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Abstract: Reliability analysis and reliability-based optimization design require accurate measurement of failure probability 
under input uncertainties. A unified probabilistic reliability measure approach is proposed to calculate the probability of failure 
and sensitivity indices considering a mixture of uncertainties under insufficient input data. The input uncertainty variables are 
classified into statistical variables, sparse variables, and interval variables. The conservativeness level of the failure probability 
is calculated through uncertainty propagation analysis of distribution parameters of sparse variables and auxiliary parameters of 
interval variables. The design sensitivity of the conservativeness level of the failure probability at design points is derived using 
a semi-analysis and sampling-based method. The proposed unified reliability measure method is extended to consider p-box 
variables, multi-domain variables, and evidence theory variables. Numerical and engineering examples demonstrate the effectiveness 
of the proposed method, which can obtain an accurate confidence level of reliability index and sensitivity indices with lower 
function evaluation number.
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1 Introduction 

Uncertainties are ubiquitous in engineering pro‑
ducts due to manufacturing error  (Liu et al., 2022), 
lack of information, intrinsic random properties, etc. 
These uncertainties are quantified and propagated to 
uncertainties of product performance, which may lead 
to unexpected failure or performance fluctuation. Reli‐
ability analysis and reliability-based design optimi‐
zation (RBDO) methodologies have been developed 
to obtain a reliable optimum design considering input 
uncertainties and have been applied in many engineer‐
ing fields (Tostado-Véliz et al., 2021, 2022; Solazzi, 
2022; Wakjira et al., 2022).

In traditional RBDO methodologies, the un‐
certainty variables are assumed to be determinate 

probabilistic variables (Sankararaman and Mahade‐
van, 2015). However, in many actual engineering ap‐
plications, it is difficult to acquire the complete uncer‐
tainty information for calculating the accurate proba‐
bility density functions of uncertainty variables under 
insufficient input data (Wang et al., 2016). According 
to the available amount of input sampling data, the 
uncertainty variables can be classified into statistical 
variables with sufficient input data (Type I), sparse 
variables with insufficient input data (Type II), and 
interval variables with little input data (Type III) 
(Oberkampf et al., 2004). With an increase of input 
sampling data, the interval variables can be converted 
to sparse variables or even to statistical variables; the 
sparse variables can be also converted to statistical 
variables when there are enough input sampling data.

The statistical variables (Type I) can be repre‐
sented using determinate distribution type and accu‐
rate distribution parameters, such as normal distribu‐
tion, gamma distribution, F distribution, and Weibull 
distribution (Chen et al., 2003). A series of proba‐
bilistic uncertainty representation, propagation, and 
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optimization design methodologies have been pro‐
posed to deal with statistical variables (Gan et al., 
2018; El Haj and Soubra, 2021). The interval variables 
(Type III) can be represented using non-probabilistic 
methodologies, such as the convex model, evidence 
theory, fuzzy number, and p-box (Ni et al., 2018). 
Many hybrid uncertainty analysis methodologies have 
also been proposed to deal with statistical variables 
and interval variables simultaneously (Hong et al., 
2021).

The distribution parameters of sparse variables 
(Type II) cannot be fitted accurately due to the insuffi‐
ciency of input sampling data, and the probabilistic 
uncertainty analysis methodologies for statistical vari‐
ables cannot be used directly for the representation of 
sparse variables. If the sparse variable is represented 
using non-probabilistic methodologies for interval 
variables, much uncertainty information in the insuffi‐
cient input data is missing. Therefore, how to repre‐
sent the uncertainties of sparse variables accurately is 
one issue in reliability-based design optimization.

Initially, the sparse variables (Type II) are quanti‐
fied using possibility-based approaches (Lee et al., 
2013). For further parameterization of the sparse vari‐
ables, likelihood-based approaches and Bayesian 
approaches are proposed to quantify their distribution 
types and distribution parameters. Uncertainty of dis‐
tribution types can be estimated using many method‐
ologies, such as the model identification method, 
Johnson distribution, and Kernel density estimation 
(Peng et al., 2017). Although the reliability index under 
sparse variables can be calculated, the algorithms are 
too computationally demanding due to the nesting es‐
timation of uncertainty distribution types, distribution 
parameters, and uncertainty variables.

The second issue is how to accurately quantify 
the reliability index considering the three types of un‐
certainty variables simultaneously. The uncertainty 
propagation methodologies for statistical variables 
(Type I) have been widely studied, such as probability 
density evaluation (McFarland and DeCarlo, 2020), 
surrogation model (Yun et al., 2020), and importance 
sampling method (Liu and Elishakoff, 2020). Many 
uncertainty quantification methodologies of reliability 
index considering interval variables (Type III) have 
also been proposed, such as interval arithmetic tech‐
niques, global optimization approach, and perturba‐
tion methods, and are summarized by Faes and Moens 

(2020). The uncertainty propagation analysis for sparse 
variables (Type II) is a multiple-loop process, the dis‐
tribution types and distribution parameters are esti‐
mated in the outer loops, and the reliability index is 
estimated in the inner loops using similar methods to 
those for statistical variables (Type I). To reduce com‐
putational complexity and increase the accuracy of 
the reliability index, many non-probabilistic reliability 
analysis methodologies for hybrid uncertainties have 
been proposed (Zhao et al., 2018; Wei et al., 2019). 
Although there are many reliability measure approa‑
ches for mixture uncertainties, there are multiple loops 
for the uncertainty quantification and propagation 
analysis of sparse variables, and the non-probabilistic 
reliability index is difficult to integrate with many prob‐
abilistic RBDO algorithms. Therefore, a probabilistic 
reliability measure approach is proposed and the reli‐
ability index and sensitivity indices are calculated con‐
sidering the three types of uncertainties simultaneously.

The rest of this paper is organized as follows. 
The reliability measure and sensitivity analysis prob‐
lem considering mixture uncertainties is described in 
Section 2. In Section 3, a unified calculation algo‐
rithm of reliability index is proposed with less sam‐
pling loops and less sampling points. The sensitivity 
indices are calculated through a semi-analytical method 
based on auxiliary variables in Section 4. The pro‐
posed algorithm is extended for considering p-box 
variables, multi-domain distribution variables, and ev‐
idence theory variables in Section 5. Three numerical 
and two engineering examples are demonstrated to 
verify the effectiveness of proposed methodology in 
Section 6. Conclusions are summarized in Section 7.

2 Failure probability under insufficient input 
data 

According to the available amount of input un‐
certainty data in RBDO, the input random variables 
can be divided into statistical variables X, sparse vari‐
ables Y, and interval variables Z (Fig. 1). These ran‐
dom input uncertainty variables are assumed to be in‐
dependent, and can each be decomposed into two 
parts as in Eqs. (1)–(3).

X = x̄ + x͂ (1)
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Y = ȳ + y͂ (2)
Z = z̄ + z͂ (3)

where x̄, ȳ, and z̄ are the mean values of X, Y, and Z, 

respectively, which are also design variables and 
changeable in the RBDO process. x͂, y͂, and z͂ are the 

dispersion parts of input uncertainty variables accord‐
ing to their available input data, which are maintained 
in the RBDO process. The failure probability pG is de‐
fined using multi-dimensional integration in Eq. (4).

pG = ∫RN

IΩG
( X Y Z ) fX( X ) fY(Y ) fZ( Z ) dXdYdZ  (4)

where ΩG is the failure domain such that the perfor‐
mance function G ( X Y Z ) is larger than 0. fX( X ), 
nx, fY(Y ), ny, and fZ( Z ), nz are the probability density 
functions (PDFs) and total numbers of statistical vari‐
ables X, sparse variables Y, and interval variables Z, 
respectively. N = nx + ny + nz is the total number of un‐
certainty variables. The indicator function IΩG

( X Y Z) 

is defined in Eq. (5).

IΩG
( X Y Z ) =

ì
í
î

ïï
ïï

1 G ( )X Y Z > 0

0 G ( )X Y Z ≤ 0.
(5)

The statistical variables X have complete uncer‐
tainty information, which can be represented with 

single distribution type ζ and determinate distribution 
parameters θ. The PDF fX( X ) can be determined di‐
rectly according to the uncertainty representation func‐
tion of X. If there are only statistical variables X, the 
failure probability pG will be a fixed value.

The ith sparse variable Yi is the summation of 
design points ȳi and its dispersion part y͂i in Eq. (2). 

Based on the α-dimensional available sparse sampling 
points [a1y͂i

 a2y͂i
 aαy͂i

] for y͂i, Yi is represented using 

weight summation of multiple distribution types ζ with 
uncertain distribution parameters θ in Eq. (6). The de‐
tailed representation method is shown in the electronic 
supplementary materials (ESM).

Yi ∑wkiζki( )θ 1
ki θ 2

ki  (6)

where wk,i is the weight ratio for the kth distribution 
type, ζk,i is the kth distribution type, and θ 1

ki and θ 2
ki are 

the distribution parameters for the kth distribution type.
In the following, we assume that the value of θ 

for every distribution type ζ is 2 (Sankararaman and 
Mahadevan, 2013; Kang et al., 2016). Due to the un‐
certainties of distribution parameters θ, the PDF fY(Y ) 
of Y is a distribution family of those uncertain distri‐
bution parameters θ. Therefore, the failure probability 
pG is also an uncertainty variable.

The uncertainty information of interval variables 
Z is missing, only lower bound -Z and upper bound Z̄ 

Fig. 1  Multiple uncertainty types due to insufficient input data. BPA represents basic probability assignment
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are available in Eq. (7). Therefore, the PDF fZ( Z ) of 
Z cannot be determined directly.

ΖÎ [-Z  Z̄ ]. (7)

Because the interval variables Z do not have de‐
terminate PDFs, the auxiliary variables ψ are intro‐
duced, and Z are transformed to different PDFs ac‐
cording to the values of ψ. Eq. (4) is transformed into 
Eq. (8) relying on the insufficient input data a of 
sparse variables Y and auxiliary variables ψ of inter‐
val variables Z.

pG = ∫RN

IΩG
( X Y Z) fX( X ) fY(Y | a ) fZ(Z |ψ )dXdYdZ

(8)

where fY(Y | a ) is the PDF of sparse variables Y under 

available insufficient input data a, which is also an un‐
certainty variable due to the lack of information of y͂; 

fZ(Z |ψ ) is the PDF of Z under auxiliary variables ψ.

3 Unified calculation of probability of failure 
probability 

3.1 Reliability measure based on auxiliary variable 
method

A two-level sampling-based reliability measure 
method based on auxiliary variables is proposed to 
calculate the PDF fpG

 considering the three types of 

uncertainty variables simultaneously, where the auxil‐
iary distribution parameters θ for sparse variables Y 
and auxiliary variables ψ for interval variables Z are 
employed.

The failure probability pG is a determinate value 
when the distribution parameters θ for sparse variables 
Y and auxiliary variables ψ for interval variables Z 
are determinate values, as shown in Eq. (9).

pG|θψa =

∫RN

IΩG
( X Y Z ) fX( X ) fY(Y |θa ) fZ(Z |ψ )dXdYdZ.

(9)

Due to the uncertainties of θ and ψ, the PDF fpG
 

of failure probability pG is obtained using Eq. (10). In 

Eq. (10), the joint PDF of pG is a product of three con‐
ditional PDFs. The fθ(θ | a ) is the PDF of distribution 

parameters θ for sparse variables Y, and the PDF 
fψ(ψ) of auxiliary variables ψ is the random variable 

to represent the interval variables Z.
Furthermore, the cumulative density function 

(CDF) of pG is calculated by integrating Eq. (10) and 
the result is shown in Eq. (11).

fpG
( pG θ ψ | a ) =

    ∫
Ωθ

∫
Ωψ

pG|θ ψ a ´ fθ( )θ | a ´ fψ( )ψ dθdψ 
(10)

FpG
( p̂G| a ) = ∫

0

p̂G∫
Ωθ

∫
Ωψ

fpG
( )pG θ ψ | a dθdψ dϕ  (11)

where ϕ is the variable which corresponds to the fail‐
ure probability pG. The CDF of pG represents the prob‐
ability that pG is less than the specific value p̂G. If 
there is complete sampling information for sparse 

variables Y and interval variables Z, fθ(θ | y͂ ) and fψ(ψ) 

are determinate values, and the fpG
 will be a determi‐

nate value, which is the pG|θ ψ a in Eq. (9).

3.2 Calculation procedure of probability of failure 
probability

The step-to-step procedure is listed as follows, 
and the calculation flowchart is shown in Fig. 2.

Step 1: The uncertainties of sparse variables Y 
are represented. The distribution types ζ, weight ratios 
w, and uncertainties of distribution parameters θ are 
calculated based on design points ȳ and the available 
insufficient input data a for dispersion part y͂ of Y.

Step 2: The PDF fθy͂i
(θ) of distribution parame‐

ters θ for the ith dispersion part y͂i is calculated. The 
auxiliary variables ψ for interval variables Z are as‐
sumed to be uniform distribution variables in [0 1]. 
Therefore, N1 sampling points of distribution parame‐
ters θ and auxiliary variables ψ are randomly selected 
using Latin hypercube sampling method according to 
their PDFs.

Step 3: For the mth sampling points of θ and 
ψ, the PDFs of Y and Z are calculated. The PDF 

fY(Y |θ a ) in Eq. (9) is a certain value under determi‐

nate distribution parameters θ( )m  and available insuffi‐
cient input data a for y͂. The interval variables Z are 
transformed to probabilistic values using auxiliary 
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variables ψ( )m . A series of sampling points for Z are 

obtained using random sampling method with random 

factor ψ( )m  in their uncertainty spaces [-Z  Z̄ ], and 

their PDF fZ(Z |ψ ) is available through reverse fitting 

based on sampling information.
Step 4: N2 random sampling points of X, Y, and 

Z are obtained using Latin hypercube sampling method 
according to their PDFs fX( X), fY (Y |θa), and fZ (Z |ψ ), 

respectively.
Step 5: The indicator functions I[ ]0pG

[ pG (θ( )m  ψ( )m 

]X ( )l  Y ( )l  Z ( )l )  under the mth sampling points of θ 

and ψ and the lth sampling points of X, Y, and Z are 

calculated using Eq. (5), where the value of I[ ]0pG
[Θ ] 

is 1 when ΘÎ [ 0 pG ], and 0 otherwise.

Step 6: The CDF of pG is calculated using the 

two-level Monte Carlo sampling (MCS) method in 
Eq. (12).

FpG
( p̂G| a ) =

1
N1 N2

∑
m = 1

N1 ∑
l = 1

N2

I[ ]0pG
[ ]pG( )θ( )m  ψ( )m  X ( )l  Y ( )l  Z ( )l . (12)

4 Sensitivity analysis of reliability index 

The failure probability pG is an uncertainty vari‐
able due to insufficient input data. However, it is also 

a critical constraint in many reliability-based design 
optimization problems (Liu et al., 2016; Keshtegar 
and Hao, 2018; Chen et al., 2020). The design sensi‐
tivity of failure probability can be obtained using the 
first-order score function and chain rules in Eq. (13) 
(Cho et al., 2016b).

¶
¶d̄

FpG
( p̂G| a ) =

∫
0

p̂G∫
Ωθ

∫
Ωψ

f ( )pG θ ψ | a ¶
¶d̄

ln fd( )d | a dθdψdϕ (13)

where the input variables d contain X, Y, and Z, and 
the design points d̄ are their corresponding mean 
values x̄, ȳ, and z̄, respectively.

The design sensitivity of sparse variables Y can 
be calculated using the two-level MCS sampling 
method of probability of failure probability. In the 
sampling loop of θ and ψ, the distribution parameters 
θ for Y are determinate, and the coefficient for sensi‐
tivity analysis SF ( ȳi θ 1

ki θ 2
ki| a ) can be calculated ac‐

cording to their weight ratios, distribution types, and 
distribution parameters. The sensitivity index of 
sparse variables Y is calculated using Eq. (14).

¶
¶ȳi

FpG
( p̂G| a ) =

1
N1 N2

∑
m = 1

N1 ∑
l = 1

N2

I[ ]0pG
[ pG(θ( )m  

])ψ( )m  X ( )l  Y ( )l  Z ( )l SF( ȳi θ ( )m
i | a )  (14)

Fig. 2  Calculation flow chart for failure probability. AIC is the Akaike information criterion
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SF ( ȳi θ 1
ki θ 2

ki| a ) =
∑wki

¶
¶ȳi

[ ]ζki( )θ 1
ki θ 2

ki| a

∑wkiζki( )θ 1
ki θ 2

ki| a
. (15)

For the statistical variables X, the distribution 
type and distribution parameters are determinate, 

the PDF fX( X θ 1
xi θ 2

xi) is also a determinate value, 

SF ( x̄i θ 1
xi θ 2

xi) are changeable in the outer loop of 

the two-level sampling, and the design sensitivity of 
statistical variables is calculated using Eq. (16).

¶
¶x̄i

FpG
( p̂G| a ) =

1
N1 N2

∑
l = 1

N2

SF ( x̄i θ 1
xi θ 2

xi) ´         

       ∑
m = 1

N1

I[ ]0pG
[ ]pG( )θ( )m  ψ( )m  X ( )l  Y ( )l  Z ( )l         (16)

SF ( x̄i θ 1
xi θ 2

xi) =
¶
¶x̄i

fX( )X θ 1
xi θ 2

xi

fX( )X θ 1
xi θ 2

xi

. (17)

For the interval variables Z, their PDFs are as‐
sumed to be the weight summation of two distribution 
functions according to the auxiliary variables ψ in 

Eq. (18). The two distribution types are chosen as two 
common distribution types: normal distribution and 
Weibull distribution. To represent the randomness of 
interval variables Z, the auxiliary variables ψ are ran‐

dom variables, which is the same as the calculation of 
failure probability pG. Therefore, the sensitivity index 

of Z can be calculated in Eq. (19) using the similar 
method for sparse variables Y.

Zi =ψzζ1i(θ1i) + (1 -ψz) ζ2i(θ2i)  (18)

¶
¶z̄i

FpG
( p̂G| a ) =

∫
0

p̂G∫
Ωθ

∫
Ωψ

f ( )pG θ ψ | a SF( )z̄ i ψz dθdψdϕ (19)

SF( z̄ i ψz) =

  
ψz

¶
¶zi

[ ]ζ1i( )θ 1
1i θ 2

1i + ( )1 -ψz

¶
¶zi

[ ]ζ2i( )θ 1
2i θ 2

2i

ψzζ1i( )θ 1
1i θ 2

1i + ( )1 -ψz ζ2i( )θ 1
2i θ 2

2i

.

(20)

A two-level sampling method can be applied to 
the calculation of the sensitivity index of interval vari‐
ables Z, as shown in Eq. (21).

¶
¶z̄i

FpG
( p̂G| a ) =

1
N1 N2

∑
m = 1

N1 ∑
l = 1

N2

I[ ]0pG
[ pG(θ( )m      

        ])ψ( )m  X ( )l  Y ( )l  Z ( )l SF ( z̄ i ψ ( )m
zi ) .        (21)

5 Extension of the proposed method to more 
uncertainty presentation types 

The proposed methodology can be extended to 
the reliability measure of multiple types of epistemic 
uncertainties, such as p-box variables, multi-modal 
variables, and evidence theory variables.

5.1 p-box uncertainty variables

The p-box uncertainty variables U are represented 
with determinate single distribution type ζ and uncer‐
tain distribution parameters θ in Eq. (22).

Ui  ζ i(θ
1
i  θ 2

i ) . (22)

In the calculation of the probability of pG, the un‐
certain distribution parameters of U and the auxiliary 
variables ψ for Z are sampled in the inner loop simul‐
taneously, and the CDF of pG considering X, U, and Z 
is calculated using Eq. (12).

Compared with the sensitivity analysis for Y, 
the SF( ūi θ 1

i  θ 2
i ) for U is calculated using Eq. (23), 

which is similar to that for the statistical variables X, 
but the distribution parameters for U are uncertain. 
The sensitivity index of U can be calculated using 
Eq. (24).

SF( ūi θ 1
i  θ 2

i ) =

¶
¶ūi

[ ]ζ i( )θ 1
i  θ 2

i

ζ i( )θ 1
i  θ 2

i

 (23)

¶
¶ūi

FpG
( p̂G| a ) =

1
N1 N2

∑
m = 1

N1 ∑
l = 1

N2

I[ ]0pG
[ pG(θ( )m        

      ])ψ( )m  X ( )l  U ( )l  Z ( )l SF( ūi θ ( )m
i ) .           (24)

5.2 Multi-modal distribution variables

The multi-modal distribution variables Q can be 
represented with weight summation of multiple types 
of distribution functions in Eq. (25) (Zhang et al., 
2019). However, the information of distribution param‐
eters and weight ratios for Q are known in advance, 
which is different from Y. Therefore, the calculation 
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method for sparse variables Y is applied in the reli‐

ability measure and sensitivity calculation consid‐

ering Q.

Qi ∑wkiζki( )θ 1
ki θ 2

ki . (25)

In the calculation of sensitivity index, SF( q̄iθ1
ki

) θ2
ki  in Eq. (26) is determinate in the inner sampling 

loop for θ and ψ. Therefore, the sensitivity index for 

Q is calculated using Eq. (27).

SF ( q̄i θ 1
ki θ 2

ki) =
∑wki

¶
¶q̄i

[ ]ζki( )θ 1
ki θ 2

ki

∑wkiζki( )θ 1
ki θ 2

ki

   (26)

¶
¶q̄i

FpG
( p̂G| a ) =

1
N1 N2

∑
l = 1

N2

SF ( q̄i θqi ) ´
      ∑

m = 1

N1

I[ ]0pG
[ ]pG( )θ( )m  ψ( )m  Q( )l  Y ( )l  Z ( )l .       (27)

5.3 Evidence theory variables

The evidence theory variables R are represented 

using some subintervals with basic probability assign‐

ments (BPAs). Compared with interval variables Z, R 

is divided into many subintervals, and every subinter‐

val is an interval variable. Therefore, the evidence the‐

ory variables R can be handled using a method simi‐

lar to that for interval variables Z.

In the sensitivity analysis, the PDFs of evidence 

theory variables R are assumed to be the weight sum‐

mation of two distribution functions in every sub-

interval according to the auxiliary variables ψ in 

Eq. (28), and the sensitivity index of R is calculated 

in Eq. (29) using a similar method as for interval vari‐

ables Z.

A two-level sampling method considering X, Y, 

and R is applied to the calculation of the sensitivity 

index of R, as shown in Eq. (31).

R =∑mk( )ψk1ζk1( )θ i + ( )1 -ψk1 ζk2( )θ i  (28)

¶
¶r̄i

FpG
( p̂G| a ) =

    ∫
0

p̂G∫
Ωθ

∫
Ωψ

f ( )pG θ ψ | a SF( )r̄i ψr dθdψdϕ (29)

SF( r̄i ψr) =åmk{ψk1

¶
¶ri

[ ]ζ ik1( )θ 1
1i θ 2

1i +              

  }( )1 -ψk1

¶
¶ri

[ ]ζ ik2( )θ 1
2i θ 2

2i            

 åmk[ψk1ζik1(θ1
1i θ2

1i) + (1-ψk1 ) ζik2(θ1
2i θ2

2i) ]      
(30)

¶
¶r̄i

FpG
( p̂G| a ) =

1
N1 N2

∑
m = 1

N1 ∑
l = 1

N2

I[ ]0pG
[ pG(θ( )m       

        ])ψ( )m  X ( )l  Y ( )l  R( )l SF ( r̄i ψ ( )m
ri ) .      (31)

6 Application examples 

6.1 Numerical example 1

To demonstrate the effectiveness of the proposed 
reliability measure approach under insufficient input 
data, the 2D mathematical performance functions in 
Eqs. (32)–(34) (Cho et al., 2016a) are introduced.

G1(Y ) = 1 -
Y 2

1 Y2

20
 (32)

G2( )Y =-1 + (0.9063Y1 + 0.4226Y2 - 6)2 +
(0.9063Y1 + 0.4226Y2 - 6)3 - 0.6(0.9063Y1 +
0.4226Y2 - 6)4 - ( )-0.4226Y1 + 0.9063Y2  (33)

G3(Y ) = 1 -
80

Y 2
1 + 8Y2 + 5

 (34)

where the true distributions of independent input ran‐
dom variables are Y1N ( ȳ10.3) and Y2N ( ȳ20.3), and 

the design point y0= [ ȳ1ȳ2 ]
T
= [ ]4.71.6

T
 is considered.

To verify the effectiveness of the proposed 
method for reliability measure under insufficient input 
data, 10 random sampling points for dispersion parts 
of input variables are available based on the true dis‐
tribution functions of Y1 and Y2, which are the same as 
that in (Cho et al., 2016a). The selected distribution 
types for Y1 are normal, lognormal, and Weibull types, 
and the corresponding weight ratios are 0.391, 0.492, 
and 0.117, respectively. The selected distribution types 
for Y2 are normal, Weibull, and extreme value types, 
and the corresponding weight ratios are 0.193, 0.357, 
and 0.450, respectively. The probability of pG is calcu‐
lated and shown in Fig. 3a.

The true failure probabilities at y0 are 1.79%, 
1.49%, and 0.00% for G1, G2, and G3, respectively. 
When there are only 10 input data, the conservative‐
ness levels at failure probability pG = 2.275% are 
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28.01% for G1, 20.03% for G2, and 99.99% for G3. 
However, the selected distribution types for Y1 and Y2 
are determinate; only two-level sampling loops (distri‐
bution parameters and design variables) are imple‐
mented, which decreases the computational complexity 
compared to the three-level sampling loop method (dis‐
tribution types, distribution parameters, and design 
variables) in (Cho et al., 2016a).

Due to the limited input data, the probability that 
the design meets the target failure probability is less 
than 50% for G1 and G2. To analyze the influence of 
sampling number, 100 random sampling points for Y1 
and Y2 are selected according to their true distribution 
functions, and the calculated probability of pG is shown 
in Fig. 3b. The conservativeness levels at pG = 2.275% 
are 85.02% for G1, 57.97% for G2, and 99.99% for 
G3, which is better than the results (59.9% for G1, 
63.6% for G2, and 99.9% for G3) in (Cho et al., 2016a). 
The proposed reliability measure method can obtain 
more accurate results because the optimum distribution 

types are obtained due to more insufficient input data, 
which decreases the uncertainties of distribution types, 
and only uncertainties of distribution parameters are 
considered.

To verify the accuracy of the derived sensitivity 
analysis method in Section 4, the design sensitivity 

for pGÎ [ 0 0.1] at y0=[ 4.7 1.6]
T
 under 10 input data 

is computed using the proposed method and the finite 
difference method (FDM), respectively (Lee et al., 
2011). The details of the FDM method are shown in 
the ESM. The sensitivity indices S between Y1, Y2 and 
reliability indices of G1, G2 are summarized in Fig. 4. 
The relative errors between the proposed method and 
the FDM method are less than 4.3% for SY1 _G1

, 4.8% 

for SY1 _G2
, 3.7% for SY2 _G1

, and 5.2% for SY2 _G2
. In the 

calculation of the FDM method, the conservativeness 
levels of pG at [4.70 1.60]T, [4.71 1.60]T, [4.691.60]T, 
[4.70 1.59]T, and [4.70 1.61]T are calculated, and the 
calculation burden is 5 times that of calculating the 
probability of pG. However, the sensitivity indices can 
be calculated using the proposed method with a small 
computation increase compared with the calculation 
of the probability of pG.

6.2 Numerical example 2

To demonstrate the effectiveness of the proposed 
reliability measure approach under hybrid uncertain‐
ties, the 2D mathematical functions in Section 6.1 are 
extended to 3D functions in Eqs. (35) and (36).

G1( X Y Z ) = 1 -
XYZ
20

 (35)

G2( )X Y Z =-1 + (0.9063X + 0.4226Y - 6)2 +
(0.4226Y + 0.9063Z - 6)3 - 0.6(0.9063X +
0.4226Y - 6)4 - (0.9063Y - 0.4226Z) (36)

where the statistical variable X is a normal distribu‐
tion function with mean x̄ and standard deviation 0.3. 
The available 10 random sampling points for disper‐
sion parts of sparse variable Y are the same as that of 
Y2 in numerical example 1. The interval variable Z 
is represented with interval ZÎ [ z̄ - 0.6 z̄ + 0.6]. At 

the design point [ x̄ ȳ z̄ ]
T
= [ 4.71.64.7]

T
, the uncer‐

tainty representation function of sparse variable Y is 
the same as that of Y2 in numerical example 1. The 
PDFs of distribution parameters θ for Y are shown in 
Fig. 5.

Fig. 3  Conservativeness level of failure probability considering 
sparse variables: (a) 10 input data; (b) 100 input data
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The conservativeness level of failure probability 
considering three types of uncertainties simultaneously 
is calculated using the proposed method and the MCS 
method. In the MCS method, three sampling loops of 

distribution types ζ, distribution parameters θ, and un‐
certain design variables are implemented to represent 
the uncertainty of the sparse variable Y. The interval 
variable Z is selected randomly in every sampling 

Fig. 5  PDFs of distribution parameters for sparse variable Y: (a) θ1; (b) θ2; (c) θ3; (d) θ4; (e) θ5; (f) θ6

Fig. 4  Sensitivity results under different failure probabilities: (a) SY1 _G1
; (b) SY1 _G2

; (c) SY2 _G1
; (d) SY2 _G2
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loop of uncertain variables according to the sampling 
value of auxiliary variable ψZ, and the statistical vari‐
able X is sampled according to its distribution type 
and distribution parameters. The total sampling num‐
ber, which is also the calculation number of perfor‐
mance function G ( X Y Z ), is 175 million, which 
contains seven sampling points of distribution types 
in the first loop, 5000 sampling points for distribution 
parameters in the second loop, and 5000 sampling 
points for uncertain variables (the statistical variable 
X, sparse variable Y, and interval variable Z) in the 
third loop. Through using the proposed method, the 
sparse variable Y is represented with weight summa‐
tion of multiple distribution types. Only two sampling 
loops for distribution parameters and uncertainty vari‐
ables are implemented and the total sampling number 
is 9 million (3000 for distribution parameters and 3000 
for uncertainty variables). The results are shown in 
Fig. 6 and the proposed method can obtain the accu‐
rate conservativeness level of failure probability; how‐
ever, only 5.14% of the MCS sample points are used 
for the developed method.

The design sensitivity for pG =2.275% at [x̄ ȳ z̄]=
[ 4.7 1.6 4.7] is computed using the proposed method 
and the FDM, and the results are listed in Table 1. In 

the FDM method, the additional calculation of failure 
probability is evaluated through forward and back‐
ward perturbed design for every uncertainty variable, 
and the total sampling number of MCS method is 
12.25 billion for design sensitivity analysis. However, 
using the proposed method, the sensitivity indices can 
be obtained with little additional computational burden 
in the reliability measure procedure; the total sam‐
pling number is still 9 million. Through using fewer 
sampling points and computational time, the agree‐
ment between the developed sensitivity indices and 
results from the FDM method varies from 96.07% to 
100.20%, which indicates that the proposed method 
can obtain accurate sensitivity results under mixture 
uncertainties.

6.3 Numerical example 3

To demonstrate the effectiveness of the proposed 
method in the reliability measure for multiple types of 
epistemic uncertainties, the numerical example 2 is 
extended to analysis reliability indices and sensitivity 
indices considering p-box variables, multi-modal vari‐
ables, and evidence theory variables.

6.3.1　Reliability measure considering p-box variable

The sparse variable Y of the 3D functions G1 and 
G2 in Eqs. (35) and (36) is changed to p-box variable 
U, whose distribution type is normal distribution, the 
mean is the design point ū, and the standard deviation 
is also a normal distribution function with mean 0.3 
and standard deviation 0.1.

Compared with sparse variable Y, the p-box vari‐
able U is represented using a single determinate distri‐
bution type. Two sampling loops of distribution pa‐
rameters and design variables are implemented in the 
calculation of failure probability and sensitivity indi‐
ces. In the first loop, 3000 sampling points for distri‐
bution parameters θ of p-box variable U and auxiliary 
variable ψ of interval variable Z are randomly selected 

Fig. 6  Conservativeness level of failure probability of 
proposed method and MCS method

Table 1  Design sensitivity of conservativeness level in example 2

Method

Proposed method

FDM

Agreement degree*

Sensitivity index

G1 _X

0.512

0.511

100.20%

G2 _X

−1.246

−1.283

97.12%

G1 _Y

2.858

2.861

99.90%

G2 _Y

2.328

2.344

99.32%

G1 _Z

0.713

0.739

96.48%

G2 _Z

1.370

1.426

96.07%

Time (s)

145.39

610.14

–

* Agreement  degree =
Sensitivty  index calculated by the proposed method

Sensitivty index calculated by FDM method
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according to their PDFs; in the second loop, 3000 
sampling points for uncertainty variables X, U, and Z 
are selected according to the sampling values of dis‐
tribution parameters θ and auxiliary variable ψ. The 
conservation level of failure probability for G1 and G2 
is calculated and shown in Fig. 7.

The sensitivity results of the proposed method 
are compared with the results of the FDM method, 
which are listed in Table 2. The computational com‐
plexity is decreased. In the FDM method, additional 
six times of failure probability computation are imple‐
mented through forward and backward perturbed 
design for three uncertainty variables. However, the 
sensitivity index can be calculated using Eq. (16) 
for X, Eq. (24) for U, and Eq. (21) for Z through 
semi-analytical calculation without additional sam‐
pling points. The calculation complexity is reduced, 
but the agreement degrees of the proposed method 
vary from 98.97% to 101.53% compared to the FDM 
method, which demonstrates the effectiveness of 
the reliability measure method considering p-box 
variables.

6.3.2　Reliability measures considering multi-modal 
variables

The sparse variable Y of the 3D functions G1 and 
G2 in Eqs. (35) and (36) is changed to the multi-modal 

variable Q, which is represented with weight summa‐
tion of normal distribution ζ1 and Weibull distribu‐
tion ζ2 in Eq. (37). The distribution parameters θ1 
N ( )0.3 0.1  and θ2 N (7.9 0.1) are also uncertain‐
ty variables.

Q  0.5ζ1(1.6 θ1) + 0.5ζ2(1.71 θ2) . (37)

Compared with sparse variable Y, the weight 
ratios and distribution types of multi-modal variable 
Q are determinate. The failure probability can be 
calculated using a two-level sampling method for 
uncertain distribution parameters and design vari‐
ables, as shown in Fig. 8, which demonstrates that 
the proposed method can be effectively extended to 
calculate reliability index considering multi-modal 
variables.

The sensitivity indices of statistical variable X, 
multi-modal variable Q, and interval variable Z are 
calculated using the proposed algorithm and the FDM 
method, respectively. The results are listed in Table 3. 
The agreement of sensitivity indices varies from 
98.20% to 101.03%. The proposed method can obtain 
accuracy sensitivity results with little computation 
complexity, which demonstrates the effectiveness of 
the proposed sensitivity calculation method consider‐
ing multi-modal variables.

Fig. 7  Reliability result considering p-box variable

Fig. 8  Reliability result considering multi-modal variables

Table 2  Design sensitivity of conservativeness level considering the p-box variable

Method

Proposed method

FDM

Agreement degree

Sensitivity index
G1 _X

0.464

0.467

99.36%

G2 _X

−1.446

−1.461

98.97%

G1 _U

0.931

0.917

101.53%

G2 _U

1.363

1.372

99.34%

G1 _Z

0.272

0.272

100.00%

G2 _Z

−7.119

−7.028

101.29%

Time (s)

148.64

663.97

–
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6.3.3　Reliability measure considering evidence theory 
variable

The uncertainty information of interval variable 
Z is unavailable, which is represented by using a single 
uncertainty interval. When there is little uncertainty 
information, the interval variable Z can be extended 
to evidence theory variable R, which is represented 
using some subintervals with BPAs. Therefore, the 
interval variable Z of the 3D functions G1 and G2 
in Eqs. (35) and (36) is changed to evidence theory 
variable R, which is represented using subintervals 
[ 4.1 4.7] and [ 4.7 5.3], whose BPAs are 0.6 and 0.4, 
respectively.

In the reliability measure and sensitivity calcula‐
tion, the uncertainty analysis of evidence theory vari‐
able R can be calculated using two auxiliary variables 
ψ1 and ψ2. Every subinterval is treated as an interval 
variable, which is calculated using the auxiliary vari‐
able method for interval variable Z. Using the two-
level sampling method and semi-analytical sensitivity 
calculation method, the reliability indices of G1 and 
G2 considering X, Y, and R are shown in Fig. 9, and 
the corresponding sensitivity indices are listed in 
Table 4. Results indicate that the proposed method 
can measure the reliability considering the effective‐
ness of evidence theory variables.

6.4 Engineering example: forging hydraulic press

The forging hydraulic press is a large piece of 
equipment, which uses liquid as its working medium, 
and transfers energy to the forging process, as shown 
in Fig. 10.

Due to the enormous forging force, the tie rods 
will be stretched, which will lead to the separation of 
the upper beam and the column and will also reduce 
the forging accuracy. Therefore, the deformation of 
tie rods DL is an important index reflecting the perfor‐
mance of the forging hydraulic press and is chosen 
as the performance function. A reliability analysis is 
necessary.

The deformation of the tie rods DL is affected by 
several uncertain variables. The load of the hydraulic 
press x1 is an interval variable which can be repre‐
sented by [ x̄1 - 5 x̄1 + 5] ´ 107 N. The diameter of tie 

rods x2 is a statistical variable with normal distribution 
type, whose mean value is x̄2 = 0.25 m and standard 
deviation is 0.001 m; Young’s modulus of tie rods x3 
is also a statistical variable with normal distribution 
type, whose mean value is x̄3 = 2 ´ 1011 Pa and stan‐
dard deviation is 1×109 Pa. The preload acting on tie 

Fig. 9  Reliability measure result considering the evidence 
theory variable

Fig. 10  Forging hydraulic press

Table 3  Design sensitivity of conservativeness level considering the multi-modal variable

Method

Proposed method

FDM

Agreement degree

Sensitivity index
G1 _X

0.353

0.356

99.16%

G2 _X

−1.889

−1.900

99.42%

G1 _Q

1.255

1.278

98.20%

G2 _Q

1.435

1.428

100.49%

G1 _Z

0.977

0.967

101.03%

G2 _Z

−8.223

−8.333

98.68%

Time (s)

129.63

614.74

–

157



|    J Zhejiang Univ-Sci A (Appl Phys & Eng)   2023 24(2):146-161

rods x4 is a sparse variable, whose available informa‐
tion for dispersion part is 20 random points of normal 
distribution function N (1.625 ´ 108 8 ´ 106) N. DL 

can be obtained according to the deformation results 
from the well-known finite element analysis (FEA) 
software ANSYS. One of the results under some spe‐
cific sampling points of {x1 x2 x3 x4 } is shown in 

Fig. 11.

The limit state function is given as g = 0.018-DL. 

At the design point x̄1 = 1.25×108 N, x̄2 = 0.25 m, x̄3 =
2×1011 Pa, and x̄4 = 1.625×108 N, the uncertainty of 
sparse variable x4 is represented first. The selected 

distribution types for x4 are normal and extreme value 
types, and the corresponding weight ratios are 0.5981 
and 0.4019, respectively. The PDFs of corresponding 
distribution parameters θ for x4 are shown in Fig. 12.

The conservativeness level of failure probability 
considering hybrid uncertainties is calculated using 
the proposed method and the MCS method, as shown 
in Fig. 13. The sensitivity results computed using the 
proposed method and the FDM are listed in Table 5. 
These results indicate the proposed method can obtain 
accurate reliability index and sensitivity results.

7 Conclusions 

In this study, a reliability measure approach con‐
sidering mixture uncertainties under insufficient input 
data is proposed. First, the sparse variable is repre‐
sented using weight summation of multiple distribution 
types based on AIC method under insufficient input 
data. Second, the failure probability under mixture un‐
certainties is calculated using the proposed two-level 
sampling method. Then, a semi-analytical method is 
proposed to calculate the sensitivity indices of mix‐
ture uncertainty variables. Finally, the proposed reli‐
ability measure method is extended to deal with p-box 
variables, multi-modal variables, and evidence theory 
variables.

From the results of three numerical examples 
and two engineering examples, the proposed method 
can obtain accuracy reliability measure results with 
higher computational efficiency compared with the 
MCS and FDM methods. Some conclusions are ob‐
tained: (i) The proposed method can obtain accuracy 
reliability measure results with less computational 
times. The traditional three-level sampling loop for 
sparse variables is decreased to a two-level sampling 
loop, which decreases the computation complexity for 
the reliability measure. (ii) The semi-analytical sensi‐
tivity calculation method based on an auxiliary vari‐
able method decreases the computational burden, and 
can be integrated into the uncertainty optimization 

Fig. 11  FEA of the forging hydraulic press: (a) mesh; (b) 
deformation of the tie rods

Table 4  Design sensitivity of conservativeness level considering the evidence theory variable

Method

Proposed method

FDM

Agreement degree

Sensitivity index
G1 _X

0.909

0.928

97.95%

G2 _X

−0.663

−0.676

98.08%

G1 _Y

0.453

0.444

102.03%

G2 _Y

0.777

0.783

99.23%

G1 _R

0.653

0.656

99.54%

G2 _R

−3.070

−3.074

99.87%

Time (s)

124.73

643.82

–
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method with little extra calculation. (iii) The proposed 
method has been extended to analyze p-box variables, 
multi-modal variables, and evidence theory variables, 

which can be extended to measure reliability index and 
sensitivity indices considering more uncertainty types, 
which is useful for mixture uncertainty optimization 
design.
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Table 5  Design sensitivity of conservativeness level for 

forging hydraulic press

Method

Proposed method

FDM

Agreement degree

Sensitivity index

x1

1.812

1.836

98.69%

x2

−5.374

−5.393

99.65%

x3

−3.626

−3.583

101.20%

x4

7.241

7.163

101.09%

Time 
(s)

206.63

747.94

–

Fig. 13  Reliability result of forging hydraulic press

Fig. 12  PDFs of distribution parameters for sparse variable x4: (a) θ1; (b) θ2; (c) θ3; (d) θ4
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