
intelligence of the group of intelligent agents, and
provides foundations to implement knowledge service
functionalities including reasoning, strategy, decision-
making, planning, and control in a collaborative way.
Therefore, the essence of IoM is a brand-new com‐
plex and collaborative knowledge automation system,
which is directly oriented to coordinated intelligence.

The development of IoM is still at its early stage.
A large number of intelligent entities form a com‐
plex system linked by knowledge in accordance with
certain operating rules and mechanisms. The complex
system will form a social network-like organization
that is self-organized, self-operating, self-optimizing,
self-adapting, and self-cooperating. Such IoM will
have a revolutionary effect on solving the challenges
brought by the complexity, relevance, and criticality
requirements of complex systems. However, a summa‐
tion of the solutions to each single problem often does
not constitute the solution to a complex system CMC.
As aforementioned, when we have highly abstract CMC
problems, such as operational objectives, organiza‐
tional structures, operational modes, component dimen‐
sion, analysis methods, task processes, and technical
pathways, human intelligence (which has abundant
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system CMC experience and knowledge and unique
capability in solving open and highly abstract prob‐
lems) will coexist for a long time with IoM and consti‐
tute the human-machine IoM.

2.3 CMC game between human intelligence and
machine intelligence

For the highly abstract aspects of a complex
system, such as system operational objectives, organi‐
zation structures, operation modes, component interac‐
tions, analysis modes, task processes, and technology
pathways, there is still a wide gap between the required
solutions and the solutions which the current machine
intelligence and the IoM technology can provide. The
problem must be addressed by the fusion of human
intelligence and machine intelligence.

Compared with the number of machine intelli‐
gence agents, the number of human agents is very
small. When a small number of human agents and a
large number of machine intelligence agents work
together to complete CMC processes, the role of the
human agents can generally be divided into the follow‐
ing three categories: (1) Human agents manage the
crisis and mistakes within a required time frame, and
should make right decisions in a timely manner; (2)
Human agents need to make major decisions at a highly
abstract level; (3) Human agents “encourage” and “mo‐
tivate” machine agents under their control to achieve
the desired group behavior (Wickens et al., 1998).

When facing system complexity, HM-HAI uses
human intelligence to establish a reasonable system
component structure, which is a highly abstract task,
to schedule task objectives and processes and to specify
the boundary of CMC problems. At the same time, a
large number of machine intelligent agents are applied
to solve the problems with clear boundaries in various
system components. When addressing the issues of
system relevance, machine agents are adopted to pro‐
vide ultra-high cognitive bandwidth, massive knowl‐
edge sharing, and efficient collaboration mechanisms.
When addressing the criticality issues, machine intelli‐
gence has high accuracy and real-time capability. These
provide preemptive technical conditions for the real‐
ization of the critical performance of complex system
CMC. At the same time, when making critical deci‐
sions for the system, the management and control de‐
cisions of human intelligence and machine intelligence

must follow and obey certain decision-making proce‐
dures and rules, and must be compatible with each
other.

The fusion of human-machine knowledge is
generally achieved following the approaches below:
(1) The behavioral data of human agents is collected
through certain human-machine interfaces to form
available input data for machine learning, and then
integrated into the algorithms of machine intelligence
and learning; (2) Machine intelligence provides knowl‐
edge representations which can be transformed into
understandable knowledge representations by human
intelligence; (3) Through linguistic expression and
formal language processing, the knowledge of human
agents forms symbolic knowledge representations,
which can be integrated with symbolic knowledge
representations of machine intelligence to eventually
form human-machine cooperative knowledge represen‐
tations; (4) In the process of human-machine coordi‐
nation of CMC, when conflicts occur or decision
fusion is needed, certain conflict-solving procedures
should be adopted according to pre-defined fusion
principles.

From the above consideration, the coordination
mechanism of human-machine intelligence becomes
the essential research topic in the field of HM-HAI
based complex system CMC. We propose the concept
of “human-machine knowledge automation” as the
fundamental coordination mechanism in the complex
system CMC process.

2.4 Mutually trustworthy knowledge automation
in a complex system CMC process

For a complex system CMC process, especially
the critical decision-making process in critical com‐
plex systems (such as energy, medicine, finance, and
transportation) and in industrial systems, the human-
machine hybrid system should meet all the needs of
complexity, relevance, and criticality. Therefore, human
intelligence and machine intelligence need to be able
to achieve mutual understanding and trust. They also
need to achieve automatic intelligence elevation and
fusion of knowledge. Thus, on the basis of knowledge
automation (KA), the concept of “mutually trustworthy
HM-KA” is proposed below.

The key points of the HM-KA mechanism
are shown in Fig. 3, including human-machine
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functionality deployment, human-machine behavior
constraint, machine intelligence interpretation, and
human-machine decision verification.

2.4.1 Task and process based human-machine
functionality deployment

In the process of complex system CMC, human
intelligence and machine intelligence should follow the
principle of deployment based on operation and task
processes and human-machine capability differences.
The process of joint deployment of human-machine
intelligence needs to be specific on the application
scenario and task levels, and even on the human-
machine behavior level. On one hand, human intelli‐
gence needs to define the problems with clear bound‐
aries and sufficient data resources that are suitable for
machine intelligence. On the other hand, high-level

system abstract problems that need to be solved by
human intelligence are summarized and assigned to
human agents (Fig. 3). The IoM technology and
human-machine intelligence connection technology
are used to realize knowledge collaboration and intelli‐
gence fusion of multiple human-machine agents, and
to realize knowledge automation for complex system
CMC.

2.4.2 Rules and responsibilities based human-machine
behavior regulations

The CMC mechanism of mutually trustworthy
HM-KA needs to deploy human intelligence and ma‐
chine intelligence with reasonable cooperation rules,
norms, and standards. In particular, intelligent ma‐
chine systems need to have enough common-sense
knowledge through operational rules. Any machine

Fig. 3 A general human-machine knowledge automation (HM-KA) process in complex system cognition, management,
and control (CMC) tasks
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intelligence that interacts with human intelligence
must understand and abide by the rules when making
and executing decisions in the system. It is necessary
to establish standards that are suitable for evaluating
the behaviors of machine intelligence agents. For
example, in the field of power grids, it is necessary to
establish hybrid human-machine intelligence deploy‐
ment and scheduling rules.

It is very important to establish rules and mecha‐
nisms of assigning responsibilities in a human-machine
knowledge automation system. Human intelligence
based complex system CMC has a relatively mature
responsibility assignment system. However, the respon‐
sibility assignment mechanism for machine and hybrid
intelligence is basically non-existent. This novel respon‐
sibility mechanism needs to include the evaluation of
algorithms, data, and design processes, and regular
inspections of whether machine intelligence systems
comply with required specifications and whether
these specifications have produced the desired effect.
The responsibility mechanism starts from the CMC
rules, specifications, and standards, identifies and tracks
the emerging problems, ensures the integrity of the
CMC process system, and monitors the use of systems,
the machine learning architecture, data sources and
management, and the training and use of AI models.

2.4.3 Mutual interpretability based human-machine
intelligence fusion

For human-machine knowledge automation, the
mutual interpretability of human-machine intelligence
is a crucial link (Zhang TY et al., 2020; Zhang K et al.,
2021b). To establish a robust human-machine hybrid
system, we need to start with the establishment of a
CMC mechanism that has an in-depth understanding
of the target systems or tasks. For the human-machine
hybrid system, “deep understanding” is more profound
than statistical models and neural network models.
Currently, the deep neural network technology is far
from satisfying the requirement of being interpretable
to human beings. As a result, it is important to explain
the decision-making process and the results of deep
neural network models using human understandable
language, because the explanation ensures trust and
transparency in the decision-making processes, espe‐
cially in scenarios related to major safety concerns.
Similarly, human intelligence can be understood and

used by machine intelligence only in the form of
knowledge representations. Its representation forms
include symbolic knowledge representations, formal
language, and teaching examples.

At the same time, the mutual interpretability of
human-machine intelligence is a new and important
means to human-machine interaction. In that process,
interpretable machine intelligence can help human
agents better understand the behavior of the machine
intelligent agents and the states of the systems, and
support the machine intelligent agents in acquiring
valuable abstract thinking results and empirical
knowledge.

2.4.4 Empirical knowledge and parallel systems based
human-machine decision verification

Both human intelligence and machine intelli‐
gence need to trust each other’s decisions to ensure
that the whole human-machine intelligence system
meets the criticality requirements. In addition to the
aforementioned rule- and interpretability-based princi‐
ples, verification is one of the most crucial factors in
achieving such mutual trust. There are two ways of
verification in practice. The first is based on the knowl‐
edge extracted from existing practice cases and experi‐
ence (Dai et al., 2021b). Most complex, open, and
uncertain scenarios and tasks need to be completed in
virtual systems. For example, parallel systems and
related technologies can be used to predict and verify
functionalities and the results of CMC in a large number
of virtual scenarios by the ACP approach (Wang, 2004).
Then the interpretability tools with deep understand‐
ing capabilities are used by human intelligence to
infer, judge, and supervise machine intelligence for its
correctness, reliability, and robustness. Also, through
monitoring the system closely and fine-tuning it
continuously, the verification principle aims to en‐
sure the reliability of performance, detect and correct
the deviations, and improve the transparency and
inclusivity.

3 HM-HAI, HM-KA, and bulk power grid

dispatch

The bulk power grid dispatch is essentially the
CMC process for the complex system of a bulk power
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grid. The bulk grid has characteristics of open opera‐
tional environments, complex system components,
diverse operation modes, tightly coupled component
behaviors, stringent demand on real-time response
performance, high criticality, and so on (Song et al.,
2006; He et al., 2008). Therefore, the HM-HAI tech‐
nology needs to address the key scientific, technical,
and engineering problems in this complex system
CMC process, including the systematic modeling of
bulk power grid dispatch, the construction of environ‐
ment models shared by human agents and machine
agents, and task and behavior models of human-
machine intelligence. Based on the above models,
complex CMC tasks are effectively completed, and
the human-machine autonomous cooperative CMC
mechanisms can be established.

Theoretically, a power grid should be observable
and controllable as the physical operation mechanism
of its circuitry and equipment is clear. However, in the
real world, this is not true, and the following factors
need to be taken into consideration: First, the contra‐
diction between data integrity with real-time require‐
ments and limitations on data sensing and collection
in power grids affects the accuracy of the data and
damages information integrity; Second, characteris‐
tics including time variation, high non-linearity, and
uncertainty of power grid operation make it not com‐
pletely knowable within the effective CMC process
time. As a result, although the power grid operation
follows physical laws and mechanisms, it is difficult
to describe the power grid operation accurately in a
required time frame. The coordination problems in‐
volving the power grid state variation time constant,
the controller time constant, and the spatially distri-
buted control measures make the power grid not entirely
controllable. Therefore, timeliness is the core issue of
bulk power grid dispatch, and timeliness, effectiveness,
and strong adaptability (robustness) are the driving
forces and developmental directions for this industrial
complex system CMC.

3.1 Bulk power grid dispatch based on human
intelligence

At present, the operational process of bulk power
grid dispatch is organized and systematized by human
agents, and the overall function is to realize the CMC
of power generation, transmission, distribution, trading,

load adjustment, and other businesses in the power
industry. The CMC process needs to be in accordance
with the processes of dispatch scheduling, mode
operation, field dispatch, dispatch automation, system
protection, system monitoring, and so on.

In terms of the required real-time requirements
for task completion, the dispatch services are classified
and divided into the following categories (Vadari, 2012):

1. Real-time service. This type of service aims
to monitor the grid status, such as monitoring the
voltage, load, frequency, the conditions of transmission
lines, generator, and equipment, and to respond in real
time, such as responding to various alerts as soon as
possible. Future states of the power grid need to be
estimated based on the current situation to take the
necessary CMC measures in advance.

2. Management service for pre-scheduled events.
For pre-scheduled power grid events, the service covers
management work, including scheduling, authorization,
implementation, and acceptance. Taking equipment
maintenance as an example, the service needs to deter‐
mine all the system protection settings and time se‐
quences, and then to ensure the balance of the power of
the designated area when the maintenance work begins.

3. Emergency management service. For unpre‐
dictable events, such as equipment failures and control
system malfunctions, the service needs to make a
real-time response to make the system return to a
normal operational state as soon as possible. The
specific responses include conducting effective and
optimal recovery work on time, minimizing the impact
on power network users, and ensuring the safety of
users and employees in the process of re-energization.

4. Emergency response organization. If there is
a large-scale power failure and blackout, the power
grid system needs to enter an emergency status. The
service needs to optimally organize resources to
respond to emergencies.

5. Pre-scheduling service. The pre-scheduling
service aims to analyze the current system, to make
operational schedules for the next days, weeks, months,
quarters, and years, and to make power grid operation
arrangements in advance according to possible major
events, such as significant changes in power grid load
due to significant social events and possible power
grid failures that may be caused by extreme weather
conditions.
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6. Power grid analysis. This service aims to effec‐
tively manage the grid assets and resources and to
make short-, medium-, and long-term power grid oper‐
ation decisions on dispatch, equipment replacement,
grid maintenance, and investment.

7. Power grid performance analysis. This service
aims to analyze the grid operational data to deliver
reports on the performances of various system compo‐
nents and processes based on power industry standards.

In general, the power grid dispatch center is
divided into many departments such as dispatching
department, system operation department, automation
department, planning department, monitoring depart‐
ment, and protection department. These departments
carry out collaborative cognition, management, and
control for the power grid operation following certain
business processes and organizational architectures.
The functionalities, responsibilities, and knowledge

services of each department for supporting the power
grid operation are shown in Fig. 4. Although this
departmental setting supports the operation of the power
grid, the knowledge exchange and intelligence collabo‐
ration are human-centric with very low efficiency,
severely affecting a power grid’s ability to respond to
extreme events and fast-changing operational situations.

3.2 Bulk power grid dispatch based on machine
intelligence

In this subsection, a case study is used to illus‐
trate how machine intelligence completes a power grid
CMC process under current technology conditions.
The specific scenario is the “power correction control”
of the power grid (Chen et al., 2021; Xu et al., 2021).

In this case study, the proposed machine intelli‐
gence for CMC is performed on a 36-bus power grid
as shown in Fig. 5, which includes 59 transmission
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lines, 22 buses with generators, and 37 buses with
loads. The machine intelligent agents are trained on
the platform Grid2Op (RTE-France, 2021), which pro‐
vides data of 576 scenarios over a period of 48 years
with 12 months each year. Each scenario contains the
operational data at 5-min intervals over a 28-d period.
In these scenarios, random transmission lines of the
power grid are “attacked” at random time steps every
day; that is, short-circuit faults with random occurrences
and random durations may occur on every transmission
line. In addition, the platform provides scenarios of
24-week duration, which are not included in the train‐
ing data, for testing the trained agents. These test
scenarios are generated according to the simulation of
typical power grid operation scenarios. Because of the
limitations of the algorithm and to prevent the system
from unnecessary disturbance, each agent takes only a
single control measure at each CMC time step. Even
so, in the 36-bus power grid, there are still more
than 60 000 available actions to choose at each time
step, most of which are bus-bar switching actions.
The recovery time impacted by the control actions is
required to be within three time steps, that is 15 min.
The machine intelligence agents are trained on a
Linux server with 4 GPUs, each with 11 GB of memory.

The agents used in CMC, specifically, power
correction control, of a power grid are trained by the
algorithm of deep reinforcement learning. At each
control time step, 1500 available actions are screened
through the Monte-Carlo tree search. The whole
action space of the agents is divided into four parts.
Each part is managed and controlled by an agent with
an attention mechanism based on a graph deep neural
network. The structure of each agent is shown in Fig. 6.
The four agents cooperatively exchange information
and model parameters with each other to conduct power
correction control of the power grid. The four agents
are centrally trained and distributed in the execution. In
the collaboration mechanism, the agents will share the
global observations and reuse the model parameters.
This will reduce the model complexity and improve
the training efficiency.

With an average decision time of 35 ms for each
time step, the agents make continuous forward power
correction control decisions, which can quickly elimi‐
nate the off-limit power flow at the next time steps
and maintain the stability of the power grid in the
new operational scenarios.

In the performance evaluation after deployment,
deep reinforcement learning (DRL) agents have good
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timeliness and provide effective control strategies in

most scenarios. However, in extreme grid operational
scenarios, the agent operations may not be quite

effective. The possible reasons include complex task

flow, large numbers of highly coupled coordinative

operation components and processes, high dimension

of power grid observation and control measure spaces,

and unpredictable and unforeseen grid operation mode.

This may also be the case for future normal operation

scenarios with an extreme high rate of renewable

energy generation. Also, high-level abstract problems

in this application, such as area planning, typology

definition, action definition, and action rules, are solved

by human intelligence, and currently machine intelli‐

gence does not possess such capability. Therefore,

DRL needs to cooperate with human knowledge in

power correction control, as well as to avoid wrong

decisions caused by lack of cognition when dealing

with open and unknown scenarios.

3.3 Application of HM-KA in bulk power grid
dispatch

The mechanism of “mutually trustworthy HM-KA”
discussed above is supported by four aspects: functional
deployment, collaborative rules, interpretability, and
decision verification.

The technical support of the first two aspects,
functional deployment and collaborative rules, was
discussed in detail in Sections 2.4.1 and 2.4.2, respec‐
tively. In terms of the third aspect, mutual interpret‐
ability of human-machine intelligence, its supporting
technologies include distributed reinforcement collab‐
orative learning, semantic space fusion, assistive rein‐
forcement learning, and interpretability of cognitive
graphs. Some examples of such techniques (Zhang
TY et al., 2020; Chen et al., 2021; Dai et al., 2021a;
Xu et al., 2021; Zhang K et al., 2021a, 2021b) have
been demonstrated. In terms of the fourth aspect,
decision verification based on parallel system and

Fig. 6 Architecture of graph deep Q-networks
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knowledge engineering technology is a feasible and

practical pathway for real-world applications. Its key

supporting techniques include the construction of the

empirical knowledge architecture, parallel system

based computing architectures, deep reinforcement

learning based automatic data generators, and seman‐

tical knowledge representation networks for complex

system human-machine-material relations.

Based on the above key supporting technologies

and guiding rules of human-machine knowledge auto‐

mation, the human-in-loop intelligent CMC system

for bulk grid dispatch can be expected to have the

following characteristics: (1) It is a human-machine

enhanced auxiliary decision mechanism superimposed

upon the current dispatch system. The main function‐

alities of the auxiliary decision system are to provide

adjustment decision suggestions in normal operational

circumstances to keep the grid operating in a balanced

manner with safety and efficiency, and to meet the

requirements of fluctuation and uncertainty when
incorporating new energy. (2) In abnormal working
conditions, the auxiliary decision mechanism gener‐
ates forward countermeasures and suggestions in real
time and verifies the decisions automatically, aiding
human operators in making the final decision. AI-
assisted decision-making is expected to have better
adaptability and more suitable security.

4 Example of HM-KAbased power grid dispatch

The corrective control of power grids is used as
a benchmark scenario to illustrate the application of
HAI and HM-KA in power grid dispatch.

In this scenario, online corrective control is
performed mainly to maintain the stability of the
62-bus regional power grid of a China 300-bus multi-
region power grid. The topology of the power grid is
shown in Fig. 7. The sending end of the power grid

Fig. 7 Topology of the regional power network
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transmits power to the receiving end through two
alternating current transmission corridors. From the
experience of the dispatch operators, the transmission
power of lines 27–31 (that is, the origin of this line
connects to bus 27, and the extremity connects to bus
31) in the sending end area is prone to exceed the ther‐
mal limit. Thus, lines 27–31 are defined as the critical
transmission line. When the operational condition of
the power grid constantly changes, the critical line is
more likely to overrun the transmission capacity, and
the other lines are also likely to suffer from overloads,
which may lead to line tripping and succeeding cascad‐
ing failures. In this situation, the dispatcher needs to
adjust the line power flow through generator re-dispatch,
transmission line switching, and other operations. By
applying feasible corrective control strategies, the
active power of lines 27–31 can be reduced within the
thermal limit, and the stable operation of the whole
region can be further maintained. Note that there are a
large number of adjustable devices in this grid. Just in
the 62-bus regional power network, the sending end
and the receiving end contain 14 and 20 generators,
respectively. Assuming that the maximum number of
generators allowed to be dispatched is 3 in one control
action, the number of candidate actions can be 4760.

The machine intelligent agent of corrective control
is trained by the data from operator experience of
transmission line switching to realize the fusion of
human knowledge with AI. From the principles
described in Section 3.3, the human-machine coopera‐
tion mode is further designed. Based on the current
system line tripping situation and the duration of line
overloads, the degree of power grid emergency is
defined. When the grid is not at an emergency state,
the machine intelligent agents generate the corrective
control strategy. If the produced strategy accords with
the prior rules and passes the simulation verification,
the corrective control action is carried out. Otherwise,
dispatch operators will adjust and control the power
flow based on their own experience. In the case of
emergency, dispatch operators will directly perform
the corrective control operation according to their
experience to ensure the timeliness and effectiveness
of critical operations. The human-machine coopera‐
tion mode is shown in Fig. 8.

Given the above framework, the corrective control
agent is trained based on the power grid simulation

software. The machine intelligence and human-machine
hybrid augmented intelligence are deployed in a typical
scenario. The operating state and control process of
the power grid are shown in Fig. 9.

As shown in Fig. 9, in the machine intelligence
control mode, at the early stage, the DRL agent can

Line 303 switch

Line 190 switch 

Line 122 switch

 Redispatch G45↑ and G50↓ 

ρ m
a
x

1.03

1.02

1.01

1.00

0.99

0.98

0.97
0 2 4 6 8 10 12 14 16 18

Number of steps

AI

Human & AI

Fig. 9 Operating state of the power grid under different
control modes (every step takes 5 min)

Start

Obtain the system information to

serve as the agent observation

 
 

Simulation software verification

Deploy the chosen corrective

control strategy 

End

No

Yes

System in emergency?

Dispatcher generates the

corrective control strategy 

according to his/her experience 

Machine intelligence generates a

corrective control strategy

Accords with the

experience? 

Passes the simulation

software verification? 

Choose the strategy produced by

machine intelligence 

No

No

Yes

Yes

Fig. 8 Schematic of the human-machine cooperation mode

1155



Wang et al. / Front Inform Technol Electron Eng 2022 23(8):1142-1157

quickly eliminate the overload of critical lines 27–31
by adjusting the network topology. However, when
the transmission power of another key line exceeds
the limit of the later stage, machine intelligence fails to
take effective measures and finally causes the system
to collapse. In the human-machine hybrid augmented
intelligence control mode, when confronted with the
overload of critical lines 27 – 31 at the initial stage,
the topology adjustment action taken by machine
intelligence does not accord with the experience. Thus,
the dispatcher carries out the corrective control action.
The overload situation is effectively eliminated through
the generator re-dispatch operation, and the load ratio
of the transmission lines in the grid is improved. At
the later stage, when another key line exceeds the limit,
machine intelligence generates the strategy in line
with the experience and passes the simulation soft‐
ware verification, the line overload is eliminated in
time, and the continuous and stable operation of the
power grid is realized. Based on this example, it can
be inferred that with a reasonable human-machine
cooperation mode, AI and the dispatcher can comple‐
ment each other in CMC capability, and thus human-
machine hybrid augmented intelligence is conducive
to further improvement of power grid dispatch.

5 Conclusions

In this paper, we first reviewed the history of
complex system science, characteristics of complex
systems, the concept of HM-HAI, and the reason
why HM-HAI is a necessary emerging technology for
complex system cognition, management, and control
(CMC). Then, we explained the mechanism of human
intelligence and machine intelligence to complex
system CMC and their advantages and limitations.
The concept of “mutually trustworthy HM-KA” mech‐
anism for complex system CMC was proposed. Finally,
using a bulk power grid benchmark as the background
of power grid dispatch, we analyzed how HM-HAI
can be used in future power grid applications. Using
human-machine enhanced corrective control as an
example, we illustrated the technical path of mutually
trustworthy HM-KA.

Through this work, we hope to provide a new
mechanism, namely HM-KA, for the theory and

methodology of complex system CMC based on
HM-HAI. We discussed the core method, implementa‐
tion process, and key supporting technologies for
HM-KA. The development of this method will be a
trans-disciplinary product, including results from
system science, control science, management science,
psychology, cognitive science, data science, and AI.
We hope that in the process of digital transforma‐
tion in typical complex social and industrial systems,
such as aerospace, aviation, marine, energy, manu‐
facturing, transportation, environmental protection,
and other fields, the proposed theory, mechanisms,
approaches, and techniques can play positive roles
and make considerable contributions.
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