
Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 749

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Howtomanage a task-oriented virtual assistant

software project: an experience report

Shuyue LI1, Jiaqi GUO1, Yan GAO2, Jianguang LOU2,
Dejian YANG2, Yan XIAO2, Yadong ZHOU1, Ting LIU‡1

1Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2Microsoft Research Asia, Beijing 100080, China

E-mail: lishuyue1221@stu.xjtu.edu.cn; jasperguo2013@stu.xjtu.edu.cn; yan.gao@microsoft.com; jlou@microsoft.com;

dejian.yang@microsoft.com; yan.xiao@microsoft.com; ydzhou@xjtu.edu.cn; tingliu@mail.xjtu.edu.cn

Received Sept. 30, 2021; Revision accepted Jan. 30, 2022; Crosschecked Mar. 22, 2022

Abstract: Task-oriented virtual assistants are software systems that provide users with a natural language interface
to complete domain-specific tasks. With the recent technological advances in natural language processing and
machine learning, an increasing number of task-oriented virtual assistants have been developed. However, due
to the well-known complexity and difficulties of the natural language understanding problem, it is challenging to
manage a task-oriented virtual assistant software project. Meanwhile, the management and experience related to
the development of virtual assistants are hardly studied or shared in the research community or industry, to the best
of our knowledge. To bridge this knowledge gap, in this paper, we share our experience and the lessons that we have
learned at managing a task-oriented virtual assistant software project at Microsoft. We believe that our practices
and the lessons learned can provide a useful reference for other researchers and practitioners who aim to develop a
virtual assistant system. Finally, we have developed a requirement management tool, named SpecSpace, which can
facilitate the management of virtual assistant projects.

Key words: Experience report; Software project management; Virtual assistant; Machine learning
https://doi.org/10.1631/FITEE.2100467 CLC number: TP311.5

1 Introduction

Task-oriented virtual assistants (VAs) are soft-
ware systems that provide users with a natural lan-
guage (NL) interface to complete domain-specific
tasks, such as booking flights, ordering foods, and
getting insights from business data. Although pre-
vious VAs had a long history from the early 1900s
(Wikipedia, 2021), they were not mature enough to
be widely applied in practice. Owing to the recent
new technological advances in natural language pro-
cessing (NLP) and machine learning (ML), we are
now witnessing an increasing number of commercial
‡ Corresponding author

ORCID: Shuyue LI, https://orcid.org/0000-0001-6009-1707;
Ting LIU, https://orcid.org/0000-0002-7600-0934
c© Zhejiang University Press 2022

VAs being developed. As predicted, both consumers
and businesses will spend $3.5 billion by the end of
2021 on what are referred to as virtual personal as-
sistants (Bradley, 2020).

It is, however, particularly challenging to man-
age a VA software project, as observed in our hands-
on experience. First, due to the flexibility and diver-
sity of NLs, it is difficult to define the scope of the
functionality of a VA. Specifically, it is difficult to
formally specify how people talk to a VA, using ei-
ther texts or speeches, which brings challenges to the
tasks of requirement gathering, requirement specify-
ing, and software testing. Second, due to ML’s data-
driven nature and weak interpretability, it is difficult
to estimate the effort needed to meet a requirement
using ML techniques, which brings huge uncertainty

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

750 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

to development management. As we know, state-
of-the-art VAs are built mainly based on new deep
learning technologies. However, deep learning mod-
els are often black-box and not interpretable, which
brings new challenges to development management.
For example, testing and maintaining ML-based soft-
ware systems are known to be challenging tasks
(Marijan et al., 2019; Zhang TY et al., 2019; Zhang
JM et al., 2022). Although many different VAs have
been developed in the past few years, e.g., Ana-
lyza (Dhamdhere et al., 2017), Tableau Ask Data
(Tableau, 2020a), and TaskVirtual (Task Virtual,
2020), their development management approaches
and experiences have been hardly studied or shared
in the research community or industry.

To bridge this gap, here we share our experi-
ence and the lessons learned from our practical VA
project named XTalk (anonymized for confidential
reason). Specifically, we describe five main concrete
software engineering problems that we encountered
in our project, including the problems in requirement
management, development management, and qual-
ity management. Moreover, we share seven practices
adopted in the XTalk project to tackle or mitigate
the problems and we also discuss the insights behind
these practices. Then, we summarize three lessons
learned from the development of XTalk and present
four open challenges that we encountered during the
lifecycle of XTalk, some of which are promising re-
search avenues. We believe that our practices and the
lessons learned can be a useful reference for other re-
searchers and practitioners to develop modern VAs.

In summary, we make the following main contri-
butions in this study: (1) We summarize the prob-
lems we encountered in managing a task-oriented
VA software project, including problems in require-
ment management, development management, and
quality management; (2) We share our practices for
addressing the problems and present three lessons
learned at managing a task-oriented VA software
project; (3) We develop a novel requirement man-
agement tool, named SpecSpace, which can improve
the management efficiency for task-oriented VA soft-
ware projects.

2 Overview of XTalk

In this section, we give a brief overview of XTalk,
supplying the context for the discussion around man-

agement problems and practices in the subsequent
sections.

XTalk is a VA that provides users with an NL
interface to complete data analytics tasks. XTalk
can make data analytics much more accessible to
business users and relieves users from the burden of
mastering professional tool usage and programming
skills. Fig. 1 presents an example use of XTalk, in
which a user raises a series of analytic questions con-
cerning the best-selling product against a tabular
dataset about product sales. XTalk can understand
the user’s questions and returns the corresponding
analytic answers in various forms (e.g., a resulting
table or a chart).

Fig. 1 An example use of XTalk

Like most VAs (Dhamdhere et al., 2017; Cam-
pagna et al., 2019), our XTalk can be formulated as
a program synthesis problem (or a semantic parsing
problem in the field of NLP): Taking a table and
an NL question as the inputs, XTalk first translates
the NL question to a program (e.g., a structured
query language query) and then executes the pro-
gram against the table to obtain its answer to the
question. We solve the program synthesis problem
with a hybrid method that integrates a set of rules
and a deep neural network (DNN). As we will show
in Section 4, using the hybrid method is one of our
important practices for effective VA software project
management.

Fig. 2 presents the overall architecture of XTalk
with a running example. Given a table and an NL

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 751

question, XTalk takes three major steps to obtain the
analytics results. First, XTalk’s preprocessor mod-
ule pre-processes the table and the question, includ-
ing recognizing columns’ metadata (e.g., data type,
named entity) and extracting the lexical features for
the question (e.g., part-of-speech tag and lemmas).
Next, the program synthesizer module searches for
the optimal programs for the question. For different
types of questions, the program synthesizer module
performs the program search with a guidance either
from the set of rules or from the DNN model. We will
discuss the trade-off between the rules and a DNN
model in Section 4. Finally, the visualization module
executes the top-ranked program against the table to
obtain the analytics results. The module also visual-
izes the results according to the user’s intents and the
types of results. Interested readers can refer to our
technical paper (Gao et al., 2019) for details about
XTalk.

As a typical ML-incorporated software sys-
tem, our experience in XTalk can be generalized to
other ML systems in terms of the development-and-
maintenance process. Besides, we tackle many NLP
challenges with a hybrid solution that incorporates
rule- and DNN-based approaches. This particular-
ity can provide some insights for practitioners on
decision-making.

3 Software requirement management

Before we start our development of XTalk, we
need to know what kinds of functionalities XTalk
needs to support and subsequently make an action-
able and concrete plan, which is a typical software
requirement analysis process. Although software re-
quirement management has been well studied for tra-
ditional software projects, the new characteristics of
DNN-based VA have brought new difficulties to the
requirement analysis. In this section, we share our
practices in XTalk.

3.1 Problems in requirement management

During the lifecycle of XTalk, we identify two
major problems in managing the requirements of
VAs. The first problem concerns how to specify clear
and actionable requirements; i.e., what kinds of NL
questions our VA needs to support. The second one
is about defining reasonable and achievable accep-
tance criteria for the requirements.
Problem 1 Articulate actionable requirement
specifications for VAs.

Ideally, a VA should correctly respond to all NL
inputs related to its domain-specific tasks; for in-
stance, XTalk is expected to accept all NL inputs
related to data analytics. However, it is challenging

Year Category Product Sale Rating
2017 Components Chains $20 000 75%
2015 Clothing Socks $3700 22%
2017 Clothing Tights $36 000 100%
2015 Components Handlebars $2300 35%

SELECT product, sales FROM table WHERE
sales=(SELECT max(sales) FROM table)

Which product has the best sales?

Preprocessor

(Date)
Year

(String)
Category

(String)
Product

(Numeric)
Sale

(Percentage)
Rating

2017 Components Chains $20 000 75%
2015 Clothing Socks $3700 22%
2017 Clothing Tights $36 000 100%
2015 Components Handlebars $2300 35%

Program synthesizer

Visualization

Product Sale
Tights $36 000

△ Execute the synthesized program
△ Visualize the results

DNN- and rule-based methods
△ Search for candidate programs
△ Rank programs

Which product has the best sales ?

 pron noun verb art adj noun punct

Which product have the good sale ?

Sale data

Fig. 2 Overall architecture of XTalk

752 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

to translate this ambitious goal into a series of ac-
tionable requirements that include clear and unam-
biguous specifications. Because of the inherent com-
plexity and flexibility of NL, it is a non-trivial task
to describe the scope of NL that our VA needs to
support. For example, considering the three utter-
ances below, “Which products have the best sales?”
“Which goods sell the best?” and “best-selling prod-
uct,” they express the same meaning but exhibit dra-
matically different linguistic patterns. This huge and
diverse NL input space makes it difficult to (1) figure
out how people talk in the context of a VA’s aimed
domain and (2) specify which NL inputs need to be
understood by a VA case by case. Without a clear
scope, we cannot break down our goal for the VA
into a series of actionable requirements for develop-
ers. The lack of actionable requirements inevitably
leads to miscommunications between developers and
product managers. Furthermore, product managers
cannot effectively assess how far the VAs are from
practical use, and consequently, many problems can-
not be detected until the VA is released, making it
less competitive in the market.

Problem 2 Define acceptance criteria for VAs.
Acceptance criteria are metrics that must be

achieved to mark a requirement as met. Typi-
cally, defining an acceptance criterion involves three
tasks: (1) metric selection; (2) metric measurement;
(3) metric threshold determination. In metric selec-
tion, we need to choose a metric to quantify the de-
velopment progress, such as the passing ratio of test
case and accuracy. In metric measurement, we need
to determine how to compute the metrics; e.g., de-
termine which test cases are used to compute the
passing ratio. However, due to NL’s huge input
space, it is impossible to enumerate all possible in-
puts to compute the metrics for a VA. As a result,
selecting an adequate set of representative NL inputs
for metric measurement is a critical task. However,
this is challenging due to the flexibility and long tail
distribution of linguistic characteristics. Finally, a
metric threshold is used to indicate that a require-
ment is met; for example, a system should achieve a
100% passing ratio of test cases. However, defining
a reasonable and achievable metric threshold is par-
ticularly challenging for VAs, because understand-
ing the meaning of any NL remains an open arti-
ficial intelligence (AI) problem (Bender and Koller,
2020). Hence, it requires managers to make a care-

ful trade-off between development efficiency and user
satisfaction.

3.2 Practices for requirement management

In what follows, we share our practices adopted
in XTalk to handle the problems discussed above.
Practice 1 Organize a VA’s requirements accord-
ing to its aimed domain-specific task and the linguis-
tic patterns of NL.

Considering that a VA is expected to accept all
NL inputs related to its domain-specific tasks and
that these tasks’ requirements are relatively easy to
specify, it is natural to derive and organize the VA’s
requirements according to the tasks. Besides, we
observe that while the NL input space is huge, users
tend to express their intents for each domain-specific
task in NL with a set of linguistic patterns. We can
further organize the VA’s requirements according to
the linguistic patterns. In the following paragraphs,
we present how we carry out this practice in XTalk.

The requirements of data analytics tasks are
easy to derive and specify, because a lot of profes-
sional data analytics tools have been developed in the
market, such as Tableau (Tableau, 2020b) and Power
BI (Microsoft, 2020). To gather the requirements of
data analytics, we first learn the functionalities pro-
vided by professional data analytics tools. Then, we
conduct a user study with experienced data analysts
to understand their commonly used functionalities;
for instance, we can learn that basic analysis func-
tions such as filter, percentage, and aggregation are
frequently used in data analytics.

As a VA for data analytics, XTalk is expected
to accept diverse kinds of NL inputs that express the
use of these analysis functions and their combina-
tions. Therefore, to specify XTalk’s requirements,
we conduct a formative study to understand how
users express their intentions for using these anal-
ysis functions. Concretely, in the formative study,
we recruit experienced data analysts to express their
intentions in NL for a given analysis function or a
combination of analysis functions. Then, we sum-
marize the frequently used linguistic patterns from
the collected NL inputs, and group them according to
the linguistic patterns. Table 1 presents a sub-set of
illustrative examples for linguistic patterns that we
have summarized. In practice, voice shift and mor-
phological changes also need to be considered. In this
way, we translate a data analytics task’s requirement

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 753

Table 1 Frequently used linguistic patterns for expressing data analytics intentions

Linguistic pattern Explanation Example

Keyword-based expression Phrase-level expression Brand_A sales
Imperative expression Utterances that express commands Show me the sales of Brand_A
“Wh” interrogatives Utterances that use “Wh” interrogatives What are the sales of Brand_A?
“Yes/No” interrogatives Utterances that expect “Yes/No” answer Are the sales of Brand_A higher

than those of Brand_B?
Formula expression Utterances that contain symbolic conditional expressions Show me brands with sales>$3000

into multiple clear and actionable requirements for
XTalk. Each requirement is clearly specified with its
corresponding analysis functions and linguistic pat-
tern. In addition, each requirement’s priority can
be jointly determined by the importance of its corre-
sponding analysis functions and the occurrence fre-
quency of its linguistic pattern. To facilitate the
requirement management, we develop a tool which
will be illustrated in detail in Section 3.3.

Practice 2 Define acceptance criteria for each
requirement based on its representative NL inputs.

By carrying out Practice 1, we manage to spec-
ify clear and actionable requirements for VAs. More-
over, for each requirement item, we have a set of
corresponding typical NL inputs. Then, it is natural
to use these NL inputs as the measurement for accep-
tance because they are written by experienced data
analysts and are hopefully representative. In terms
of the threshold, we determine it primarily consider-
ing (1) the complexity of the NL inputs and (2) the
technique’s feasibility. For example, in XTalk, we set
up a very high threshold for those requirements that
involve only a single analysis function, since their NL
inputs are relatively simple and are frequently asked
by users. However, for those requirements that in-
volve complex combinations of analysis functions, we
set up a relatively low threshold because even the
state-of-the-art NLP techniques are still weak in rea-
soning over complex compositional NL inputs, and
moreover, these inputs are not frequently asked by
users. Finally, note that both the set of representa-
tive NL inputs and the threshold for each require-
ment should be continuously maintained.

3.3 SpecSpace: a requirement management
tool for VAs

To facilitate requirement management for
XTalk, we additionally develop a checklist, called
SpecSpace. SpecSpace organizes XTalk’s require-

ments into a two-dimensional matrix, as illustrated
in Fig. 3, in which the rows are analysis functions
(or their combinations) that we aim to support in
XTalk and the columns are linguistic patterns (or
their combinations) that we have summarized from
the collected NL inputs. Each cell in SpecSpace,
such as A© in Fig. 3, is a basic requirement of XTalk,
and it includes some essential contents: the require-
ment’s description, representative NL inputs, accep-
tance criteria, priority, development progress, and
estimated cost. Additionally, multiple cells can be
combined to specify a complex, compositional re-
quirement; for example, requirement C© consists of
three basic analysis functions: filtering with cell val-
ues, aggregation, and comparison. Using SpecSpace,
we can keep track of XTalk’s requirements on time,
such as current progress and the requirements to be
scheduled. Moreover, SpecSpace records the actual
cost, e.g., time and computation resource, on each
requirement, which is a valuable reference for cost
estimation in the future. In addition to managing
requirements, SpecSpace plays an essential role in
the lifecycle of XTalk; for example, the evaluation
of system quality is also based on SpecSpace with
careful checking of the acceptance criteria for each
cell.

4 Software development management

In this section, we focus on software develop-
ment management, which is the process of making
decisions on how to implement requirements and en-
sure that requirements are implemented on time and
in high quality. Recently, much research effort has
been devoted to studying the best practices for de-
veloping ML-based systems (Zhang TY et al., 2019),
most of which are practices that address specific cod-
ing problems. By contrast, we discuss here two devel-
opment management problems that we encountered
in the XTalk. The first problem concerns how to

754 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

Fig. 3 An overview of SpecSpace
The matrix on the left gives an overview of XTalk’s requirements, from which we can clearly learn how many requirements
are under development and how many of them are waiting for scheduling (agg: aggregation). Three detailed specifications
of requirements A©–C© are presented on the right. It is worth mentioning that requirement C© is a compositional requirement
that involves filtering with cell values (using the average aggregation) and comparisons, as illustrated by its representative
natural language (NL) inputs (SUV: sport-utility vehicle)

enjoy the benefit of ML while effectively managing
the development process. The second one is about
how to efficiently collect high-quality data for ML
algorithms. We also share our practices for tackling
the problems.

4.1 Problems in development management

Problem 3 The emergent properties of ML, e.g.,
data-driven and statistical nature, hinder efficient
development.

It is non-trivial to meet the requirements both
on time and in high quality, due to the huge un-
certainty caused by ML techniques. First, given
ML’s weak interpretability and data-driven nature,
(1) whether we can implement a requirement within
the budget is uncertain and (2) deciding which ML
algorithm is the best is challenging. In most times,
we cannot predict how much time and data an ML
algorithm will need to meet the requirement’s accep-
tance criteria. Most things can be settled only after
rounds of experiments, i.e., sometimes days or weeks
of model training. Even if a model can achieve 95%
or higher accuracy in an offline testing, it still makes
unexpected mistakes in an online environment af-
ter release, which we may not be able to completely
avoid before hand. Given that training large-size
modern DNN models often costs days or even weeks,
this process may make the development plan out of
control and risky. For product managers, it becomes
a big problem.

Second, in practice, the requirements are even
data-driven. In XTalk, e.g., by saying “sales of
Brand_A,” the user actually means “the whole sales
of Brand_A.” Before user study, we are not aware
of that. This kind of requirement change con-
stantly happens in our development and forces us
to re-conduct the development (e.g., collect training
data again, fine-tune hyper-parameters again, and
re-design features for ML algorithms). This uncer-
tainty can make the development process highly it-
erative and repetitive.

Problem 4 Efficiently collect data for VA projects
under the constraints of domain knowledge and data
privacy regulations.

It is well known that high-quality data are es-
sential for ML algorithms. However, collecting high-
quality NL data for developing VAs is rather expen-
sive, especially in those scenarios that require exper-
tise. Take XTalk as an example. Due to the program
synthesis formulation in XTalk, labeling the data re-
quires expertise in data analytics and programming.
Specifically, labelers are required to raise reasonable
data analysis questions against tables and to write
corresponding programs that express the same inten-
tions as the questions, making it a high-cost propo-
sition to collect data on a large scale. What is worse,
constrained by privacy policies such as general data
protection regulation (GDPR) (Voigt and von dem
Bussche, 2017), the real user inputs are inaccessible
at all.

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 755

After data collection, it is crucial to validate
whether the labeled data are of high quality and free
of bugs; for instance, in XTalk, we need to validate
whether all the programs are written in the style that
is required and whether the programs fully express
the meaning of their corresponding NL questions.
Such a validation process, however, can be tedious
and time-consuming because it relies mainly on man-
ual inspection.

4.2 Practices for development management

To tackle the problems, we explore three prac-
tices which have been adopted in the development
process of XTalk.
Practice 3 Develop VAs using a hybrid of DNN-
and rule-based methods.

To enjoy the benefit of advanced DNN tech-
niques and make the development process manage-
able, we find it important to develop VAs using a hy-
brid of DNN- and rule-based methods. As mentioned
above, the intrinsic reason for why DNN makes the
development process hard to manage is its weak in-
terpretability and data-driven nature. Fortunately,
these weak points of DNN can be partially com-
pensated for by the rule-based methods, since rules
are deterministic and interpretable. Moreover, com-
pared to DNN techniques, the efforts on refactor-
ing rules to implement potentially changed require-
ments are often more predictable, which makes the
development management more controllable. Hence,
we choose to develop XTalk with a hybrid of DNN-
and rule-based methods, as illustrated in Section 2.
Each requirement can be implemented using either
DNN techniques or rules. Specifically, to imple-
ment a requirement using DNN techniques, we typi-
cally collect additional training and test data based
on the requirement’s specification to re-train DNN
algorithms and modify the algorithms (e.g., tun-
ing hyper-parameters and adding features), if nec-
essary. Alternatively, to implement a requirement
using rules, we modify the set of rules in XTalk ac-
cording to the specification. Based on our hands-on
experience, using a hybrid method does make the
development process much more manageable. For
example, for an urgent but small requirement up-
date, we can quickly implement it by refactoring the
rules in XTalk’s program synthesizer module, while
updating a DNN model may be very costly.

However, there is no free lunch. Developing VAs

using a hybrid method requires careful trade-offs be-
tween DNN techniques and rules. Otherwise, it is
highly likely that the hybrid method degrades to a
pure rule-based method eventually, especially under
the pressure of fast delivery. To help other prac-
titioners make the trade-off, we share our practice
adopted in XTalk. First of all, when a requirement
is clearly specified and we have enough time on our
hands, using DNN techniques to implement the re-
quirement is our first choice. However, for a small
or urgent requirement update, we often do not take
the risk to implement it with DNN techniques. In-
stead, we implement it using rules. Moreover, when
we do not have a systematic understanding of a re-
quirement (e.g., we cannot enumerate how the users
express their needs), we prefer to implement this
requirement with rules. Later, as more NL inputs
are collected for the requirement, we will deepen the
understanding for it, and its implementation is mi-
grated from rules to DNN techniques. Last but not
the least, we regularly migrate rule-based implemen-
tations to DNN techniques, especially for those ur-
gent requirements implemented with rules.
Practice 4 Paraphrase the automatically gener-
ated NL questions with synthesized oracles.

Initially, we recruit labelers and ask them to
raise reasonable data analytics questions against a
table freely and to write the corresponding programs
(i.e., SQL-like queries). However, this approach is
ineffective since we find that it is challenging for la-
belers to raise diverse questions about data analytics
on a table. Based on our observation, most label-
ers can raise only several NL questions on one table
and often stick to a small set of linguistic forms.
Meanwhile, hiring these labelers who are proficient
in programming is very expensive.

To this end, we propose a paraphrasing ap-
proach for data collection, which does not require
labelers to be experts in either data analytics or
programming. Specifically, given a requirement of
XTalk and a table, we automatically synthesize a
lot of programs according to the requirement’s cor-
responding analysis functions. Consider require-
ment A© shown in Fig. 3 which requires us to sup-
port keyword-based NL inputs that express the use
of filters with cell values. To collect data for this
requirement, we first synthesize thousands of pro-
grams containing the filter function, e.g., “SELECT
sales WHERE brand = Brand_A.” Then, we prune

756 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

unreasonable programs and translate each remaining
program to an NL question using off-the-shelf tools
(Yao et al., 2019). Next, labelers are requested to
rewrite the generated NL questions according to the
requirement’s corresponding linguistic pattern. For
the program above, we generate a corresponding NL
question “Show me sales of Brand_A,” and ask la-
belers to rewrite the question into a keyword-based
expression such as “Brand_A sales.” With this ap-
proach, we can collect a large amount of data with
a high linguistic diversity at a low cost. Note that
the second approach is not free, because the space of
program is unbounded, and it requires some manual
effort to prune unreasonable programs.
Practice 5 Validate data with a semi-automated,
human-computer interactive approach.

To relieve the burden of data validation, we de-
velop a novel human-computer interactive approach,
inspired by the active learning technique (Bonwell
and Eison, 1991). The intuition of the approach is
that we can bootstrap an ML algorithm with a small
amount of training data and use the resulting ML
model to help validate the remaining data.

Algorithm 1 outlines the approach’s workflow.
Specifically, given a set of collected examples D =

{e0, e1 · · · , eM} including M collected examples, we
first randomly partition them into N different sets
{D0,D1, · · · ,DN−1} (line 1). We then manually val-
idate all examples in the first set D0 and use the
validated examples to train an ML model (lines 3–
4). The resulting ML model is then evaluated on
examples in the second set D1. We consider an
example potentially invalid if the ML model fails
to generate the same outputs on it as its original
label. Afterward, we manually validate all the po-
tential invalid examples and train another ML model
on {D0,D1} (lines 7–9). The last two steps iterate
until all the examples in D are validated. Intuitively,
as more examples are validated and used in training,
the ML model can generate correct outputs for more
examples, and the number of examples that require
manual validation decreases. In XTalk, with this ap-
proach, we manage to reduce the number of examples
that require manual validation by more than 50%.

5 Software quality management

Software quality management is a process to
manage the quality of a software program in such

Algorithm 1 Human-computer interactive data val-
idation approach
Input: a set of labeled examples to be validated D =

{e0, e1, · · · , eM} and the number of partitions N

Output: a set of validated examples DV

1: S = partition(D, N), where S = {D0,D1, . . . ,DN−1};
2: D0 = pop(S);
3: DV = validate(D0);
4: Model = train(DV);
5: while S is not empty do
6: Di = pop(S);
7: De = evaluate(Model, Di);
8: DV = DV|ManualValidate(De), where “ |” represents

the intersection operation;
9: Model = train(DV);

10: end while
11: return DV;

a way to best meet the quality standards expected
by both users and developers. This process involves
mainly system testing and maintenance. The sta-
tistical nature and weak interpretability of ML raise
additional problems for software testing (Zhang JM
et al., 2022), but most of them remain unsolved. As
a type of ML-based system, VAs pose all the test-
ing problems of ML-based systems. Since the test-
ing problems of ML-based systems have been widely
studied in the literature (Marijan et al., 2019), in
the following subsections, we briefly introduce them
and primarily focus on our practices for managing
XTalk’s quality.

5.1 Problems in quality management

Problem 5 Ensure the product readiness of a VA,
including evaluation, tracking, and improvement of
its quality, in the absence of test oracle and with
limited interpretability of the system.

Test case generation is difficult when evaluat-
ing the system accuracy and detecting bugs in the
system. Because of the complexity of NL, test case
generation for VAs is usually conducted intuitively
and is thus much inefficient. Meanwhile, since the
behaviors of VAs are mostly learned from data rather
than specified in code, it becomes extremely hard to
identify the root cause of a bug. Regression bug,
such as the new version fails on a set of previous suc-
cessful cases, is another headache for quality man-
agement. These regression bugs are often uninter-
pretable, which really threatens the effective man-
agement of system quality.

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 757

5.2 Practices for quality management

Practice 6 Rigorously test the system on diverse
data.

Since white-box testing techniques can be costly
due to the missing test oracles (Marijan et al.,
2019), we use mainly black-box testing techniques
in XTalk. Specifically, whenever requirements are
implemented, we perform four black-box testing ac-
tivities to ensure that the required level of XTalk’s
quality is achieved, as depicted in Fig. 4.

Start
Requirement
acceptance

testing

Regression
testing

Systematic
testing

A/B
testing End

1 2 3 4

Fig. 4 Testing workflow of XTalk
Testing activities 1©– 3© are conducted offline, while activity 4©
is conducted online

First of all, we conduct the requirement ac-
ceptance testing, aiming to measure whether XTalk
meets the acceptance criteria defined for each newly
implemented requirement. As we have discussed in
Practice 1, the representative NL inputs we have col-
lected for each requirement play an essential role in
specifying the requirement and defining acceptance
criteria. Hence, we think that these inputs are ade-
quate to test a requirement’s implementation. Then,
we conduct regression testing to ensure that the pre-
viously implemented requirements still perform after
a change. Specifically, we test whether their accep-
tance criteria are still met by XTalk. Due to the
statistical nature of ML, we observe that regression
frequently occurs in practice, and hence, it is impor-
tant to conduct regression testing. With SpecSpace,
both the requirement acceptance testing and regres-
sion testing are conducted automatically, and based
on SpecSpace, we can generate bug reports for those
requirements for which XTalk fails to meet the ac-
ceptance criteria.

In the previous two testing activities, we primar-
ily test XTalk according to its requirements. How-
ever, doing so is by no means enough because real
users do not have a clear scope for XTalk and they
can raise arbitrary questions. Therefore, to expose as
many bugs as possible before release, we recruit some
data analysts to test XTalk in systematic testing.
Unlike the data collection discussed in Practice 4,
we do not provide data analysts a specification of
what data analytics tasks they need to test. Instead,
we ask them to explore XTalk freely and evaluate

whether XTalk can help them fulfill their daily data
analytics tasks. In this process, data analysts are re-
quired to record all their inputs, including NL ques-
tions and tables, as well as their expected answers
for their questions. However, for those inputs that
XTalk fails to return correct answers, data analysts
need to provide correct programs and write bug re-
ports. Only when XTalk achieves higher accuracy
than its previous version in systematic testing, will
XTalk be allowed to be tested online. In practice, the
data collected in systematic testing are not only to
test XTalk, but also to refine XTalk’s requirements;
for example, we will add some cases to a require-
ment’s representative NL inputs if the cases are im-
portant and even add a new requirement. At this
point, we finish the offline testing.

To detect bugs after XTalk is deployed on-
line, we further conduct A/B testing (Young, 2014).
Users are split into two groups using the new and
old versions of XTalk separately. Compared to sys-
tematic testing, XTalk is tested by more users in real
scenarios. Moreover, since we have no access to any
of the inputs of users due to the privacy policies, not
to mention their expected outputs, it is impossible to
evaluate XTalk’s online performance as in the offline
scenario. Therefore, to assess XTalk’s online per-
formance, we design an evaluation metric according
to users’ behaviors; for instance, if a user saves the
results returned by XTalk, we consider that XTalk
meets the user’s requirement. When XTalk is im-
proved over its previous version on the online eval-
uation metric, we increase the percentage of sample
users who use the new version.

Note that since systematic testing and A/B test-
ing are more expensive and risky, we conduct them
only before release. As for requirement acceptance
testing and regression testing, we frequently con-
duct them with SpecSpace when a requirement is
implemented.
Practice 7 Design an effective bug management
process (i.e., bug report generation, bug triage, and
bug fixing) for VAs.

To relieve the burden of bug management for
XTalk, we standardize our bug management process
as follows:

1. Bug report generation. A good bug report
should be easily understood and reproduced. In
XTalk, we require that a bug report should contain
at least five elements, namely, an NL question, a

758 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

table, the NL question’s correct answer, XTalk’s re-
turned answer, and system version. Based on these
elements, we can quickly reproduce a bug. Fig. 5
shows an example of a typical bug report.

XTalk bug report
NL question: sales in 2010
Table: product sales

Correct answer: Returned answer:

Test cases:
1. Sales for 2010 2. 2010 sales
3. Sales of 2010 4. Sales for year 2010

Priority High
Category Program synthesizer error
Assigned to XXX
Created date 2019-11-18
Status Resolved
Product version 1.0.1

Sales Year
$1800 2010
$3600 2010

Sales
$2010
$2010

Fig. 5 An example bug report of XTalk
In XTalk 1.0.1, for natural language (NL) question “sales in
2010,” given the table “product sales,” the expected result
is filtering the sales in the year 2010, while XTalk wrongly
filtered sales that were equal to 2010; it was caused by the
program synthesizer module

2. Bug triage. Once a bug is reported, we try to
reproduce it and debug each module of XTalk step
by step to find out the root cause. Take the debug-
ging of XTalk’s parsing module as an example. We
first check whether the correct program exists in the
candidate results. If it exists, we then examine the
input features and intermediate results of the ML
model to understand the reason for not ranking the
correct program first. After finding the root cause,
we quantify the impact of a bug by testing XTalk
with some similar variants of the original NL input.
As shown in Fig. 5, three variants along with the
original input serve as the test cases for bug fixing.
Based on a bug’s root cause and its quantified im-
pact, we can classify the bug into a specific category,
assign the severity level, and notify the correspond-
ing developer to fix the bug. Currently, we have four
levels of bug priority: P0 (bug should be immediately
fixed); P1 (bug should be fixed within one week); P2
(bug should be fixed in the next version); P3 (bug is
hard to explain).

3. Bug fixing. For P0 bugs, developers use rules
to fix them quickly. Bugs in other levels of priority
are encouraged to be fixed with ML techniques, e.g.,

adding more training data or new features. Once
a bug is fixed, we conduct regression testing to en-
sure that the implemented functions still work after
a change.

6 Discussions

6.1 Lessons learned

In this subsection, we summarize the over-
arching lessons that we have learned at XTalk.

6.1.1 Data

It is well known that data are important for
developing an ML model. However, the value of
data has been rather underestimated in the soft-
ware management process, except for the develop-
ment phase, for a long time. We argue that data
also play an essential role in project management
throughout the lifecycle of VA software. Making full
use of the available data will tremendously facilitate
solving the problems occurring while managing a VA
software project, including problems in requirement
management, development management, and quality
management.

6.1.2 Requirement management

We organize a VA’s requirements according to
its aimed domain-specific task and the linguistic pat-
terns of NL. The number of utterances in NL is in-
finite, which causes difficulties in organizing clean
and actionable requirements for task-oriented VAs.
Through our formative study, we find that the scope
of NL could be organized through its domain-specific
tasks and linguistic patterns. For one thing, a VA
is expected to understand all NL inputs related to
its domain-specific tasks. For another, there ex-
ist a set of different linguistic patterns in NL that
are able to express the tasks. Moreover, compared
with NL, domain-specific tasks are relatively easy to
specify. With these insights, we start from organiz-
ing NL according to the domain-specific tasks first,
and further group the NL system according to its
linguistic patterns for each task. In this way, we
figure out the scope of NL, and thus specify clear
and actionable requirements for the VA. In addition,
introducing novel management tools such as Spec-
Space will further help specify, prioritize, and track
the requirements.

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 759

6.1.3 A good trad-off between DNN and rules

In the age of DNN, both industry and the re-
search field tend to pursue DNN-based methods
blindly. However, from our lessons, there still ex-
ist many problems in managing DNN-based software
projects. To enjoy the benefit of advanced DNN
techniques and make the development process man-
ageable, we argue that it is necessary to find a good
balance between DNN- and rule-based methods. By
deeply understanding pros and cons of the DNN- and
rule-based methods, we have confidence that we can
make the best choice between DNN and rules accord-
ing to the characteristics of the project requirements.

6.2 Open challenges

When managing our VA project, we encounter a
host of problems that we have presented in previous
sections. In the following, we summarize some open
challenges remaining in management based on our
experience.

6.2.1 Acceptance criteria for release

In a software project, we need to have not only
the release date but also release criteria to ensure
user satisfaction. Designing the acceptance criteria
for release is difficult for ML-based systems. First,
since incorrect model prediction is inevitable in these
systems, it is important to determine what error
rates are acceptable for user satisfaction. However,
current evaluation metrics for ML models are not
a direct reflection of user experience. For exam-
ple, even though we achieve a ≥ 95% accuracy with
the offline test data, we are still uncertain about
its behaviors in an online environment after release.
Second, the incorporation of ML introduces some
new factors to consider before release, such as inter-
pretability and fairness, but how to effectively evalu-
ate them is still an open question. To this end, some
fine-grained and diverse metrics for ML models can
be a great help for release and also serve as a research
opportunity.

6.2.2 Planning and scheduling

ML shifts software development from a deduc-
tive process to an inductive one. As mentioned,
the behavior of ML-based systems strongly depends
on data and models that cannot be clearly speci-

fied a priori, so either time or cost of implementing
a requirement is not easy to estimate. Under this
situation, planning and scheduling of the develop-
ment process and keeping the development control-
lable and effective to avoid work delay or unexpected
model behaviors become challenges. In a way, close
collaboration and constant communication become
extremely important for the teams developing VAs.

6.2.3 Circumvent regression errors

ML models are expected to learn some knowl-
edge from provided data, and more importantly, we
expect the models not to forget old knowledge when
learning the new ones. However, regression on model
performance is currently a severe problem when iter-
atively developing VAs. It can happen whenever we
make some changes on the ML models and it is usu-
ally uninterpretable, which makes the development
less efficient. There are some existing attempts in
the literature to tackle this problem, such as lifelong
learning and boosting technology (Schapire, 1990;
Thrun, 1998; Mason et al., 1999). However, it is
still an open problem. In the software community,
regression testing on ML-based systems is also a wor-
thy research opportunity to help expose the model
regression.

6.2.4 Robustness testing

Robustness measures the system resilience in
the presence of perturbations, and is extremely im-
portant for user satisfaction with ML-based systems.
Although there are various research works in this
field, it is still hard to automatically generate a large
number of test cases for practice.

For systems processing NL inputs such as VA,
generating test cases for robustness is more challeng-
ing due to the boundless and discrete NL space, and
it remains an open question. Thus, robustness test-
ing needs manual effort, which is obviously insuffi-
cient. Since the current research on test case gen-
eration is primarily centered on image classification,
more research efforts on NL related tasks are needed.

7 Related works

In this section, we present some related works on
task-oriented VAs and software project management
of ML-based systems.

760 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

7.1 Task-oriented VAs

In recent years, the capabilities and usage of
VAs have expanded rapidly with new products en-
tering the market, helping people with some domain-
specific tasks. For example, many database manage-
ment systems are deployed with VA, providing an NL
interface for data analytics (Dhamdhere et al., 2017;
Zhong et al., 2017; Sun et al., 2020), including XTalk.
Two kinds of techniques are used to develop a VA
system: rule-based methods driven by handcrafted
logic (Oram, 2019; Facebook, 2020) and ML-based
methods driven by data (Dhamdhere et al., 2017;
Zhong et al., 2017; Sun et al., 2020). Rule-based
VAs are relatively straightforward, but writing rules
for different scenarios is very time-consuming and it
is impossible to cover every possible scenario. ML-
based VAs rely on ML techniques such as NLP and
information retrieval (IR), which makes them more
efficient than rule-based VAs. Given the popular-
ity of VAs, the market has become fiercely competi-
tive, but the development is still challenging due to
some bottlenecks in understanding NL commands.
In this study, we make a very first attempt to elicit
the problems in VA project management based on
our experience in XTalk.

7.2 Empirical studies on management for ML-
based software projects

7.2.1 Requirement management

There are some research reports that aim to de-
fine the characteristics and challenges unique to re-
quirement engineering (RE) for ML-based systems.
Vogelsang and Borg (2019) conducted comprehen-
sive interviews among practitioners, and found that
some new requirements introduced by ML, e.g., ex-
plainability, are difficult to manage in practice. An-
other work (Horkoff, 2019) focused on managing
non-functional requirements in ML-based systems,
such as privacy, security, and testability. Despite
the aforementioned works, how requirements are
managed in real-world ML-based products is hardly
known. To fill the gap, in this study, we share our ex-
perience on both requirement management in XTalk
at Microsoft and a corresponding tool implemented
by ourselves.

7.2.2 System development

Many researchers have focused on identifying
the challenges of developing ML-based applications
by conducting empirical studies among practition-
ers or open forums such as StackOverflow as well as
by case studies (Arpteg et al., 2018; Schelter et al.,
2018a; Amershi et al., 2019; Islam et al., 2019; Zhang
TY et al., 2019). Besides, there are some works shar-
ing good or best practices on developing ML-based
systems based on practitioners’ real-world experi-
ence. For example, some practitioners from Google
shared their valuable insights and advice on main-
taining data, code, and models in ML-based systems
(Sculley et al., 2015; Breck et al., 2017). They high-
lighted some technical debts hidden in ML-based sys-
tems, such as boundary erosion, entanglement, and
data dependencies, and presented their practices to
avoid them. Another focus of research is the testing
process in ML-based systems, also referred to as ML
testing (Hains et al., 2018; Huang et al., 2018; Ma-
suda et al., 2018; Zhang JM et al., 2022). A recent
work (Zhang JM et al., 2022) presented a comprehen-
sive survey of the techniques of ML testing through
a literature review covering 144 papers. The survey
provides a landscape of ML testing, including test-
ing properties, testing components, testing workflow,
and application scenarios.

In general, these research works provide valu-
able insights on developing ML-based systems effec-
tively and efficiently, which is still an open ques-
tion. In this study, we summarize some problems
especially on developing VA systems and the lessons
learned through our experience in XTalk.

7.2.3 Data management

There are various works and tools aimed for
management of data or related sub-tasks. Polyzo-
tis et al. (2018) explored challenges in three main
areas, i.e., data understanding, data validation and
cleaning, and data preparation, drawn from their ex-
perience in developing data-centric infrastructure at
Google. Breck et al. (2017) designed a data vali-
dation system to continuously monitor and detect
data anomalies. There are also many frameworks for
sub-tasks, such as data cleaning and bug detection
in data (Krishnan et al., 2016, 2017; Schelter et al.,
2018b). However, many of these frameworks still
require humans in the loop or heavy human labors,

Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762 761

which limits their effectiveness in the industry. Other
trivial aspects such as data collection are also signif-
icant in practice and were hardly discussed in re-
search. In this study, we have presented the main
activities of data management in XTalk which could
also be applied to other VA projects.

8 Conclusions

In this study, we described five critical problems
in managing a task-oriented VA software project, in-
cluding problems in requirement management, de-
velopment management, and quality management.
To help researchers and practitioners address the
problems, we shared seven practices adopted in our
project on XTalk, which is a VA for data analytics.
These practices are not necessarily the best solu-
tions to the problems, but we found them effective
and useful in our project. Besides, we summarized
three lessons learned at managing XTalk and four
open challenges that require more research efforts.

In future work, we plan to make our require-
ment management tool, SpecSpace, open sourced.
To improve the testing efficiency of XTalk, we plan
to explore advanced natural language input genera-
tion techniques such as generative pre-trained trans-
former (GPT) (Radford et al., 2019) and metamor-
phic testing techniques (Lee et al., 2020). Besides,
we would like to collaborate with research teams in
the community to figure out solutions for the open
challenges.

Contributors
Shuyue LI, Jiaqi GUO, Jianguang LOU, and Ting LIU

designed the research. Yan GAO, Dejian YANG, and Yan

XIAO developed XTalk and provided the data. Shuyue LI,

Jiaqi GUO, Yan GAO, and Ting LIU drafted the paper.

Yadong ZHOU helped organize the paper. Jianguang LOU

and Ting LIU revised and finalized the paper.

Acknowledgements
This work is supported by Microsoft Research Asia and

is done during the internships of Shuyue LI and Jiaqi GUO.

Compliance with ethics guidelines
Shuyue LI, Jiaqi GUO, Yan GAO, Jianguang LOU,

Dejian YANG, Yan XIAO, Yadong ZHOU, and Ting LIU

declare that they have no conflict of interest.

References
Amershi S, Begel A, Bird C, et al., 2019. Software engineering

for machine learning: a case study. Proc IEEE/ACM
41st Int Conf on Software Engineering: Software Engi-
neering in Practice, p.291-300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

Arpteg A, Brinne B, Crnkovic-Friis L, et al., 2018. Software
engineering challenges of deep learning. Proc 44th

Euromicro Conf on Software Engineering and Advanced
Applications, p.50-59.
https://doi.org/10.1109/SEAA.2018.00018

Bender EM, Koller A, 2020. Climbing towards NLU: on
meaning, form, and understanding in the age of data.
Proc 58th Annual Meeting of the Association for Com-
putational Linguistics, p.5185-5198.
https://doi.org/10.18653/v1/2020.acl-main.463

Bonwell CC, Eison JA, 1991. Active Learning: Creating Ex-
citement in the Classroom. ERIC Number ED336049.
The George Washington University, Washington, USA.

Bradley AJ, 2020. Brace Yourself for an Explosion of
Virtual Assistants.
https://blogs.gartner.com/anthony_bradley/2020/08/
10/brace-yourself-for-an-explosion-of-virtual-assistants/
[Accessed on Aug. 10, 2020].

Breck E, Cai SQ, Nielsen E, et al., 2017. The ML test score:
a rubric for ML production readiness and technical debt
reduction. Proc IEEE Int Conf on Big Data, p.1123-
1132. https://doi.org/10.1109/BigData.2017.8258038

Campagna G, Xu SL, Moradshahi M, et al., 2019. Genie: a
generator of natural language semantic parsers for vir-
tual assistant commands. Proc 40th ACM SIGPLAN
Conf on Programming Language Design and Implemen-
tation, p.394-410.
https://doi.org/10.1145/3314221.3314594

Dhamdhere K, McCurley KS, Nahmias R, et al., 2017. An-
alyza: exploring data with conversation. Proc 22nd Int
Conf on Intelligent User Interfaces, p.493-504.
https://doi.org/10.1145/3025171.3025227

Facebook, 2020. Surveybot. https://surveybot.io/ [Accessed
on Aug. 10, 2020].

Gao Y, Lou JG, Zhang DM, 2019. A hybrid semantic parsing
approach for tabular data analysis.
https://arxiv.org/abs/1910.10363

Hains G, Jakobsson A, Khmelevsky Y, 2018. Towards for-
mal methods and software engineering for deep learning:
security, safety and productivity for DL systems devel-
opment. Proc Annual IEEE Int Systems Conf, p.1-5.
https://doi.org/10.1109/SYSCON.2018.8369576

Horkoff J, 2019. Non-functional requirements for machine
learning: challenges and new directions. Proc 27th Int
Requirements Engineering Conf, p.386-391.
https://doi.org/ 10.1109/RE.2019.00050

Huang XW, Kroening D, Kwiatkowska M, et al., 2018. Safety
and trustworthiness of deep neural networks: a survey.
https://arxiv.org/abs/1812.08342v1

Islam J, Nguyen HA, Pan R, et al., 2019. What do developers
ask about ML libraries? A large-scale study using stack
overflow. https://arxiv.org/abs/1906.11940

Krishnan S, Wang JN, Wu E, et al., 2016. ActiveClean:
interactive data cleaning for statistical modeling. Proc
VLDB Endow, 9(12):948-959.
https://doi.org/10.14778/2994509.2994514

762 Li et al. / Front Inform Technol Electron Eng 2022 23(5):749-762

Krishnan S, Franklin MJ, Goldberg K, et al., 2017. Boost-
Clean: automated error detection and repair for ma-
chine learning. https://arxiv.org/abs/1711.01299

Lee DTS, Zhou ZQ, Tse TH, 2020. Metamorphic robustness
testing of Google Translate. Proc 42nd Int Conf on
Software Engineering Workshops, p.388-395.
https://doi.org/10.1145/3387940.3391484

Marijan D, Gotlieb A, Ahuja MK, 2019. Challenges of testing
machine learning based systems. Proc IEEE Int Conf
on Artificial Intelligence Testing, p.101-102.
https://doi.org/10.1109/AITest.2019.00010

Mason L, Baxter J, Bartlett PL, et al., 1999. Boosting
algorithms as gradient descent. Proc 12th Int Conf on
Neural Information Processing Systems, p.512-518.

Masuda S, Ono K, Yasue T, et al., 2018. A survey of software
quality for machine learning applications. IEEE Int
Conf on Software Testing, Verification and Validation
Workshops, p.279-284.
https://doi.org/10.1109/ICSTW.2018.00061

Microsoft, 2020. Power BI. https://powerbi.microsoft.com/
[Accessed on Aug. 10, 2020].

Oram R, 2019. Meeting Edward: Chatbots and the
Changing Face of the Hotel Guest Experience.
https://blogs.oracle.com/hospitality/chatbots-and-the-
changing-the-face-of-the-hotel-guest-experience [Ac-
cessed on Aug. 10, 2020].

Polyzotis N, Roy S, Whang SE, et al., 2018. Data lifecycle
challenges in production machine learning: a survey.
ACM SIGMOD Rec, 47(2):17-28.
https://doi.org/10.1145/3299887.3299891

Radford A, Wu J, Child R, et al., 2019. Language Models
are Unsupervised Multitask Learners.
https://openai.com/blog/ [Accessed on Jan. 1, 2020].

Schapire RE, 1990. The strength of weak learnability. Mach
Learn, 5(2):197-227.
https://doi.org/10.1007/BF00116037

Schelter S, Lange D, Schmidt P, et al., 2018a. Automating
large-scale data quality verification. Proc VLDB En-
dow, 11(12):1781-1794.
https://doi.org/10.14778/3229863.3229867

Schelter S, Biessmann F, Januschowski T, et al., 2018b. On
challenges in machine learning model management.
IEEE Data Eng Bull, 41(4):5-15.

Sculley D, Holt G, Golovin D, et al., 2015. Hidden technical
debt in machine learning systems. Proc 28th Int Conf on
Neural Information Processing Systems, p.2503-2511.

Sun NY, Yang XF, Liu YF, 2020. TableQA: a large-scale
Chinese text-to-SQL dataset for table-aware SQL gen-
eration. https://arxiv.org/abs/2006.06434v1

Tableau, 2020a. Ask Data.
https://www.tableau.com/products/new-features/ask-
data/ [Accessed on Aug. 10, 2020].

Tableau, 2020b. Tableau. https://www.tableau.com/ [Ac-
cessed on Aug. 10, 2020].

Task Virtual, 2020. TaskVirtual. https://taskvirtual.com/
[Accessed on Aug. 10, 2020].

Thrun S, 1998. Lifelong learning algorithms. In: Thrun S,
Pratt L (Eds.), Learning to Learn. Kluwer Academic
Publishers, Norwell, USA, p.181-209.

Vogelsang A, Borg M, 2019. Requirements engineering for
machine learning: perspectives from data scientists.
Proc 27th Int Requirements Engineering Conf Work-
shops, p.245-251.
https://doi.org/10.1109/REW.2019.00050

Voigt P, von dem Bussche A, 2017. The EU General
Data Protection Regulation (GDPR): a Practical Guide.
Springer, Cham, Germany.
https://doi.org/10.1007/978-3-319-57959-7

Wikipedia, 2021. Virtual Assistant.
https://en.wikipedia.org/wiki/Virtual_assistant [Ac-
cessed on Aug. 10, 2020].

Yao ZY, Su Y, Sun H, et al., 2019. Model-based interactive
semantic parsing: a unified framework and a text-to-
SQL case study. Proc Conf on Empirical Methods in
Natural Language Processing and the 9th Int Joint Conf
on Natural Language Processing, p.5447-5458.
https://doi.org/10.18653/v1/D19-1547

Young SWH, 2014. Improving library user experience with
A/B testing: principles and process. Weave J Libr User
Exper.
https://doi.org/10.3998/weave.12535642.0001.101

Zhang JM, Harman M, Ma L, et al., 2022. Machine learning
testing: survey, landscapes and horizons. IEEE Trans
Softw Eng, 48(1):1-36.
https://doi.org/10.1109/TSE.2019.2962027

Zhang TY, Gao CY, Ma L, et al., 2019. An empirical study
of common challenges in developing deep learning ap-
plications. Proc 30th Int Symp on Software Reliability
Engineering, p.104-115.
https://doi.org/10.1109/ISSRE.2019.00020

Zhong V, Xiong CM, Socher R, 2017. Seq2SQL: gener-
ating structured queries from natural language using
reinforcement learning.
https://arxiv.org/abs/1709.00103v5

	Introduction
	Overview of XTalk
	Software requirement management
	Problems in requirement management
	Practices for requirement management
	SpecSpace: a requirement management tool for VAs

	Software development management
	Problems in development management
	Practices for development management

	Software quality management
	Problems in quality management
	Practices for quality management

	Discussions
	Lessons learned
	Data
	Requirement management
	A good trad-off between DNN and rules

	Open challenges
	Acceptance criteria for release
	Planning and scheduling
	Circumvent regression errors
	Robustness testing

	Related works
	Task-oriented VAs
	Empirical studies on management for ML-based software projects
	Requirement management
	System development
	Data management

	Conclusions

