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Abstract: The sparrow search algorithm (SSA) is a recent meta-heuristic optimization approach with the advantages
of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between
exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the
above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm
(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and
the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter
control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a
hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To
validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40
complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different
dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several
state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering
optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems.

Key words: Swarm intelligence; Sparrow search algorithm; Adaptive parameter control strategy; Hybrid
disturbance mechanism; Optimization problems
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1 Introduction

Optimization problems exist in many fields,
such as industrial production, artificial intelligence,
and medical applications (Deng and Wang, 2017;
Ding et al., 2018; Wang MJ and Chen, 2020). Be-
cause these problems are multi-peak, highly dimen-
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sional, and highly nonlinear, it is difficult to reach
the best solution in a limited time period using tra-
ditional optimization methods (Gao and Xin, 2019).
In addition, traditional methods tend to generate in-
accurate solutions. Hence, it is still a great challenge
to develop desirable and efficient optimization algo-
rithms to cope with increasingly diverse and compli-
cated problems.

In recent years, meta-heuristic algorithms that
imitate natural phenomena, physical laws, and
animal’s social and life behaviors have attracted
widespread attention due to their strong exploration
and exploitation abilities in addressing complex en-
gineering and scientific research problems (Xin et al.,
2010; Heidari et al., 2020; Ruan and Duan, 2020). Al-
though the optimal solution cannot be guaranteed,
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meta-heuristic algorithms can still yield an approx-
imate answer to the question in a relatively short
time period because they are stochastic and inde-
terminate. In general, meta-heuristic algorithms
can be classified roughly into four categories (Fis-
ter et al., 2013). The first one is swarm intelli-
gence based algorithms such as particle swarm op-
timization (PSO) (Poli et al., 2007), grey wolf op-
timization (GWO) (Zhang XQ et al., 2021), the
slime mold algorithm (SMA) (Li SM et al., 2020),
hunger games search (HGS) (Yang et al., 2021), the
RUNge Kutta optimizer (RUN) (Ahmadianfar et al.,
2021), colony predation algorithm (CPA) (Tu et al.,
2021), Harris hawks optimization (HHO) (Heidari
et al., 2019), the dolphin swarm algorithm (DSA)
(Wu et al., 2016), and the chimp optimization algo-
rithm (ChOA) (Khishe and Mosavi, 2020). These
algorithms update the population by integrating the
foraging or other social behaviors of creatures into
the individuals’ mutual collaboration. The second
category is bio-inspired algorithms which update the
population through biological operators, such as se-
lection, crossover, mutation, and migration opera-
tors. The representative algorithms in this cate-
gory are the genetic algorithm (GA) (Srinivas and
Patnaik, 1994), differential evolution (DE) (Storn
and Price, 1997), and biogeography-based optimiza-
tion (BBO) (Simon, 2008). The third category is
physical- or chemical-based algorithms, such as grav-
itational search algorithm (GSA) (Rashedi et al.,
2009), Archimedes optimization algorithm (AOA)
(Hashim et al., 2021), equilibrium optimizer (EO)
(Faramarzi et al., 2020), synergistic fibroblast opti-
mization (SFO) (Dhivyaprabha et al., 2018), Henry
gas solubility optimization (HGSO) (Hashim et al.,
2019), and water cycle algorithm (WCA) (Eskandar
et al., 2012). The mechanism used to update individ-
uals in these algorithms generally adopts physical or
chemical laws. The last category is social or human-
based algorithms. These algorithms are inspired by
the social and cultural interactions seen in human
behaviors, including teaching–learning based opti-
mization (TLBO) (Rao et al., 2011), poor and rich
optimization (PRO) (Moosavi and Bardsiri, 2019),
the political optimizer (PO) (Askari et al., 2020b),
and the heap-based optimizer (HBO) (Askari et al.,
2020a).

The sparrow search algorithm (SSA) is a swarm
intelligence based meta-heuristic algorithm devel-

oped by Xue and Shen (2020). It mimics the for-
aging and anti-predation behaviors of sparrows in
nature. Compared with other meta-heuristic al-
gorithms, SSA possesses the advantages of simple
structure, flexibility, and few parameters. Thus, SSA
has been applied to solve various real-life application
problems. For instance, Gai et al. (2021) proposed
to use SSA for parameter optimization of a deep be-
lief network and then applied it to address the fault
diagnosis problem. In Abdulhammed (2022), SSA
was used to handle a load-balancing problem. Wang
X et al. (2021) introduced SSA to optimize the back-
propagation neural network and combined it with
a bi-directional long short-term memory network to
predict potential threats.

The “no free lunch” theorem (Wolpert and
Macready, 1997) states that no one optimization
technique is suitable for all optimization problems.
SSA is no exception, and it still has some draw-
backs in dealing with complex optimization prob-
lems, such as low accuracy, premature convergence,
difficulty in balancing exploration and exploitation,
and a tendency to get stuck in local optima. There-
fore, scholars have been devoted to designing en-
hancement strategies to alleviate these drawbacks
or tailor the SSA to solve a specific issue. As
shown in Table 1, Tian and Chen (2021) proposed
a modified SSA combining multiple strategies and
applied it to parameter optimization of long short-
term memory neural networks. Zhang Z et al. (2022)
presented an improved SSA that performs well for
mobile robot path planning in a complex environ-
ment. An elite opposite strategy SSA was proposed
by Fang et al. (2022) to address the fault diagno-
sis problem. In Chang et al. (2022), a random
walk was integrated with SSA to improve the per-
formance of global search and local search. The de-
veloped SSA was employed to optimize the deploy-
ment of a fifth-generation wireless communication
(5G) network base station. In Zhang CL and Ding
(2021), aiming at optimizing the stochastic config-
uration network, SSA was modified to include a lo-
gistic mapping, two self-adaptive hyper-parameters,
and a mutation operator. Li XJ et al. (2022)
combined chaos, student’s t-distribution, and Lévy
flight with an SSA and introduced it into a study
on identifying robot parameters. Zhu and Yousefi
(2021) developed a new technique for optimal pa-
rameter identification based on adaptive SSA. They
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Table 1 A summary of key works on sparrow search algorithm (SSA)

Reference Method Description Application

Tian and Chen (2021) ISSA Chaos, Cauchy variation, and reverse Hyper-parameter optimization of the
learning are embedded in SSA long short-term memory model

Zhang Z et al. (2022) ISSA SSA with a neighborhood search strategy Mobile robot path planning
Fang et al. (2022) EOSSA Elite opposite learning strategy and Fault diagnosis

orifice imaging opposite learning
strategy are embedded in SSA

Chang et al. (2022) RWSSA SSA with random walk 5G base station deployment
Zhang CL and Ding (2021) CSSA Chaos, self-adaptive parameters, and Numerical optimization and

mutation are embedded in SSA stochastic configuration network
Li XJ et al. (2022) ICSSA Chaos, student’s t-distribution, and Parameter identification of robot

Lévy flight are embedded in SSA manipulator
Zhu and Yousefi (2021) ASSA Adaptive learning factor, DE/best/1, and Parameter identification of proton

crossover operation are embedded in SSA exchange membrane fuel cell stacks

introduced the adaptive learning factor, DE/best/1,
and crossover operation to enrich the search power
of the original SSA.

Nevertheless, the standard SSA also suffers from
the same shortcomings as meta-heuristic algorithms,
including poor initial solution quality, low conver-
gence speed, and ease of falling into local optima
when addressing complex and multimodal problems.
First, because the initial SSA populations are initial-
ized at random without rules, the initial population
cannot be appropriately assigned in the searching
space of practical problems, which limits the ac-
curacy of initial solutions. Second, a fixed ratio
of producers to scroungers does not accurately re-
flect the actual optimization searching process and
strikes a limited balance between exploration and
exploitation. Third, insufficient population diversity
causes the SSA to fall into local optima. There-
fore, in this study we propose a multi-strategy en-
hanced sparrow search algorithm (MSSSA) to deal
with these problems. First, a modified sparrow gen-
eration mechanism, which incorporates chaotic maps
and opposition-based learning (OBL), is proposed to
overcome the weakness of the poor initial solution
quality of the standard SSA. It allows the SSA to
rapidly enlarge its searching range in the early stage
of the algorithm iteration and generate the initial so-
lution with high quality. Second, adopting the idea
of adaptive transformation, a novel evolution opera-
tor based on the nonlinear function is designed to re-
place the fixed ratio of producers to scroungers in the
update process, and a better balance between global
search and local search is achieved. Third, a hy-
brid disturbance mechanism, combined with Gaus-

sian mutation (GM) and a firefly algorithm, is in-
corporated into SSA to enhance the local searching
capability by a sudden random jump to choose a
more proper solution in the neighboring regions and
avoid getting trapped in the local optima.

The main contributions of this paper are as
follows:

1. A modified sparrow generation mechanism
based on a chaotic map and OBL is developed to
generate a high-quality population while increasing
the population diversity.

2. An adaptive parameter control strategy,
which can dynamically adjust the ratio of produc-
ers to scroungers, is adopted to achieve a better bal-
ance between intensification and diversification. In
addition, the hybrid disturbance mechanism is incor-
porated into the SSA to improve the ability to jump
out of local optima and to improve the convergence
speed.

3. The performance of MSSSA is investigated
on 50 benchmark functions and two real-world en-
gineering optimization problems. Experimental re-
sults demonstrate the effectiveness and superiority
of the proposed MSSSA.

2 Sparrow search algorithm

SSA (Xue and Shen, 2020) is a new swarm intel-
ligence optimization algorithm that mimics the for-
aging and anti-predation behaviors of sparrows. In
the SSA, sparrow population is generally separated
into two classes: producers and scroungers. Spar-
rows with better fitness values are called producers.
They are responsible for providing foraging areas
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or directions for the scroungers due to their wide
searching range. The others belong to the scrounger
group and follow the producer to forage. In addi-
tion, reconnaissance and early-warning mechanisms
will be adopted by sparrows when suffering attacks
from predators. The SSA implementation process
can be described as follows:

Step 1: initialize some important parameters,
including the size of the sparrow population n, the
maximum iteration number Tmax, the dimension of
searching space d, the number of producers N∗

P, and
the number of scouters n2. The initial position of
each sparrow is expressed as follows:

X =

⎡
⎢⎢⎢⎣

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

...
xn,1 xn,2 · · · xn,d

⎤
⎥⎥⎥⎦ . (1)

At the end of the initialization phase, spar-
rows are evaluated based on the fitness functions,
and the entire group is divided into producers and
scroungers.

Step 2: update the producer’s position accord-
ing to

xt+1
i =

⎧⎨
⎩
xt
i exp

(
−i

βTmax

)
, q < st,

xt
i +RL, q ≥ st,

(2)

where i = 1, 2, · · · , n, t is the current iteration num-
ber, β is a uniformly distributed random number in
the range (0, 1], R is a random number obeying nor-
mal distribution, L denotes a matrix of size 1 × d

and each element is equal to 1, and q ∈ [0, 1] and
st ∈ [0.5, 1] are the alarm value and safety threshold,
respectively.

Step 3: update the scrounger’s position in ac-
cordance with the following formula:

xt+1
i =

⎧
⎨
⎩
R exp

(
Gworst−xt

i

i2

)
, i > n/2,

Sbest + |xt
i − Sbest|C+L, otherwise,

(3)
where Gworst is the worst position of sparrows, Sbest

denotes the current optimal position of producers,
and C is a 1× d random vector with element values
defined as −1 or 1, C+ = CT

(
CCT

)−1

.

Step 4: update the position of scouters by

xt+1
i =⎧⎪⎨

⎪⎩
Gbest + τ |xt

i −Gbest| , f(xt
i) > f(Gbest),

xt
i + S

|xt
i −Gworst|

f(xt
i)− f(Gworst) + δ

, f(xt
i) = f(Gbest),

(4)
where Gbest represents the current global optimal
position, τ is a random number that obeys normal
distribution with a mean value of 0 and a variance of
1, f(xt

i) denotes the fitness value of sparrow i, S is
a random number in [−1, 1], and δ denotes the min-
imal constant. When f(xt

i) > f(Gbest), sparrows
are at the group’s edge and are highly vulnerable to
predators. When f(xt

i) = f(Gbest), sparrows are in
the middle of the population and need to approach
the other individuals to reduce the predation risk.

Step 5: compare the new sparrows with the par-
ent sparrows. If the offspring performs better, the
parent sparrows will be replaced. Through this ap-
proach, the quality of the current sparrow population
is gradually improved.

Step 6: output the optimal population and its
fitness value if the maximum iterative number Tmax

is satisfied; otherwise, repeat steps 2–5.

3 The proposed MSSSA

This section describes the proposed MSSSA,
which combines three effective strategies, as illus-
trated in Fig. 1. In the MSSSA, we first introduce a
modified sparrow generation mechanism based on a
tent map (TM) and OBL (TMOM), which is bene-
ficial for building a high-quality initial population.
Then, an adaptive parameter control strategy is
adopted to balance the exploration and exploitation
trends. Finally, the hybrid disturbance mechanism
helps the SSA avoid premature convergence by pro-
viding a random jump during the searching process.

3.1 Modified sparrow generation mechanism
based on TMOM

The quality of the initial population is of crucial
significance in meta-heuristic algorithms because it
can affect the accuracy and convergence speed of the
algorithm. However, the standard SSA randomly
generates the initial population, leading to the prob-
lem that the ergodicity and diversity of the swarm
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Start

Set the parameters

Generate the initial population through TMOM

Calculate the fitness value

Divide the sparrows into producers and scroungers

Calculate the numbers of producers and scroungers using 
Eqs. (9) and (10), respectively

Update the positions of producers using Eq. (2)

Update the positions of scroungers using Eq. (3)

Update the positions of scouters using Eq. (4)

Generate the current positions and update the optimal 
value

Hybrid disturbance mechanism

Output the best position and its fitness value

End

Is the termination criterion satisfied?

Yes

No

Fig. 1 Flowchart of the proposed multi-strategy en-
hanced sparrow search algorithm (MSSSA)

are not guaranteed. Considering the shortcoming
of random initialization in the SSA, we propose a
modified sparrow generation mechanism based on a
chaotic map and OBL.

Chaotic maps (Li CH et al., 2017), which pos-
sess properties of non-repetition, stochasticity, and
ergodicity, are a powerful and fruitful paradigm
developed as a way to enhance searching capability
and prevent premature convergence. Therefore, it is
feasible to replace such randomness by employing a
chaotic map. There are various chaotic maps, such
as TMs, cubic maps, and logistic maps. Considering
that a TM offers higher computational efficiency and
better dynamic behavior than the other maps (Fan
et al., 2021), it is employed to initialize the sparrow
population. The TM is defined as follows:

chi,j (s+ 1) =

⎧
⎪⎨
⎪⎩

chi,j (s)

0.7
, chi,j (s) < 0.7,

10

3
(1− chi,j (s)) , chi,j (s) ≥ 0.7,

(5)
where i = 1, 2, · · · , n is the sparrow index, j =

1, 2, · · · , d is the dimension index, and s represents
the iteration counter of the TM. chi,j (s) ∈ (0, 1)

with an initial value chi,j (0) = 0.152. Then, the
chaotic variable chi,j (s+ 1) is combined with the
optimization variable to form the initial value, which
is expressed as

xi,j = xlb,j + chi,j (s+ 1) (xub,j − xlb,j) , (6)

where xlb,j and xub,j represent the lower and upper
bounds of xi,j , respectively.

Fig. 2 shows the comparison curve of the TM
and random map initialization strategies for 200 it-
erations in the range [0, 1]. It is noticeable that the
TM initialization based line distribution is more uni-
form in extensive ranges than the one generated by
the random initialization, which signifies the higher
initial population quality of the TM initialization
strategy.

0 50 100 150 200
Number of iterations

0

0.5

1.0

Va
lu

e

Random map
Tent map
Random map
Tent map
Random map
Tent map

Fig. 2 Comparison of tent map and random map

OBL (Tizhoosh, 2005) is a new technique that
chooses the fittest solutions between estimates and
counter-estimates. Here, aiming to diversify the
sparrow population, OBL is applied to increase the
exploration of the searching space on the basis of the
high-quality population obtained from TM. Accord-
ing to xi,j obtained from Eq. (6), the related match-
ing opposite solution oxi,j is calculated as follows:

oxi,j = xub,j + xlb,j − xi,j . (7)

In the end, the best n sparrows are selected from
2n sparrows generated by Eqs. (6) and (7) as the ini-
tial population. The mechanism of population ini-
tialization using TMOM is shown in Algorithm 1.

3.2 Adaptive parameter control strategy

In the standard SSA, the ratio of producers to
scroungers is an essential parameter that influences
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the optimization of the objective function. With
many producers, the chances of finding new areas
through strong global searching capability are in-
creased, while with many scroungers, the algorithm
would be capable of exploiting promising regions
near the optimal solution through powerful local
searching capability. However, the standard SSA
adopts a fixed value to control the ratio of produc-
ers to scroungers, which makes it difficult to ensure
a smooth transition from the global search to the
local search in some cases. Therefore, to balance
the global exploration and local exploitation abili-
ties, a nonlinear control parameter strategy is de-
signed to adaptively adjust the ratio of producers to
scroungers according to the number of iterations. It
is formulated as follows:

g (t) = 0.3 +
1

1 + e(10t−0.2Tmax)/Tmax
, (8)

where g (t) is an adaptive controlling parameter.
Then, by introducing the adaptive controlling

parameter, the numbers of producers and scroungers
can be calculated as

N∗
P = g (t)n, (9)

N∗
S = (1− g (t))n. (10)

Fig. 3 shows the curve of the parameter adaptive
transformation strategy. From Fig. 3, it is clear to see
that with the increase of t, g (t) gradually decreases.

Algorithm 1 Pseudo-code of the TMOM
1: Initialize the parameters: population size n, the maxi-

mum iteration number of TM smax, and the lower (xlb,j)
and upper (xub,j) bounds of xi,j

2: for i ≤ n do
3: for j ≤ d do
4: Set the initial variables chi,j (0) = 0.152

5: for s ≤ smax do
6: Execute the tent map (TM) operation based on

Eq. (5)
7: end for
8: Generate the initial value xi,j based on Eq. (6)
9: end for

10: end for
11: for i ≤ n do
12: for j ≤ d do
13: Compute the value of oxi,j based on Eq. (7)
14: end for
15: end for
16: Merge TM population xi,j and OBL population oxi,j
17: Choose the best n sparrows from the produced population

as the initial population

In addition, at the early stage of evolution, the adap-
tive control parameter g (t) remains large, and the re-
lationship between N∗

P and N∗
S tends to be N∗

P > N∗
S

according to Eqs. (9) and (10), which facilitates the
exploration ability of the SSA. Toward the end of the
evolution, g (t) is small and decreases slowly, result-
ing in N∗

P < N∗
S , which helps improve the exploita-

tion ability. Therefore, this strategy contributes to a
balance between exploration and exploitation.

3.3 Hybrid disturbance mechanism

The interaction between the producers and
scroungers determines the performance of the SSA
to some extent. Specifically, when getting stuck in
local optima, individuals would escape from the local
minimum with the assistance of the fittest produc-
ers. Nevertheless, if a majority of sparrows fall into
the same local optimum, stagnation of the SSA will
be unavoidable. Hence, a hybrid disturbance mech-
anism, which provides the algorithm with a sudden
random jump, is introduced to avoid falling into local
optima. The GM and the firefly disturbance (FD)
cooperate to realize the hybrid disturbance mech-
anism, as shown in Fig. 4. The new positions of
sparrows are calculated by

Ynew =

{
YGM, r < p,

YFD, r ≥ p,
(11)

where r is a uniformly distributed random number
from 0 to 1, and p denotes the selection probability
for the mutation strategy and FD strategy, which is
described as follows:

p =
f (xi)∑n
i=1f (xi)

. (12)

In Eq. (11), if p is larger than r , then the GM
strategy would be chosen; otherwise, the FD strategy

0 200 400 600 800 1000
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g(
t)

Fig. 3 Fluctuation range of the control parameter
g(t)
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would be adopted. In the following, GM and FD will
be separately described in detail.

GM, proposed by Bäck and Schwefel (1993), has
been applied to various meta-heuristic algorithms,
such as BBO (Zhang XM et al., 2020), EO (Gupta
et al., 2020), and the backtracking search algorithm
(Nama et al., 2022). Considering that GM can search
for valuable information in the vicinity of the current
position, it is integrated into SSA to increase the di-
versity of the population, thereby helping the indi-
viduals escape from the local optimal region. The
Gaussian density function is defined as follows:

fGaussian(0,σ2) (z)=
1√
2πσ2

exp

(
− (z − μ)

2

2σ2

)
, (13)

where μ is the mean of the distribution and σ2 is the
variance of each sparrow. Subsequently, μ is set to
0, and the variance σ2 is set as

σ2 (t) = a0exp

(
t

Tmax

)
, (14)

where a0 is the initial variance with a value of 1.
By Eqs. (13) and (14), a Gaussian distribution

operator with variances of varying scales G(z) is ob-
tained. It could be used to interact with two ran-
domly selected locations, thus creating a novel GM
operator. Then, each individual in the population
mutates according to

YGM = xt
i,j +G (z)

(
xt
r1,j − xt

r2,j

)
, (15)

where xt
r1,j and xt

r2,j are the jth-dimensional loca-
tions of two randomly selected sparrows.

Start

Select an individual randomly

p>r?

Execute the Gaussian 
mutation

Generate the updated individual

End

Execute the firefly 
disturbance

Yes No

Fig. 4 Flowchart of the hybrid disturbance
mechanism

From Eq. (15), the difference of two random in-
dividuals is added to the current sparrow’s position
to obtain the new position. Generally, these differ-
ences enable the information of individuals within
the population to be shared and increase the infor-
mation exchange among sparrows. In addition, the
developed GM operator dynamically alters the vari-
ances with an increasing number of iterations, which
allows for a global solution space to be explored in
the early searching phase and a local solution space
to be explored in the late searching phase. Therefore,
the developed GM operators combined with the dif-
ference vector can increase the likelihood of sparrows
jumping out of the local optima.

FDs (Yelghi and Köse, 2018) are primarily in-
spired by fireflies’ flashing and attraction behaviors.
In general, all fireflies approach the firefly that is
brighter than themselves. In the proposed FD strat-
egy, the current optimal individual is used to ex-
change information with other individuals, which is
formulated as follows:

YFD=xt
i,j+θ0exp(−γr2)

(
xt
best,j−xt

i,j

)
+ αε0, (16)

r = ‖xi − xbest‖ =
√∑d

j=1 (xi,j − xbest,j)
2, (17)

where “‖ · ‖” stands for the L2 norm, xbest,j is the
jth-dimensional position of the best individual, xbest

represents the optimal individual, θ0 = 1 is the at-
tractiveness at r = 0, γ represents a light absorption
coefficient, α is a random value in the range [0, 1],
and ε0 means a random value obeying a uniform dis-
tribution. The cooperation of GM and FD strategies
contributes to the improvement of the searching effi-
ciency and effectiveness of the proposed MSSSA.

To sum up, the pseudo-code of the MSSSA is
illustrated in Algorithm 2.

3.4 Computational complexity

The computational complexity of an algorithm
is a vital criterion for evaluating its performance. In
this work, the computational complexity of MSSSA
is determined mainly by four parts: initialization, in-
dividual position update, hybrid disturbance mech-
anism, and the best location selection. Suppose
that the population size is n, the number of iter-
ations is T , and the dimension of the problem is
d. The computational complexity of the initializa-
tion is O(nd + nd), counting the chaotic map and
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OBL. The computational complexity of the individ-
ual position update is O(ndT ). The hybrid dis-
turbance mechanism includes GM and FD, so the
complexity is O(ndT + ndT ). The time required
to select sparrows with the best position is O(nT ).
Hence, the final computational complexity of MSSSA
is O(MSSSA) = O(nd + nd) + O(ndT ) + O(ndT +

ndT ) + O(nT ) = O(n (2d+ 3dT + T )). The com-
plexity of the SSA is O(SSA) = O(nd) + O(ndT ) +

O(nT ) = O(n (d+ dT + T )). While the complex-
ity of the MSSSA is slightly larger than that of
the SSA, both are in the same order of magnitude.
Considering the performance improvement, the in-
crease in computational complexity is acceptable and
negligible.

Algorithm 2 Pseudo-code of the proposed MSSSA
Input: the number of sparrows n, the maximum number

of iterations Tmax, the number of producers N∗
P, the number

of scouters n2, and the alarm value q

Output: the global best position and its optimal fitness
value
1: Generate a high-quality initialized population using Al-

gorithm 1
2: Calculate the fitness value for each sparrow
3: Sort all the sparrows according to their fitness values and

select the current best and worst individuals
4: while t < Tmax do
5: q = rand (1)

6: Calculate the numbers of producers and scroungers by
Eqs. (9) and (10), respectively

7: for i = 1 : N∗
P do

8: Update the positions of producers by Eq. (2)
9: end for

10: for i = N∗
P + 1 : n do

11: Update the positions of scroungers by Eq. (3)
12: end for
13: for i = 1 : n2 do
14: Update the positions of scouters by Eq. (4)
15: end for
16: for i = 1 : n do
17: Record the new position of the sparrow generated

at this time as xnew
i,j

18: if f
(
xnew
i,j

)
≤ f

(
xt
i,j

)
then

19: Replace the position xt
i,j by xnew

i,j

20: else
21: Calculate the new position Ynew through the hy-

brid disturbance mechanism by Eqs. (11)–(17)
22: if f (Ynew) ≤ f

(
xt
i,j

)
then

23: Replace the position xt
i,j by Ynew

24: end if
25: end if
26: end for
27: t = t+ 1

28: end while
29: return the global best position and its fitness value

4 Numerical results and comparison

4.1 Test functions and evaluation criteria

To investigate the performance of the MSSSA,
we conduct extensive experiments on 40 com-
plex functions from the IEEE CEC2014 and IEEE
CEC2019 test suites, as well as 10 classical functions
with different dimensions. The specific descriptions
of these functions are shown in Tables S1–S3 in the
supplementary materials.

The mean value (Mean) and the standard devi-
ation (Std) are employed to compare the potential
performance of the MSSSA with other algorithms.
In addition, a non-parametric statistical test of the
Wilcoxon signed-rank test is carried out at a 5% sig-
nificance level to check if the MSSSA outperforms the
competitive algorithms. Furthermore, the symbols
“+/=/–” are used to denote these statistical results,
meaning that the proposed MSSSA is better than,
similar to, or worse than the competitive optimiza-
tion algorithms, respectively. Finally, the Friedman
test is used to rank the multiple algorithms.

4.2 Comparison algorithms and parameter
settings

To test the performance of the developed
method, several state-of-the-art algorithms are in-
troduced for comparison, including the SSA, HFPSO
(Aydilek, 2018), ALCPSO (Chen WN et al., 2013),
CLPSO (Liang et al., 2006), SADE (Qin et al., 2009),
RDWOA (Chen HL et al., 2020), I-GWO (Nadimi-
Shahraki et al., 2021), SOGWO (Dhargupta et al.,
2020), AOSMA (Naik et al., 2021), CKGSA (Mit-
tal et al., 2016), and MSBSO (Liu JN et al., 2020).
HFPSO is an enhanced PSO that embeds firefly al-
gorithm mechanisms into PSO to effectively keep a
better balance between exploration and exploitation.
I-GWO and SOGWO are GWO variants; SOGWO
uses an OBL mechanism that is similar to that in the
MSSSA. CKGSA is an improved GSA using a chaotic
map mechanism. ALCPSO and CLPSO are two
canonical PSO variants applied to the CEC2014 test
set in related papers and have competitive optimiza-
tion performances. SADE is an enhanced DE that
incorporates an adaptive learning strategy to reduce
the computational costs of the standard DE. In the
proposed MSSSA, the parameter adaptation strat-
egy is inspired by RDWOA, AOSMA, and MSBSO.
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Therefore, these three algorithms are employed for
comparison. The parameter settings of these algo-
rithms are listed in Table S4 in the supplementary
materials. For fair comparison, the population size
and the maximum number of iterations of all al-
gorithms are set to 30 and 1000, respectively. For
each benchmark test function, each algorithm is run
30 times to mitigate randomness effects. All algo-
rithms are run in MATLAB R2018b on a server with
8.00 GB of RAM and a 2.60 GHz CPU.

4.3 Ablation study of the MSSSA

As mentioned earlier, three modifications,
namely, the TMOM, the adaptive parameter control
strategy, and the hybrid disturbance mechanism, are
integrated to improve the performance of the stan-
dard SSA in the MSSSA. The goal of this subsection
is to see if there is synergy between the different mod-
ifications. For this purpose, we compare the MSSSA
with its three kinds of degradations and the SSA on
CEC2014 benchmark functions. Specifically, MSS-
SAwt means MSSSA without TMOM, MSSSAwa de-
notes MSSSA without the adaptive parameter con-
trol strategy, and MSSSAwh is MSSSA without the
hybrid disturbance mechanism. The incomplete vari-
ants use the same parameters as the MSSSA. The
comparison results provided by the Wilcoxon signed-
rank test are shown in Table S5 in the supplemen-
tary materials. Moreover, for intuitive comparison,
the average ranking bar of the MSSSA and its com-
parison algorithms is plotted in Fig. 5.

From Table S5, the numbers of functions whose
MSSSA optimization effects are better than those
of MSSSAwt, MSSSAwa, MSSSAwh, and SSA are
12, 17, 23, and 25 out of 30 functions, respectively.
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Fig. 5 Ranking statistical bar of MSSSA and its
degradative variants

Although the MSSSA generates a worse result than
MSSSAwt on F2, it is superior to the other compar-
ison methods on all unimodal functions. It indicates
that the adaptive parameter control strategy and
the hybrid disturbance mechanism contribute signifi-
cantly to the exploitation ability of the MSSSA. The
MSSSA performs worse than the MSSSAwt, MSS-
SAwa, MSSSAwh, and SSA on 3, 1, 0, and 0 out of
13 simple multimodal functions, respectively, which
shows that the hybrid disturbance mechanism con-
tributes most to the improvement of exploration abil-
ity. On the remaining 14 complex test functions, the
performance of the MSSSA is worse than those of the
MSSSAwt, MSSSAwa, MSSSAwh, and SSA on 4, 2,
1, and 0 test functions, respectively. This proves that
the hybrid disturbance mechanism is more conducive
to improving the ability to address the complex prob-
lems of the MSSSA, followed by the adaptive param-
eter control strategy and TMOM.

From Fig. 5, the average ranking of the SSA
is inferior to that of any of the MSSSA and its
degradative variants, indicating that each enhance-
ment strategy is effective and boosts the perfor-
mance of the SSA to some degree. Among the three
degradative variants, MSSSAwh achieves the worst
ranking, which means that the hybrid disturbance
mechanism is the most responsible for the MSSSA.
In addition, the rank from the best to the worst
is MSSSA, MSSSAwt, MSSSAwa, MSSSAwh, and
SSA, which implies that the MSSSA provides the
best optimization performance. It also means that
the absence of any of these strategies will negatively
affect the algorithm’s optimization capability. In
conclusion, all enhancement strategies presented in
this work are effective and indispensable.

4.4 Performance comparisons on the
CEC2014 benchmark suite

4.4.1 Accuracy analysis

Table S6 in the supplementary materials
presents the comparison test results of the proposed
MSSSA with other algorithms on the 30-dimensional
CEC2014 benchmark suite. All the best results in
the current test problem are in bold. From the per-
spective of the mean value, the MSSSA performs
optimally on unimodal functions F1 and F3, far ex-
ceeding the performances of the other algorithms.
On multimodal functions F4–F16, MSSSA provides
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the best solutions for eight test problems out of this
set. Even though the results obtained by the MSSSA
are not optimal on F5, F6, F9, F14, and F15, they
still remain at the forefront. On hybrid functions
F17–F22, MSSSA significantly outperforms its rivals
on F19–F22. MSBSO shows good performance on
F17, and SADE and CKGSA perform well on F18.
Compared with the first three classes of functions,
the composition function is more complicated. Ex-
cept for ranking second on F24, MSSSA still has the
best performance for the remaining test problems.
In addition, we evaluate the stability of these al-
gorithms in all the above cases and record the Std
values of the objective functions, also shown in Table
S6. From the perspective of the Std value, MSSSA
is significantly superior to the other counterparts for

most of the examples except MSBSO on F9, F17,
and F26, CLPSO on F8 and F11, SADE on F14 and
F18, CKGSA on F5, and AOSMA on F24, which
verifies the strong stability of the MSSSA.

4.4.2 Statistical analysis

To understand the statistical difference in the
results of the MSSSA and the comparison algo-
rithms, a Friedman test and a Wilcoxon signed-rank
test are performed. Detailed results are listed in Ta-
ble S6. Fig. 6 shows the ranking statistics based
on Table S6. It can be observed that the MSSSA
ranks first with 21 times, second with 7 times, and
third with 2 times. As a result, the MSSSA ranks
first among the compared algorithms with a mean
ranking of 1.3700. The average ranking of MSBSO

 1.3700

 6.3000
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 5.0300
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 4.8000
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Fig. 6 Ranking statistics on the CEC2014 benchmark functions: (a) ranking statistical bars of 12 algorithms;
(b) average ranking bar of 12 algorithms
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is 4.8000, second only to MSSSA. SADE, RDWOA,
HFPSO, I-GWO, SSA, ALCPSO, AOSMA, CLPSO,
SOGWO, and CKGSA rank from third to twelfth, in
terms of the total ranking.

According to the data in the column “+/=/–”
in Table S6, the outcomes of the MSSSA in solving
all test functions are significantly superior to those
generated by the HFPSO, ALCPSO, and CLPSO.
In addition, the numbers of test functions on which
the MSSSA outperforms SSA, SADE, RDWOA, I-
GWO, SOGWO, AOSMA, CKGSA, and MSBSO are
24, 28, 26, 28, 29, 25, 28, and 26 out of 30, respec-
tively. Therefore, these results strongly indicate that
the best performance achieved by the MSSSA is sta-
tistically significant.

4.4.3 Convergence analysis

To intuitively investigate the convergence speed
and optimization accuracy of the proposed algo-
rithm, Fig. 7 displays the convergence graphs of the
MSSSA, SSA, HFPSO, ALCPSO, CLPSO, SADE,
RDWOA, I-GWO, SOGWO, AOSMA, CKGSA, and
MSBSO for some representative test functions. For
the unimodal functions F2 and F3, MSSSA exhibits
significant superiority in terms of the convergence
speed and optimization accuracy compared with its
opponents. For the multimodal functions F8 and
F10, MSSSA can rapidly find the optimum solution.
On F11, MSSSA converges slower than RDWOA,
CKGSA, and SSA at the first 100 iterations, but after
that, both the convergence speed and optimization
accuracy are superior to those of these three algo-
rithms. On F16, although the convergence of the
MSSSA slows down at some moments, its final opti-
mization accuracy is the best. At the beginning it-
erations of the hybrid function F20, the convergence
speed of the MSSSA is superior to those of all the
other algorithms, and it stays in first place until the
end. On F29, MSSSA achieves significantly higher
convergence speed than any of its rivals. This is ow-
ing to the collaboration of the parameter adaptive
transformation strategy and the hybrid disturbance
mechanism, where the former is conducive to accel-
erating the convergence and the latter is capable of
escaping from the local optima. In general, the con-
vergence performance of the MSSSA is far superior
to those of its comparison methods.

4.5 Performance comparisons on the
CEC2019 benchmark suite

To further assess the capability of the MSSSA
in dealing with more complex problems, a series of
experiments are conducted on 10 functions from the
CEC2019 test set in this part. The experimental
results are shown in Table S7 in the supplemen-
tary materials. From Table S7, we can observe that
the MSSSA achieves almost the best overall perfor-
mance. In detail, MSSSA outperforms all the oppo-
nents on F31–F33, F36, and F40, and has the second-
best position on F34, F37, and F39. Although
slightly underperformed on F35 and F38, within the
error range, the searching accuracy of the MSSSA
is still satisfactory. In terms of the Std, MSSSA is
significantly superior to the other counterparts for
most examples except CKGSA on F35, CLPSO on
F37, and HFPSO on F40, which indicates the strong
stability of the MSSSA. Moreover, according to the
statistical results in Table S7, the proposed MSSSA
achieves the best ranking and performs better than
its opponents in most test functions. In conclusion,
MSSSA has outstanding capability in dealing with
the highly challenging CEC2019 test functions.

4.6 Balance and diversity analysis

To analyze the balance between exploration and
exploitation and the diversity of the MSSSA in the
entire iteration process compared to the SSA, we
conduct balance and diversity tests on CEC2014 and
CEC2019 test functions. Due to space constraints,
not all the test results are displayed. The results
are analyzed on four representative test functions,
including the unimodal function F1, the simple mul-
timodal function F12, the hybrid function F18, and
the expanded Schaffer’s F6 function (F38). The
study results are plotted in Figs. 8 and 9.

Fig. 8 shows the balance analysis of the two
algorithms. The incremental-decremental curve ex-
hibits an upward trend when the exploration per-
centage is bigger than the exploitation percentage
at some point during the searching process; oth-
erwise, a downward trend emerges. When the
incremental-decremental curve reaches its peak, it
indicates that exploration and exploitation achieve a
state of balance.

In Fig. 8, the exploration behavior of the two
algorithms dominates in the initial stage, but the
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Fig. 8 Balance analysis of the MSSSA and SSA on F1, F12, F18, and F38: (a) MSSSA on F1; (b) SSA on F1;
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exploitation behavior quickly dominates afterward.
A reasonable explanation for this phenomenon is
that meta-heuristic algorithms usually implement
the diversification mechanism before conducting the
intensification mechanism. As can be observed from
the curves of exploration and exploitation, the per-
centage of exploration of the standard MSSSA is
smaller than that of the SSA on F1, F12, F18, and
F38, suggesting that the MSSSA enters the local
searching phase more rapidly than the SSA. At this
time, the local searching capability of the MSSSA
increases quickly, which is conducive to digging deep
into a more promising region to find high-quality
results. As can be observed from the incremental-
decremental curves, the speeds of rising and reach-
ing the peak points of the MSSSA are higher than
those of the SSA, indicating that the MSSSA can
keep a balance of exploration and exploitation earlier
than the SSA. With the combination of the adap-
tive parameter control strategy and hybrid distur-
bance mechanism, the local searching capability is
strengthened and the convergence speed is improved.
Therefore, we can conclude that MSSSA can main-

tain a better balance of exploration and exploitation,
so that the convergence speed and optimization ac-
curacy of MSSSA are superior to those of the SSA.

Fig. 9 shows the diversity of the MSSSA and
SSA algorithms, where the horizontal axis represents
the number of iterations and the ordinate denotes
the average Euclidean distance between searching
agents. As can be observed from the figure, the diver-
sity value of the MSSSA is lower than that of the SSA
in the early searching phase, due to the TMOM strat-
egy used in the initialization. This strategy ensures
that the MSSSA can obtain high-quality initializa-
tion individuals and enter the local searching phase
faster. Then, the diversity curve gradually decreases
as the number of iterations increases and stabilizes
in the end. The trend of stabilization of the MSSSA
appears to be much earlier than the standard SSA,
indicating that the combination of three strategies
effectively upsurges SSA’s convergence.

4.7 Scalability test on the MSSSA

To measure the capability of the proposed algo-
rithm in dealing with different dimensional problems,
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the MSSSA is compared with the SSA on 30-, 50-,
100-, 200-, 500-, and 1000-dimensional functions.
The test cases selected for the experiments are 10
representative classical benchmark functions. The
experimental results are shown in Table S8 in the
supplementary materials. As can be observed from
Table S8, the performance of the SSA decreases
significantly with the increase of dimension, while
the capability of the MSSSA is steadily enhanced.
Compared with the SSA, the MSSSA obtains better
accuracy and greater stability on problems of vary-
ing complexity, indicating the strength and potential
of the MSSSA in dealing with high-dimensional op-
timization problems. Therefore, it can be concluded
that the proposed MSSSA has better scalability.

5 MSSSA for solving constrained engi-
neering optimization problems

In this section, two classical constrained engi-
neering problems, including pressure vessel design
(PVD) and speed reducer design (SRD), are em-
ployed to investigate the effectiveness of the MSSSA
in practical applications. The death penalty is
adopted to deal with constraints in this study. The
parameter settings of all the experiments are the
same as in Section 4.2.

5.1 PVD problem

The first engineering problem, depicted in
Fig. 10, is to obtain the minimum cost of the pressure
vessel by optimizing four related variables, including
the thickness of the shell Ts, thickness of the head Th,
inner radius R, and length of the cylindrical section
of the vesselL. The mathematical model is described
as follows:

x = [x1, x2, x3, x4] = [Ts, Th, R, L] , (18)

L

R

Ts Th

L

R

Ts Th

LLL

R

Ts Th

Fig. 10 Pressure vessel design problem

minf (x) =0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x2
1x4 + 19.84x2

1x3, (19)

subject to

g1 (x) = −x1 + 0.0193x3 ≤ 0,

g2 (x) = −x2 + 0.009 54x3 ≤ 0,

g3 (x) = −πx2
3 −

4

3
πx3

3 + 1 296 000 ≤ 0,

g4 (x) = x4 − 240 ≤ 0,

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

For the PVD problem, the best solutions and
statistical results of comparing the MSSSA with the
other algorithms are recorded in Tables 2 and 3,
respectively, where “Best” represents the optimal
value and “Worst” is the worst result. As can
be observed in Table 2, the MSSSA is superior
to the other algorithms and acquires an optimal

Table 2 Best solutions of all the methods on the
pressure vessel design problem

Algorithm Ts Th R L Best cost

MSSSA 0.7782 0.3846 40.3196 200.0000 5885.3328
SSA 0.7816 0.3864 40.4980 197.5312 5891.2446
HFPSO 0.7782 0.3847 40.3196 200.0000 5891.5859
ALCPSO 0.7782 0.3847 40.3196 200.0000 5891.5859
CLPSO 0.7824 0.3867 40.5352 197.2093 5903.5077
SADE 0.7782 0.3847 40.3196 200.0000 5891.5859
RDWOA 0.7782 0.3847 40.3198 199.9971 5891.5929
I-GWO 0.7788 0.3850 40.3516 199.5766 5893.5039
SOGWO 0.7793 0.3852 40.3588 199.5329 5897.7459
AOSMA 0.7782 0.3847 40.3531 199.9515 5891.7025
CKGSA 0.8808 0.4354 45.6354 137.2379 6093.9033
MSBSO 0.7782 0.3847 40.3196 200.0000 5891.5859

Best result is in bold. Ts, Th, R, and L are the optimum
variables

Table 3 Statistical results of all the methods on the
pressure vessel design problem

Algorithm Best Mean Worst Std

MSSSA 5885.3328 5890.6000 5949.2423 15.3203
SSA 5891.2446 6432.1386 7318.9684 454.5260
HFPSO 5891.5859 6280.0335 7345.4732 375.5908
ALCPSO 5891.5859 6256.0094 7345.4732 415.7870
CLPSO 5903.5077 6069.2958 6325.9864 90.5242
SADE 5891.5859 5891.5859 5891.5859 0.0000
RDWOA 5891.5929 6694.9463 7345.4739 678.3317
I-GWO 5893.5039 5894.8587 5898.5681 1.0787
SOGWO 5897.7459 5999.9967 7026.6903 261.6701
AOSMA 5891.7025 6632.4350 7345.4056 635.9922
CKGSA 6093.9033 89 198.8909 227 939.4854 74 928.6694
MSBSO 5891.5859 5891.5859 5891.5859 0.0000

Best results are in bold
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value of 5885.3328 corresponding to the optimal solu-
tion [0.7782, 0.3846, 40.3196, 200.0000]. In addition,
SADE and MSBSO obtain the best stability, with
I-GWO ranking the third and MSSSA ranking the
fourth, as shown in Table 3. The “no free lunch” the-
orem states that the MSSSA cannot solve all prob-
lems successfully. Even though the stability of the
MSSSA is not the best, it is still very competitive.
Therefore, the MSSSA has superior performance in
addressing the PVD optimization problem.

5.2 SRD problem

Another engineering problem optimized in this
study is the SRD problem, as shown in Fig. 11. This
problem aims to minimize the total weight deter-
mined by decision variables, i.e., the number of teeth
on a pinion z, face width b, module of teeth m, length
of the first shaft l1, diameter of the first shaft d1,
length of the second shaft l2, and diameter of the sec-
ond shaft d2. The mathematical model is described
as follows:

x=[x1, x2, x3, x4, x5, x6, x7] = [b,m, z, l1, l2, d1, d2] ,

(20)
minf(x) =0.7854x1x
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Fig. 11 Speed reducer design problem

g5(x) =
1

110x3
6

√(
745x4

x2x3

)2

+ 16.9× 106 − 1 ≤ 0,

g6(x) =
1

85x3
7

√(
745x5

x2x3

)2

+ 157.5× 106 − 1 ≤ 0,

g7(x) =
x2x3

40
− 1 ≤ 0,

g8(x) =
5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0,

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0,

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,

5.0 ≤ x7 ≤ 5.5.

For the SRD problem, the optimal results and
statistical indices obtained by the involved methods
are recorded in Tables 4 and 5, respectively. From
these tables, we can observe that the best and mean
values of the MSSSA are superior to those of its
opponents, with the Std slightly larger than those
of SADE, MSBSO, RDWOA, CLPSO, and I-GWO,
indicating that the MSSSA has an advantage on the
SRD problem.

From these two engineering cases, we can con-
clude that the MSSSA is capable of dealing with
constrained engineering design problems well.

6 Discussions

In this paper, we propose an enhanced SSA
by integrating TMOM, an adaptive parameter con-
trol strategy, and a hybrid disturbance mechanism.
Specifically, TMOM combines the TM and OBL
to generate high-quality initial sparrow populations.
The adaptive parameter control strategy is designed
to adjust the ratio of producers to scroungers with an
increased number of iterations, which contributes to
establishing a balance between exploration and ex-
ploitation. The hybrid disturbance mechanism aims
to facilitate the MSSSA, strengthening local explo-
ration capability, and effectively jumping out of the
local optimal region. The ablation experiments are
conducted to investigate the promotion effect of the
three strategies on the SSA. Experimental results
verify the effectiveness of integrating TMOM, an
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Table 4 Best solutions of all the methods on the speed reducer design problem

Algorithm
Optimal values for variables

Best cost
b m z l1 l2 d1 d2

MSSSA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711
SSA 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097

HFPSO 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097
ALCPSO 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097
CLPSO 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097
SADE 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097

RDWOA 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097
I-GWO 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097
SOGWO 3.5028 0.7002 17.0000 7.4308 7.7667 3.3567 5.2875 3000.7795
AOSMA 3.5000 0.7000 17.0000 7.3002 7.7164 3.3502 5.2872 2994.7221
CKGSA 3.5926 0.7134 17.1221 7.7464 8.1030 3.4464 5.3013 3163.2207
MSBSO 3.5000 0.7000 17.0000 7.3000 7.7159 3.3502 5.2872 2994.7097

Best result is in bold

Table 5 Statistical results of all the methods on the
speed reducer design problem

Algorithm Best Mean Worst Std

MSSSA 2994.4711 2994.6003 2995.1814 0.2369
SSA 2994.7097 2995.0208 3005.0435 1.7041

HFPSO 2994.7097 3001.0011 3033.9863 13.5509
ALCPSO 2994.7097 2994.8501 2998.8993 0.7648
CLPSO 2994.7097 2994.7097 2994.7098 0.0000
SADE 2994.7097 2994.7097 2994.7097 0.0000

RDWOA 2994.7097 2994.7097 2994.7098 0.0000
I-GWO 2994.7097 2994.7097 2994.7100 0.0001
SOGWO 3000.7795 3006.2565 3014.5684 3.6924
AOSMA 2994.7221 2999.0901 3013.5460 5.0783
CKGSA 3163.2207 3635.4198 4666.9643 378.3087
MSBSO 2994.7097 2994.7097 2994.7097 0.0000
Best results are in bold. The actual variances of the CLPSO
and RDWOA are 0.000 01, so they are not marked in bold

adaptive parameter control strategy, and a hybrid
disturbance mechanism to improve the SSA. In ad-
dition, compared with some advanced algorithms in
two benchmark function sets, the MSSSA obtains the
expected results and shows superior performance.
The optimization accuracy and convergence speed
are more prominent regardless of the IEEE CEC2014
and IEEE CEC2019. The balanced diversity experi-
mental results show that the MSSSA has an excellent
capacity to avoid getting stuck at the local optima,
which is conducive to obtaining a high-quality solu-
tion. Furthermore, the MSSSA obtains satisfactory
results on two engineering optimization problems,
indicating that the proposed algorithm is of great
practical value.

Nevertheless, the MSSSA still has some defi-
ciencies in particular aspects. First of all, the con-
vergence speed of the MSSSA still has space for im-

provement when addressing multimodal functions.
Also, the computation time of the MSSSA is slightly
higher than that of the conventional SSA. Hence,
when handling some practical problems, there must
be a good balance between accuracy and computa-
tional cost. In the future, the MSSSA can also be
applied to other real-world problems, such as fault
detection (Long et al., 2022), scheduling (Zhang GH
et al., 2021), and medical diagnosis (Liu JC et al.,
2022).

7 Conclusions and future work

In this study, a novel MSSSA is proposed to
solve global optimization problems. In the MSSSA,
the TM and OBL are first combined to generate a
high-quality initial population. Then, an adaptive
parameter control strategy is applied to balance ex-
ploration and exploitation. Finally, a hybrid dis-
turbance mechanism is embedded in the SSA to in-
crease the probability of jumping out of local op-
tima. Two benchmark function sets (IEEE CEC2014
and IEEE CEC2019) and 10 classical functions are
used to evaluate the performance of the proposed
MSSSA. Compared with the SSA and 10 state-of-
the-art algorithms, the MSSSA has superior perfor-
mance in terms of solution accuracy, convergence
speed, scalability, and stability. Moreover, the pro-
posed MSSSA is applied to deal with two real-world
optimization problems. Experimental results indi-
cate that the MSSSA is a practicable and efficient
method for complex engineering optimization prob-
lems. Although the MSSSA has been demonstrated
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to be a highly effective single-objective algorithm for
continuous optimization problems, the potential for
multi-objective optimization is still waiting to be de-
veloped as a future attempt. In addition, the MSSSA
could be hybridized with other meta-heuristic algo-
rithms to enhance its overall performance.
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