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Abstract: Session-based recommendation aims to predict the next item based on a user’s limited interactions within
a short period. Existing approaches use mainly recurrent neural networks (RNNs) or graph neural networks (GNNs)
to model the sequential patterns or the transition relationships between items. However, such models either ignore
the over-smoothing issue of GNNs, or directly use cross-entropy loss with a softmax layer for model optimization,
which easily results in the over-fitting problem. To tackle the above issues, we propose a self-supervised graph
learning with target-adaptive masking (SGL-TM) method. Specifically, we first construct a global graph based
on all involved sessions and subsequently capture the self-supervised signals from the global connections between
items, which helps supervise the model in generating accurate representations of items in the ongoing session. After
that, we calculate the main supervised loss by comparing the ground truth with the predicted scores of items
adjusted by our designed target-adaptive masking module. Finally, we combine the main supervised component
with the auxiliary self-supervision module to obtain the final loss for optimizing the model parameters. Extensive
experimental results from two benchmark datasets, Gowalla and Diginetica, indicate that SGL-TM can outperform
state-of-the-art baselines in terms of Recall@20 and MRR@20, especially in short sessions.

Key words: Session-based recommendation; Self-supervised learning; Graph neural networks; Target-adaptive
masking
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1 Introduction

As an effective way to tackle the information
overload issue, recommender systems (RSs) can help
people make accurate choices when facing abundant
products or services (Singhal et al., 2017; Wang XN
and Tan, 2020). Traditional approaches like collabo-
rative filtering mainly pay attention to the long-term
preference of users while neglecting their current in-
teraction patterns (Wang X et al., 2019). This may
lead to inaccurate recommendations in some real-
§
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world situations, where a user’s long-term interac-
tions are not available (Wang SJ et al., 2022). Thus,
session-based recommendation has been proposed to
generate recommendations by modeling the user’s
recent limited interactions (Hidasi et al., 2016; Wu
et al., 2019).

Existing methods apply mainly Markov chains
(MCs) to extract the sequential patterns between
adjacent interactions for session-based recommenda-
tion (Rendle et al., 2010). Moreover, considering
the advantage of recurrent neural networks (RNNs)
in sequential data modeling, Hidasi et al. (2016)
first used the gate recurrent unit (GRU) to model
the session sequences and proposed session-parallel
mini-batches to modify the basic GRU. In addition,
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Li J et al. (2017) applied the attention mechanism
to determine the importance of items, which was
then used to generate the user’s main intent. Re-
cently, benefiting from the capability of graph neu-
ral networks (GNNs) in modeling complex transi-
tion relations between items, GNN-based methods
have been widely investigated and have achieved re-
markable achievements on session-based recommen-
dation (Chen TW and Wong, 2020; Qiu et al., 2020).
For instance, Wang ZY et al. (2020) introduced the
global context enhanced GNN (GCE-GNN) to aggre-
gate the item representations from both the session
graph and the global graph through a soft attention
mechanism.

However, MC- and RNN-based methods fail to
take the complicated transition patterns between
items into account (Xia et al., 2021b). Further-
more, despite the fact that GNN-based methods have
achieved outstanding success, the following limita-
tions still remain. On one hand, deep GNNs may
lead to an over-smoothing issue, in which the learned
representations of adjacent items in the session are
highly similar, making the item features indistin-
guishable (Chen M et al., 2020). On the other hand,
the training objective of existing models is to mini-
mize the cross-entropy loss. In the training process,
the target item score will continually increase while
other items, including the neighbors of the target
item, are treated as negative samples with decreasing
scores. However, items adjacent to each other in the
graph should be similar; i.e., it is unreasonable that
the scores of the neighbors of the target item are con-
tinuously decreased. Thus, it leads to an over-fitting
problem and model performance degradation.

To tackle the aforementioned issues, in this
study, we propose the self-supervised graph learning
with target-adaptive masking (SGL-TM) method for
session-based recommendation. Specifically, we first
construct the global connections between the items
of all involved sessions, and then obtain the neigh-
bor and non-neighbor information of each item as
the self-supervised signals for enhancing item repre-
sentation. Subsequently, given a current session, we
apply the graph attention network (GAT) to gener-
ate the representations of items in the session. Af-
ter that, we combine the long- and short-term inter-
ests of the current session to obtain the user pref-
erence. Then, for each session, we employ the de-
signed target-adaptive masking module to remove

the neighbors of the target item for calculating the
main supervised loss, which is then combined with
the auxiliary self-supervised loss for model optimiza-
tion. We implement the comprehensive experiments
on two real-world datasets, Gowalla and Diginetica.
The results demonstrate that our SGL-TM outper-
forms state-of-the-art baselines in terms of both Re-
call@20 and MRR@20.

Generally, the main contributions of this paper
can be summarized as follows:

1. We propose a neoteric self-supervised frame-
work for session-based recommendation, which can
solve the over-smoothing problem using the global
connections between items in graph learning.

2. We design a target-adaptive masking mod-
ule to tackle the over-fitting issue resulting from the
cross-entropy loss with a softmax layer in the model
optimization.

3. The results of the experiments implemented
on two public, real-world datasets, Gowalla and Dig-
inetica, indicate that our proposed SGL-TM out-
performs the competitive baselines in terms of Re-
call@20 and MRR@20.

2 Related works

In this section, we introduce the related works
from two aspects, session-based recommendation
and self-supervised recommendation.

2.1 Session-based recommendation

Conventional approaches for session-based rec-
ommendation typically use Markov chains to cap-
ture the temporal patterns between the user’s adja-
cent interactions. For instance, Rendle et al. (2010)
combined matrix factorization (MF) with Markov
chains to simultaneously capture the sequential pat-
terns and the user’s long-term preference in the ses-
sion. Moreover, Shani et al. (2005) adopted Markov
decision processes to use the transition dependencies
between items for generating recommendations.

Recently, neural models such as convolutional
neural networks (CNNs) and RNNs have been widely
used in session-based recommendation. For in-
stance, Yuan et al. (2019) adopted CNNs to learn
item representations from both long-term and cur-
rent item dependencies, where the interactions in a
session were regarded as an image and the convo-
lution operation was applied to generate the item
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embeddings. Moreover, Hidasi et al. (2016) intro-
duced GRU4REC, which first employs RNNs to
model the whole session sequence and introduces a
session-parallel training mechanism for model op-
timization. Furthermore, Tan et al. (2016) pro-
posed multiple optimization techniques for enhanc-
ing GRU4REC, such as data augmentation and gen-
eralized distillation, to make item prediction accu-
rate. In addition, to emphasize the user’s main in-
tent in the current session, Li J et al. (2017) intro-
duced the neural attentive recommendation model
based on a hybrid encoder to concurrently take the
sequential behavior and the user’s main intent into
consideration. Besides, Liu et al. (2018) proposed
a short-term memory priority model for capturing
both the long- and short-term interests of the user.

Considering the powerful ability of GNNs in
modeling connections between items, GNNs have
been introduced into session-based recommendation
and achieved considerable performance. Specifically,
the current session is first transformed to a session
graph, where GNNs are applied to propagate in-
formation between items for learning accurate item
representations. For example, Wu et al. (2019) in-
troduced session-based recommendation with GNNs
(SR-GNN), which took the lead in adopting GNNs
to learn item embeddings, where incoming and out-
going matrices were adopted to reveal the transition
pattern between items. On the basis of SR-GNN,
Xu et al. (2019) further used a self-attention mecha-
nism to extract the long-term patterns between items
in the session. Furthermore, Qiu et al. (2020) em-
ployed FGNN+ to connect different sessions using a
global graph for capturing cross-session information
to generate accurate recommendations. Moreover,
Wang ZY et al. (2020) proposed to compute the in-
formation flow from both the global and session lev-
els by relying on the constructed global graph and
session graph, respectively. In addition, Chen TW
and Wong (2020) proposed a shortcut graph atten-
tion layer with a lossless encoding scheme to tackle
the information loss issue of GNN applications in
session-based recommendation.

However, the CNN- and RNN-based approaches
fail to take the complicated transition patterns be-
tween items into account, limiting the recommen-
dation performance. Moreover, although the GNN-
based methods have achieved outstanding achieve-
ments in session-based recommendation, they gen-

erally face a serious over-smoothing issue. That is,
GNNs lead to significant similarities among the item
representations learned in a session, which results in
inaccurate recommendations.

2.2 Self-supervised recommendation

Self-supervised learning (SSL) (Hjelm et al.,
2019) is a neoteric paradigm of machine learning
that mines the pseudo labels from data to supervise
models and uses the learned representations for var-
ious downstream tasks. SSL has achieved great ac-
complishments in natural language processing (Kong
et al., 2020; Zhang et al., 2020), computer vision
(Afouras et al., 2020; Chen T et al., 2020), etc.

Recently, SSL has also been used in recom-
mender systems to generate accurate recommen-
dations. For instance, Xie et al. (2022) designed
contrastive learning for sequential recommendation
(CL4SRec), in which three data enhancement meth-
ods were proposed to extract self-supervised signals
from the user’s behavior to generate the user rep-
resentation. Xin et al. (2020) used reinforcement
learning to extend existing sequential recommenda-
tion models, aiming to distinguish different types of
user–item interactions. Moreover, Yao et al. (2021)
solved the issue of data sparsity in large-scale item
recommendations by applying a new data augmen-
tation method and contrastive learning to enhance
item representations. Zhou et al. (2020) introduced
S3-Rec (self-supervised learning for sequential rec-
ommendation), which learns the correlations among
sequences, subsequences, items, and attributes based
on mutual information maximization (MIM) to ob-
tain self-supervised signals and to strengthen the
item representations through pre-training for recom-
mendation. Furthermore, Xia et al. (2021b) designed
a novel dual channel hypergraph convolutional net-
work (DHCN) to obtain the complex high-order in-
formation between items, in which SSL was used to
maximize the mutual information between the ses-
sion representations generated through two channels.
In addition, Xia et al. (2021a) built graph encoders
to simultaneously leverage the internal and external
connectivity information of sessions, which was then
used to tackle the problem of data sparsity by con-
trastive learning.

Although the aforementioned self-supervised
approaches have made significant improvements in
recommender systems, they consider merely the
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supervised signals from a session–item perspective
or a session–session perspective, while generally ig-
noring the connections between items in different
sessions, which can provide additional supervisory
information. In this study, we use the global-level
connections between items in the global graph to en-
hance the item representation learning on the basis
of the main supervised learning.

3 Approach

In this section, we first formalize the task of
session-based recommendation. Subsequently, we
introduce the proposed SGL-TM in detail, which
consists mainly of three components (user prefer-
ence generation, self-supervised learning, and model
optimization).

Session-based recommendation aims to recom-
mend the next item with which a user will interact
based on the limited interactions in an ongoing ses-
sion. Denote V = {v1, v2, . . . , v|V |} the item set,
which contains all items (|V | represents the number
of items in V ). Assume that U = {S1, S2, . . . , S|U|}
indicates all sessions, where |U | represents the num-
ber of sessions. Denote Si = {v1, v2, . . . , vn} the ith

session in U , which includes n items in chronological
order, and vt (t = 1, 2, . . ., n) represents the item
with which interaction occurs at timestamp t in Si.
Given a current session Si, we first generate the user
preference, which is applied to obtain the prediction
scores of all items. Eventually, items ranked in the
top K positions will form the recommended list for
the user.

Fig. 1 presents the framework of our proposed
SGL-TM model for session-based recommendation.
Given a current session, we first learn the item em-
beddings by the information propagation of GAT.
Then we obtain the user’s long-term and current in-
terests in the session, and concatenate them to gen-
erate the final session representation. Specifically,
we establish a global graph to reveal the transition
relations between items among different sessions ac-
cording to all sessions in the training set. Then, on
one hand, we obtain the self-supervised signals from
the global-level connections between items to calcu-
late the self-supervised loss. On the other hand,
we calculate the prediction scores of all items in
the candidate set, which are then adjusted by the
designed target-adaptive masking module to obtain

the cross-entropy loss as the main supervised loss.
Finally, the main supervised loss and self-supervised
loss are combined to generate the final loss for model
optimization.

3.1 User preference generation

3.1.1 Item representation learning

For a session Si, we first establish a directed
local graph to reflect the transition relationships be-
tween items in Si. Specifically, Si can be denoted as
G̃i = {Ṽi, Ẽi}, where Ṽi and Ẽi denote the node set
and edge set in the local graph G̃i, respectively. Fur-
thermore, Ṽi = {x1, x2, . . . , xm} comprises all the
unique items in Si, where m ≤ n because items may
be repeatedly interacted in the session. Each edge
eij ∈ Ẽi indicates that the user interacts with xi

before xj in the session.
After constructing the local graph G̃i, we con-

duct information propagation on G̃i to learn the item
representations. Here we adopt the GAT (Velic̆ković
et al., 2018), considering that compared to gated
graph neural networks (GG-NNs) (Li YJ et al., 2016)
and graph convolutional networks (GCNs) (Kipf and
Welling, 2017), GAT can dynamically determine the
different importance of its neighbors to each node in
the local graph. Specifically, we first initialize the
embedding vector xi of each node xi in G̃i as follows:

x0
i = Embedding(xi), (1)

in which “Embedding” indicates the embedding
layer, x0

i ∈ R
d denotes the initialized item em-

beddings of xi, and d represents the dimension of
embeddings.

To obtain the pairwise transition relationships
between items in the ongoing session, we adopt GAT
to propagate neighbor information for each node.
For each node xi at layer l, the importance degree of
different neighbor nodes is determined by employing
a self-attention mechanism, where the importance
between nodes xi and xj is denoted by an attention
coefficient calculated as follows:

eij = σ1

(
WT

0 [W1x
l−1
i ;W2x

l−1
j ]

)
, (2)

where W0 ∈ R
2d and W1,W2 ∈ R

d×d represent
the trainable parameters, [ ; ] denotes the concate-
nation operation, and σ1 indicates the Leaky ReLU
function.
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Fig. 1 Framework of self-supervised graph learning with target-adaptive masking (SGL-TM) (GAT: graph
attention network)

Next, the attention coefficients are normalized
via using a softmax layer:

αij = Softmax (eij) =
exp (eij)∑

k∈Nvi
exp (eik)

, (3)

in which Nvi indicates the neighbor set of vi in the
local graph G̃i.

Finally, a linear combination of the correspond-
ing neighbors is used to update the node vector of vi
using the attention coefficients:

xl
i = σ

⎛

⎝
∑

j∈N (vi)

αijW3x
l−1
j

⎞

⎠ , (4)

where σ and W3 ∈ R
d×d denote the sigmoid function

and learnable parameters, respectively.
After the information propagation on multi-

layer GATs, we obtain the item representations xi

in the local graph G̃i. Finally, the item sequence is
recovered from the local graph to gain the represen-
tations of the chronological items within the current
session as {z1, z2, . . . , zn}.

3.1.2 Session representation generation

After learning the item representations in the
current session, following previous works (Xu et al.,
2019; Qiu et al., 2020), we take the user’s long-term

and current interests into account to generate the
final session representation as the user preference.

Due to that the last interacted item in the ses-
sion can reflect the current interest of the user (Qiu
et al., 2019; Pan et al., 2020), we directly use the em-
beddings of the last item as the current preference
uc ∈ R

d, i.e., uc = zn. In addition, the long-term
preference of the user is obtained by aggregating the
item representations using an attention mechanism:

⎧
⎪⎨

⎪⎩

ul =
∑n

i=1 γizi,

γi = Softmax(βi),

βi = W4σ(W5zi +W6uc),

(5)

where ul indicates the long-term preference of the
user, and W4 ∈ R

d and W5,W6 ∈ R
d×d denote the

trainable parameters.
Eventually, we attain the session representation

by combining the long-term and current interests of
the user as follows:

u = W7[ul;uc], (6)

where W7 ∈ R
d×d denotes the trainable parameters.

3.2 Self-supervised learning

Existing session-based recommendation meth-
ods generally ignore the over-smoothing issue of
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GNNs, resulting in the indistinguishability of the
learned item representations. Thus, in this subsec-
tion, we employ self-supervised learning to mine the
informative signals about item transitions among dif-
ferent sessions from an item–item perspective. This
enhances item representation learning to prevent the
over-smoothing issue, which includes global graph
construction and self-supervision.

3.2.1 Global graph construction

For the sake of obtaining the pairwise transi-
tion relationship between items across different ses-
sions, we construct a global session graph, where the
self-supervised signals generated from the global con-
nections are taken into consideration. Assume that
Ĝ = {V̂ , Ê} represents the global graph involving the
global connections, in which V̂ reflects the unique
items in all sessions, namely V , and Ê indicates all
the item transitions in the training set. Each edge
eij ∈ Ê denotes that items vi and vj are adjacently
interacted within a session.

Moreover, for popular items, there may exist
a large number of neighbor items. Here, to avoid
the bias caused by accidental clicks, we employ max
sampling to choose M most associated items as
the ultimate neighbors for each node in the global
graph, where the relevance is determined by the edge
weights, which indicates the level of similarity be-
tween two nodes. By max sampling, loose connec-
tions between nodes are filtered out to make sure
that the final neighbors are highly related to the tar-
get node.

3.2.2 Self-supervision

After constructing the global graph, we can ob-
tain the self-supervised signals through the connec-
tions between items among different sessions. Specif-
ically, given an item vi in a session, the set of its
neighbors in the global graph is denoted as Nvi . For
vi, the embeddings learned by GNNs should be more
similar to its neighbor node vj (vj ∈ Nvi) than a
non-neighbor node v̄j (v̄j ∈ V \Nvi), where “\” rep-
resents the set subtraction operation. Based on the
intuition, we employ the Jensen–Shannon divergence
(JSD) (Hjelm et al., 2019) as the contrastive loss,
which aims to minimize the distance between vi and
its neighbors Nvi , and maximize the distance be-
tween vi and its unconnected items V \Nvi . The

self-supervised loss can be calculated as

Lself =
1

T

T∑

j=1

(− log σ(f(zi,vj))

− log(1 − σ(f(zi, v̄j)))
)
,

(7)

where zi is the item representation of vi output by
GNNs, and vj and v̄j are the item vectors of nodes
vj (vj ∈ Nvi) and v̄j (v̄j ∈ V \Nvi) generated by
the embedding layer respectively. Moreover, T indi-
cates the number of neighbors or non-neighbors of vi,
which is sampled from the neighborsNvi in the global
graph using max sampling, or from the unconnected
items V \Nvi by random sampling, respectively. In
addition, f is a linear mapping function calculated
as

f(zi,vj) = zT
i vj ; (8)

f : Rd × R
d → R is the similarity calculation func-

tion, which uses the embeddings of two items as in-
puts and subsequently scores the similarity between
them.

This means that each item in the current session
can obtain information from its neighbor items in
the global graph by contrastive learning, which can
be used as additional information to enhance item
representation learning to solve the over-smoothing
issue caused by using GAT in the current session.

3.3 Model optimization

3.3.1 Target-adaptive masking

After obtaining the session representationu, the
final recommendation probability of each candidate
item can be generated by multiplying u with the
embeddings of the candidates as follows:

ŷi = Softmax(uTvi), ∀i = 1, 2, . . . , |V |, (9)

in which ŷi represents the probability of item vi be-
ing the next item recommended to the user, and vi

indicates the initial embeddings of candidate item vi.
In addition, because directly adopting the cross-

entropy loss with a softmax layer can cause over-
fitting (that is, similar to the unconnected items, the
scores of the neighbors of the target item are continu-
ously decreased), we design a target-adaptive mask-
ing component. Specifically, given a global graph
Gg = {Vg, Eg}, for the target item vtarget, we first
sample its neighbors with N largest edge weights
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in the global graph as the final neighbors of vtarget,
denoted as Nvtarget . Then we mask the sampled N

items from the original candidate set V as the up-
dated candidate set:

VUpdate = V \Nvtarget . (10)

Eventually, the cross-entropy is applied as the
main supervised loss as follows:

Lmain =−
|VUpdate|∑

i=1

[
yi log(ŷi)

+ (1− yi) log(1 − ŷi)
]
,

(11)

in which yi denotes the one-hot vector of the ground
truth.

In this way, the scores of the target item’s neigh-
bors will not be decreased in the training procedure,
thus alleviating the over-fitting issue to a certain
extent.

3.3.2 Multi-task learning

After generating the main supervised loss in
Eq. (11) and the auxiliary self-supervised loss in
Eq. (7), we obtain the total loss by combining the
main and self-supervisions losses as follows:

L = Lmain + λLself , (12)

in which λ is the trade-off parameter controlling the
magnitude of self-supervised learning. Finally, we
update the item embeddings and learn the train-
able parameters using the back propagation algo-
rithm (Rumelhart et al., 1986).

We detail the main process of SGL-TM training
in Algorithm 1. For all sessions in the training set,
we establish a global graph to show the connections
of items among different sessions (line 1). Then, in
the current session, item representations are gener-
ated (lines 4 and 5), that is, local graph construction
and information propagation by GAT. We generate
the current interest of the ongoing session (line 6)
and long-term interest (line 7), and combine them
to obtain the session representation (line 8). We
perform max sampling on the neighbors and random
sampling on the non-neighbors of vi (line 9), and cal-
culate the similarity according to their item embed-
dings to generate the self-supervised loss (line 10).
The prediction score is calculated (line 11) and the

Algorithm 1 Training procedure of SGL-TM
Input: set U =

{
S1, S2, ..., S|U|

}
;

λ: the trade-off parameter
Output: I: the item representations in V ;

ψ: the trainable parameters in SGL-TM
1: Ĝ = {V̂, Ê} ← global graph construct (U)

2: for each training iteration do
3: for Si in U do
4: G̃i = {Ṽi, Ẽi} ← local graph construct (Si)

5: zi = information propagation (vi) based on
Eqs. (1)–(4)

6: uc = current interest (zn)

7: ul = long-term interest (zi) based on Eq. (5)
8: u = session representations (uc,ul) based on

Eq. (6)
9: Nvi , V \Nvi = sample (Ĝ)

10: Lself = JSD(zi,vj , v̄j) based on Eqs. (7) and
(8)

11: ŷi = prediction (u,vi) based on Eq. (9)
12: VUpdate = global graph-aware masking

(V,Nvtarget ) based on Eq. (10)
13: Lmain = cross-entropy loss (ŷi) based on

Eq. (11)
14: Model optimization loss: L = Lmain + λLself

15: end for
16: Use back propagation for the optimization of

trainable parameters
17: end for
18: return I and ψ

target-adaptive masking on the candidate set is per-
formed (line 12). We calculate the main supervised
loss by a cross-entropy loss (line 13). Finally, we ob-
tain the total loss and employ back propagation to
optimize the model parameters.

4 Experiments

4.1 Research questions

We guide our experiments by addressing the fol-
lowing five research questions:

1. Can our SGL-TM model be superior to state-
of-the-art baselines on real-world datasets?

2. How significant is the contribution of self-
supervised learning and target-adaptive masking
modules to the performance of SGL-TM?

3. How does SGL-TM perform with various
magnitudes of self-supervised signals incorporated?

4. How does SGL-TM perform at different ses-
sion lengths?

5. What are the efforts of the important
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hyper-parameters, i.e., the number of neighbor and
non-neighbor pairs and the number of neighbors
masked, on the performance of SGL-TM?

4.2 Datasets

We employ two real-world datasets that are
extensively employed in session-based recommen-
dations, i.e., Gowalla (https://snap.stanford.edu/
data/loc-gowalla.html) and Diginetica (http://
cikm2016.cs.iupui.edu/cikm-cup), to conduct the ex-
periments. Gowalla is a check-in dataset that con-
tains the location information shared by users when
they checked in between February 2009 and October
2010 (Davidson et al., 2010). Following Tang and
Wang (2018), we retain 30 000 of the most popular
locations for the experiments. Diginetica collects
users’ behavior information from an e-commerce
website, which is released by CIKM Cup 2016 (Cheng
et al., 2017). Here we use the transaction data, which
are appropriate for session-based recommendation.
Moreover, following Pan et al. (2022), items that oc-
cur less than 5 times and sessions with length 1 are
removed from both datasets. Detailed statistics of
the two datasets after prepossessing are presented in
Table 1.

4.3 Baselines

We compare the performance of our model
against the following representative baselines:

FPMC (Rendle et al., 2010) is a compound
method based on personalized Markov chains, which
is applied in capturing the sequential patterns be-
tween adjacent items.

NARM (Li J et al., 2017) employs an RNN and
an attention mechanism to model the sequential sig-
nals in the session and captures the main intent of
the user.

NextItNet (Yuan et al., 2019) adopts a CNN
to model the session sequence by learning high-level
representations from item dependencies.

FGNN (Qiu et al., 2019) adopts a Readout func-
tion and a weighted attention graph layer to learn the

representations of sessions and items.
SR-GNN (Wu et al., 2019) converts each ses-

sion into a graph and generates item representations
using GG-NNs.

GCE-GNN (Wang ZY et al., 2020) employs both
global- and local-level pairwise transitions between
items to obtain the user preference.

S2-DHCN (Xia et al., 2021b) introduces two hy-
pergraphs to extract the beyond-pairwise relations of
items and adopts self-supervised learning to enhance
item representation.

4.4 Evaluation metrics

We employ Recall@K and MRR@K to assess
the performance of recommendation models, which
are always used in previous works (Qiu et al., 2019;
Choi et al., 2021).

Recall@K: It is an indicator for measuring
whether the next-click item appears in the top K

positions of the recommended list, which is formu-
lated as follows:

Recall@K =
nhit

N1
, (13)

in which N1 denotes the number of all test sequences
and nhit indicates the number of next-click items in
the top K positions of the recommended list.

MRR@K: This is a metric that takes the rank
of a target item in the recommended list into con-
sideration. It is set to 0 when the correct recom-
mended item is not returned in the top K positions
of the recommended list; otherwise, it is generated as
follows:

MRR@K =
1

N2

∑

vcorrect∈Stest

1

Rank (vcorrect)
, (14)

in which N2 and vcorrect indicate the number of all
test sessions (|Stest|) and the target item of a session,
respectively.

4.5 Experimental setup

We divide Gowalla and Diginetica into the
training and test sets for training and evaluation,

Table 1 Dataset statistics

Dataset Number of clicks Number of sessions Number of items
Average session Average number of

length clicks per item

Gowalla 1 122 788 830 893 29 510 3.85 38.05
Diginetica 981 620 777 029 42 956 4.80 22.85
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respectively. For the Gowalla dataset, we employ the
sessions that occurred in the last week for testing.
For the Diginetica dataset, the last 20% of the ses-
sions are separated as the test set.

Moreover, following Chen TW and Wong
(2020), we use the data augmentation strategy for
both datasets. Adam (Kingma and Ba, 2015) is
adopted as our optimizer to train the model. We
set the dimension of the item embeddings and the
mini-batch size to 128 and 512, respectively. More-
over, the learning rate is initialized at 0.001 and at-
tenuated by 0.5 every three epochs. In addition, the
recommendation number K is set to 20 for evalua-
tion. Furthermore, we use grid search to find the best
performance of SGL-TM on both datasets by rang-
ing the dropout and layer numbers in {0, 0.1, 0.25}
and {1, 2, 3}, respectively. Similarly, we employ grid
search to determine the number of neighbor and non-
neighbor pairs in the self-supervised learning mod-
ule (i.e., M) and the number of neighbors masked in
the target-adaptive masking component (i.e., N) by
ranging M and N both in {1, 2, 3, 4}.

5 Results and discussion

5.1 Overall performance

We compare SGL-TM with state-of-the-art rec-
ommendation baselines in terms of Recall@20 and
MRR@20 on both datasets. The experimental re-
sults are displayed in Table 2, from which we can
draw the following observations:

First, compared with the neural models, the tra-
ditional recommendation methods like FPMC, based
on Markov chains, have completely lost the superior-

Table 2 Model performance

Method
Recall@20 (%) MRR@20 (%)

Gowalla Diginetica Gowalla Diginetica

FPMC 29.91 28.50 11.45 7.67
NextItNet 45.15 45.41 21.26 15.19
NARM 50.07 49.80 23.92 16.57
FGNN 50.06 50.03 24.12 17.01
SR-GNN 50.32 50.81 24.25 17.31
GCE-GNN 51.51 51.66 23.52 17.53
S2-DHCN 51.96 52.58 23.47 17.91
SGL-TM 52.26� 53.02� 25.29� 18.38�

The results of the best performing model and the best baseline
in each column are boldfaced and underlined, respectively. �

indicates a statistical significance of SGL-TM against the best
baseline applying a paired t-test (p < 0.01)

ity. This is due to the fact that MC-based methods
pay more attention to the pairwise sequential signals
between adjacent items, and ignore other sequential
information in the whole session. Moreover, it is
obvious that the performance of NARM on the two
datasets is superior to that of NextItNet, because
the session sequence in the session-based recommen-
dation is generally generated within a short time and
thus is likely to be time-dependent. Compared with
the CNN used in NextItNet, RNN applied in NARM
is better at modeling such time-dependent sequences.
In addition, among the baselines, the GNN-based
methods achieve the best performance, which sug-
gests that GNNs can precisely model the compli-
cated transition patterns between items in the ses-
sion. Moreover, GCE-GNN and S2-DHCN outper-
form SR-GNN in most cases on both datasets, which
proves that capturing both local and global levels of
item information can help users make accurate pre-
dictions. However, GCE-GNN and S2-DHCN lose
the competition to SR-GNN in terms of MRR@20
on the Gowalla dataset, which may be a result of
the interference of irrelevant items in other sessions
making them unable to accurately identify the user’s
intention.

Generally, our method SGL-TM is superior to
the competitive baselines in terms of both Recall@20
and MRR@20 on both datasets, revealing its effec-
tiveness for the session-based recommendation task.
The reasons can be summarized as follows: The
self-supervised learning module can employ abun-
dant information from other sessions, which can help
the model generate accurate item representations by
avoiding the over-smoothing issue caused by GNNs.
In addition, the target-adaptive masking module can
effectively avoid the phenomenon that the scores of
items adjacent to the target item are decreasing in a
manner comparable to those of other unrelated items
in the training process. Moreover, SGL-TM gains
the improvements over the best baselines, namely,
SR-GNN and S2-DHCN, by 0.58% in terms of Re-
call@20 and 4.29% in terms of MRR@20 on Gowalla,
respectively; while the corresponding improvements
are 0.84% and 2.62% on the Diginetica dataset. It
can be found that the improvement of our SGL-TM
on MRR@20 is more obvious than that on Recall@20
on both datasets, which suggests that compared to
hitting the target item in the recommended list, our
SGL-TM is more efficient at ranking it in the correct
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location.

5.2 Ablation study

In this subsection, we develop three variants of
SGL-TM (i.e., Base, Base-TM, and Base-SSL) to
explore the contribution of each component in our
proposal by comparing the variants to SGL-TM on
the Gowalla and Diginetica datasets. Specifically,
the variant Base merely adopts GAT to model the
session sequence without self-supervised learning or
the target-adaptive masking module. Base-TM and
Base-SSL remove the self-supervised learning mod-
ule and the target-adaptive masking module from
SGL-TM, respectively. The results of the variants
and SGL-TM are presented in Table 3.

According to Table 3, it can be found that
both self-supervised learning and target-adaptive
masking modules contribute to the improvement
of model performance. Moreover, removing the
self-supervised learning module results in a larger
degradation of the model performance than remov-
ing the target-adaptive masking. This may be be-
cause, compared to the over-fitting problem, the
over-smoothing issue of the model is more promi-
nent and has a greater effect on the recommenda-
tion accuracy. In addition, comparing Base-TM and
SGL-TM, we find that after getting rid of the self-
supervised learning module, the model performance
obviously drops, which shows that the global-level
connections between items reflected in different ses-
sions can provide additional self-supervisions in addi-
tion to the supervised signals in the session–item per-
spective for item representation learning. Moreover,
compared with SGL-TM, the model performance of
Base-TM is reduced by 1.79% and 3.75% in terms
of Recall@20 and MRR@20 on Diginetica, while the
performance dropping rates are 1.24% and 3.91% on
the Gowalla dataset. It is evident that the contribu-
tion of the self-supervised learning module on rank-
ing the target items at the correct location is larger
than that on hitting them in the recommended list.

Table 3 Ablation study

Method
Recall@20 (%) MRR@20 (%)

Gowalla Diginetica Gowalla Diginetica

Base 50.68 51.14 24.17 17.32
Base-TM 51.61 52.07 24.30 17.69
Base-SSL 52.05 52.65 24.87 18.27
SGL-TM 52.26 53.02 25.29 18.38

5.3 Impact of the magnitude of self-
supervision

We introduce a trade-off parameter λ in Eq. (12)
in our proposal to control the magnitude of in-
corporating the self-supervised signals. Specifi-
cally, we test the performance of SGL-TM by tun-
ing the parameter λ in {0, 0.0001, 0.001, 0.01, 0.1,
0.2, 0.5, 1.0, 2.0, 3.0} to investigate the impact of the
self-supervised learning module. The results are pre-
sented in Fig. 2.

Based on Fig. 2, the introduction of self-
supervised signals with an appropriate λ effectively
improves the performance of recommender systems.
This is due to the fact that the self-supervised learn-
ing module alleviates the over-smoothing problem
and introduces the global-level information from
other sessions to generate accurate item representa-
tions. In detail, for the Diginetica dataset, as λ goes
up, the performance of SGL-TM in terms of both
metrics, first exhibits an increasing trend and then
decreasing, where the best performance is achieved
when λ is 0.5. This is because when λ is small,
the self-supervised signals are insufficient to solve
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the over-smoothing issue, while a large λ may cause
the over-fitting problem and thus lead to relatively
low model performance. For the Gowalla dataset,
when λ is within 1, as λ increases, the performance
of SGL-TM first increases and then gently fluctuates
in terms of both Recall@20 and MRR@20. When
λ is large enough on the Gowalla dataset (e.g., 2
or 3), the performance of SGL-TM begins to de-
cline. When λ is within 1, the different trends of the
model performance on Diginetica and Gowalla may
be made clear by the fact that the average number
of clicks per item on Gowalla is larger than that on
Diginetica. This indicates that the degree of items
in the Gowalla dataset is correspondingly higher, so
the Gowalla dataset is more likely to suffer from a
serious over-smoothing problem. Thus, more self-
supervised signals are required to tackle the problem
on Gowalla (Chen M et al., 2020; Nie et al., 2020,
2021).

5.4 Impact of session length

Considering that sessions have various lengths
in real-world situations, it is necessary to assess
the performance of SGL-TM as well as the base-
lines when dealing with sessions with various lengths.
Specifically, we separate the sessions in Gowalla and
Diginetica into three groups with different lengths:
“Short,” containing sessions of less than 6 items;
“Long,” including sessions of more than 10 items; and
the others denoted as “Medium.” Subsequently, we
examine the performance of SGL-TM and the com-
petitive baselines, namely, SR-GNN, GCE-GNN,
and S2-DHCN, on the three groups of sessions on
both datasets. The outcomes are exhibited in Fig. 3.

According to Fig. 3, SGL-TM outperforms the
baselines in terms of both Recall@20 and MRR@20
at different session lengths, demonstrating the effec-
tiveness of our proposal on dealing with sessions of
various lengths. Especially on the Gowalla dataset,
the performance of our proposal in terms of both
metrics improves when the session length increases.
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However, the performance of SGL-TM shows an op-
posite trend with the session length increasing on
Diginetica. We analyze the phenomenon that is
caused by the difference between the characteristics
of the datasets. Specifically, for Gowalla under the
check-in scenario, users generally pay attention to
similar places. Thus, with the number of interac-
tive items increasing, more information can be pro-
vided to determine the user’s purpose. Differently,
for the Diginetica dataset, as the number of inter-
active items goes up, the user preference may be-
come difficult to capture considering that the intent
changes rapidly in the e-commerce scenario. In ad-
dition, it is observed that SGL-TM gains the most
obvious improvements over the competitive base-
lines in terms of both metrics on the Short sessions
among the three groups on both datasets, and the
performance gap between SGL-TM and the base-
lines gradually decreases as the session length in-
creases, which reveals that our proposal can effec-
tively capture the user intent from limited historical
interactions.

5.5 Hyper-parameter analysis

We examine the influence of some important
hyper-parameters (including M and N , which are
introduced in the self-supervised learning and target-
adaptive masking components, respectively) on the
performance of SGL-TM.

5.5.1 Impact of hyper-parameter M

To illustrate the influence of the number
of neighbor and non-neighbor pairs in the self-

supervised learning module (i.e., M) on the recom-
mendation accuracy, we search M in {1, 2, 3, 4}. The
results of SGL-TM on Gowalla and Diginetica are
presented in Fig. 4.

On the Diginetica dataset, from Fig. 4, we find
that the peak performance of SGL-TM is achieved
when M is 2. With the number of item pairs in-
creasing, the performance of SGL-TM first increases
and then decreases. This could be explained by
adding a proper number of item pairs because the
self-supervised signals can improve the model per-
formance; however, introducing too many item pairs
will result in self-supervision redundancy, which
leads the model to over-fitting. Interestingly, on
Gowalla, the performance of SGL-TM continually
improves as the number of item pairs increases. The
phenomenon is consistent with that mentioned in
Section 5.3 and can be explained by the fact that the
Gowalla dataset needs more self-supervised signals
than Diginetica.

5.5.2 Impact of hyper-parameter N

We study the influence of the number of neigh-
bors masked in the target-adaptive masking compo-
nent, i.e., N . Specifically, we tune N in {1, 2, 3, 4},
and the results on Gowalla and Diginetica are pre-
sented in Fig. 5. We can observe that on both the
Gowalla and Diginetica datasets, SGL-TM achieves
the peak performance when N is 4. As N increases,
the performance of SGL-TM on both Gowalla and
Diginetica in terms of both metrics generally in-
creases, which indicates that as the number of
masked neighbors of the target item increases, our
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target-adaptive masking module can more effectively
tackle the over-fitting problem.

6 Conclusions and future work

In this paper, we have proposed a self-supervised
graph learning with target-adaptive masking (SGL-
TM) method for session-based recommendation.
Specifically, we have employed self-supervised learn-
ing to tackle the over-smoothing issue of GNNs by
introducing the global-level transition relations be-
tween items. Moreover, we have designed a target-
adaptive masking module to effectively overcome the
over-fitting problem of a cross-entropy loss with a
softmax layer. The results of the experiments imple-
mented on two real-world datasets, namely, Gowalla
and Diginetica, have verified the effectiveness of our
SGL-TM in terms of Recall@20 and MRR@20.

As for future work, we plan to investigate
the similarity among sessions to capture more self-
supervised signals to generate accurate recommen-
dations. In addition, we would like to tackle the
cold-start issue in recommender systems by min-
ing the user–item interaction information in the ses-
sion graph from multiple perspectives (Zheng et al.,
2021).
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