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Abstract: Locomotion stability is essential for controlling quadruped robots and adapting them to unstructured terrain. We 
propose a control strategy with center-of-mass (CoM) dynamic planning for the stable locomotion of these robots. The motion 
trajectories of the swing legs are synchronized with the CoM of the robot. To implement the synchronous control scheme, we 
adjusted the swing legs to form a support triangle. The strategy is applicable to both static walk gait and dynamic trot gait. In the 
motion control processes of the robot legs, the distribution of the ground reaction forces is optimized to minimize joint torque 
and locomotion energy consumption. We also used an improved joint-torque controller with varied controller coefficients in the 
stance and swing phases. The simulation and experimental results demonstrate that the robot can complete omnidirectional 
locomotion in both walk and trot gaits. At a given locomotion speed, the stability margins for the robot during walking and 
trotting were 27.25% and 37.25% higher, respectively, than in the scheme without CoM planning. The control strategy with energy 
consumption optimization (ECO) reduced the energy consumption of the robot in walk and trot gaits by 11.25% and 13.83%, 
respectively, from those of the control scheme without ECO.
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1 Introduction 

Quadruped robots have been extensively resear‑
ched owing to their extreme mobility and adaptability to 
different terrains; for example, the well-known ANYmal 
(Hutter et al., 2016, 2017), HyQ (Focchi et al., 2017; 
Gonzalez et al., 2020), and MIT Cheetah series (Hyun 
et al., 2014; Park et al., 2017). Stability is the basis for 
quadruped robots to locomote over complex terrain 
environments. Inspired by the rhythmic movement of 
organisms, some researchers have introduced locomo‐
tion control with a central pattern generator (CPG) to 
increase the stability of quadruped robots. Shao et al. 
(2022) proposed a new control framework based on 
CPG phase guidance, which can generate various gaits 
and realize transition between different gaits. Zhang Y 

et al. (2021) proposed a dynamics-based CPG network 
control system and simulated the trot gait of a quadru‐
ped robot. Fukui et al. (2019) demonstrated that a CPG 
network with vestibular feedback was an effective and 
practical gait generator that enabled autonomous gait 
transitions. Liu and Zhang (2020) established a van 
der Pol CPG network for a quadruped robot with four 
primary gaits. They analyzed the existing conditions 
of model bifurcation and the coupling strength range 
between the oscillators. However, modulating various 
CPG models for robot position control is a complex 
and cumbersome task because the model parameters 
usually have no apparent physical meaning.

Other researchers have focused on gait planning 
to improve the stability of robots. In a comparison 
study of several stable static gaits, Hao et al. (2020) 
identified the static gait that maximized the stability 
margin. Wang et al. (2020) attempted to improve the 
walking velocity of quadruped robots with static gaits. 
They proposed two methods for walking on an assumed 
set of irregular footholds. Yeom and Bae (2021) pro‐
posed a gait-stabilization algorithm that adjusts the 
contact time between the robot legs and the ground. 
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They demonstrated the stability of their algorithm by 
using a Lyapunov function. Chignoli and Wensing 
(2020) presented a control strategy for quadruped bal‐
ancing that enabled postural stability in underactuated 
contact configurations. Zhang et al. (2019) proposed a 
continuous static gait planning method for robots walk‐
ing blindly over unknown rough terrain. McClain and 
Meek (2018) selected an appropriate gait for a quadru‐
ped robot assisting human walking by estimating the 
optimal parameters of stable static gaits. However, 
locomotion stability of robots has been much more 
extensively researched for static than for dynamic gaits. 
In our proposed stability-control strategy, control of 
static gaits is extended to control of dynamic gaits, 
thereby expanding the application scope of the stability-
margin method.

Some researchers have applied optimization algo‐
rithms for torque control of quadruped robots. Using 
a Hermite interpolation method, Tian et al. (2019) gen‐
erated a smooth gait under boundary constraints, and 
established a control framework for quadruped robots 
based on virtual model control. Zhang ML et al. (2021) 
proposed a double-layer back-propagation neural net‐
work that learns the parameter rules of a proportional-
integral-derivative controller. This method avoids the 
inconvenient adjustment of artificial parameters other‐
wise necessary for the hydraulic drive unit of a legged 
robot. di Carlo et al. (2018) converted dynamics loco‐
motion control into a convex optimization problem 
based on a simplified model. They determined the 
ground reaction forces (GRFs) for a quadruped robot 
using model predictive control (MPC). Dudzik et al. 
(2020) combined regular predictive control and whole-
body impulse control into an integrated system for 
small robots. Several groups have tried various algo‐
rithms to optimize function. Pepe et al. (2021) deter‐
mined the optimal trajectory of a quadruped robot 
using a genetic algorithm that seeks the optimal gait 
sequence at different velocities. Srinivas et al. (2021) 
optimized the joint positions of a robot with eight de‐
grees of freedom (DoFs) using the particle-swarm 
optimization algorithm. Lee and An (2021) proposed a 
self-balancing control algorithm for quadruped robots, 
based on reinforcement learning and an artificial neu‐
ral network, which replaces the analysis-based control 
algorithm. Arena et al. (2021) proposed a data-driven 
neural network based on nonlinear MPC, and com‐
pared the simulation results for nonlinear MPC with 
those for linear MPC. Ding et al. (2021) proposed a 

representation-free MPC framework that controls vari‐
ous locomotion patterns of robots in 3D space. How‐
ever, the complex algorithm burdened the computing 
power of the robot, thereby increasing the difficulty of 
implementation and the investment cost. Our proposed 
control strategy, which involves GRF optimization 
based on MPC (di Carlo et al., 2018), designs the objec‐
tive function to minimize GRFs and energy consump‐
tion and simplifies the optimization algorithm to reduce 
the amount of computation. Moreover, it has flexible 
weight coefficients, which allow for different stances 
and swing phases of the legs. We aim to show how this 
design reduces the complexity of the control system.

The main contributions of this study are summa‐
rized below.

(1) The center-of-mass (CoM) and swing legs of 
the robot are synchronized to optimize coordination 
during locomotion. The scheme allows real-time tra‐
jectory planning for the CoM, and the stability margin 
can be flexibly and conveniently adjusted to an appro‐
priate value. The plan can be dynamically expanded to 
trot gait based on walk gait.

(2) Locomotion stability and energy consumption 
are simultaneously considered with a constant desired 
velocity. The stability goal is accomplished by real-time 
dynamic planning for the CoM. Energy consumption is 
minimized through the objective function of the qua‐
dratic planning of the GRFs. As the forces on the robot 
legs differ between the stance and swing phases, they 
are handled under different control strategies. The 
joint torques of the standing legs are primarily gener‐
ated by mapping the optimal GRFs, whereas a joint 
proportional-derivative (PD) controller commands the 
swinging legs.

(3) The implementation of the designed control 
strategy of the robot was verified in various ways. Con‐
troller performance was demonstrated through simula‐
tions and experiments. The tracking errors of the base 
orientation were analyzed at different velocities. Taking 
the stability measurement criterion (Gonzalez de Santos 
et al., 1998) as the judgment measure, we compared 
the real-time stability margins of the control schemes 
with and without CoM planning in walk and trot gaits. 
We also compared the instantaneous power and mean 
GRFs (in the z direction) of the robot legs with the 
control strategies, both with and without energy con‐
sumption optimization (ECO), in the two gaits; we 
took the energy model used by Zhou et al. (2021) as 
the judgment measure.
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The remainder of the paper is organized as fol‐
lows. Section 2 introduces the robot model and the 
overall design framework of the controller. Section 3 
describes each part of the controller and elaborates on 
the dynamic planning algorithm of the CoM and the 
principle of the state machine. Section 4 covers the simu‐
lation and experimental platforms and the parameter 
settings of the controller, as well as the simulation and 
experimental results. Section 5 concludes the study and 
discusses future work directions.

2 Robot model and control architecture 

The employed robot models are shown in Fig. 1, 
and the physical parameters of the robot are shown in 
Table 1.

The block diagram of the control system is shown 
in Fig. 2. The parameter with subscript ‘d’ denotes 
the desired value of the parameter. Depending on the 
input parameters, the planner designs the gait sequence, 
the desired CoM values, and the trajectory of the swing 
leg. These desired values are used to optimize the dis‐
tribution of GRFs fd based on the dynamic equations. 
The feedforward torques τff are computed by mapping 
the GRFs to the joint space. The joint position qi,d and 
velocity q̇ id are calculated through inverse kinematics 
(IK) of the desired footstep location pi,d of each swing 
leg generated by the planner. The desired joint torques 
τd of the quadruped robot are obtained by summing the 
feedback terms τfb computed by the joint PD controller 
and the feedforward terms τff. The robot is equipped 
with an inertial measurement unit and several joint 
motor encoders. The sensor data are used for measur‐
ing the joint position qi and velocities q̇ i of each leg, 
the linear acceleration acom, and the angular velocity ωB 
of the base (di Carlo et al., 2018). The current body 
state of the robot is estimated with a leg-odometry algo‐
rithm. The state values are then transmitted to the plan‐
ner and optimizer for real-time data updates.

3 Locomotion-control strategy 

First, we planned the gait and swing-leg trajecto‐
ries. We then compared two coordination schemes when 
used for the CoM and legs, and designed an algorithm 
to implement the dynamic CoM planning. We will 
also present the state transition process.

3.1 Gait planning

Each typical gait was assigned a corresponding 
gait pattern (Hyun et al., 2014). The gait sequence and 
phase relation of walking are shown in Figs. 3a and 3b, 
respectively. The swing sequence was LF-RH-RF-LH, 

Table 1  Physical robot parameters

Parameter
Mass, m (kg)

Degree of freedom, DoF

Length 1, L1 (m)

Length 2, L2 (m)

Length 3, L3 (m)

Length 4, L4 (m)

Length 5, L5 (m)

Value
10.5

12

0.049

0.190

0.062

0.209

0.195

Fig. 1  Robot models: (a) simplified model and coordinate 
systems; (b) simulation model; (c) experimental prototype. 
LF, RF, RH, and LH represent four legs (L: left; R: right; 
F: front; H: hind). HAA: hip-abduction/adduction joint; 
HFE: hip-flexion/extension joint; KFE: knee-flexion/extension 
joint
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and the phase (φ) difference between adjacent swing legs 
was 0.25. The current state Si of the ith leg was defined 
as Si=0 during the swing phase and Si=1 during the 
stance phase. The robot legs were periodically switched 
between the stance and swing phases depending on 

the gait type. The phase-control signal (time cycle T=1 s) 
generated by the gait scheduler for walk gait is shown 
in Fig. 3c.

3.2 Swing-trajectory planning

The desired velocity of the robot is expressed as

vcomd = [ vxd vyd vzd ωxd ωyd ωzd ]
T (1)

where vx,d, vy,d, vz,d∈R are linear velocity terms and ωx,d, 
ωy,d, ωz,d∈R are angular velocity terms. The subscript d 
denotes that these velocity terms are the desired val‐
ues. The linear velocity vz,d and angular velocities ωx,d 
and ωy,d were set to 0 for smooth movement of the 
robot.

The desired footstep locations of the ith swing leg 
are given by

p id = p ir + vcomd ×
Dt
2

+ k (vcom - vcomd )  (2)

where pi,r∈R3 is defined as the position of the ith leg 
relative to its shoulder, Dt is the stance duration, and 
k∈R is the tracking error coefficient (k=0.1 here). The 
second term on the right of Eq. (2) is the heuristic 
(Raibert, 1986), and the third term compensates for 
the tracking error in the CoM velocity.

The swing trajectory is described by a cubic spline, 
which is generated from the initial position to the 
desired footstep location. The height of the midpoint 
position of the trajectory reaches the step height Hsw∈R. 
The initial and final velocities were set to 0 to reduce 
the robot’s ground-contact impact force.

Fig. 3  Gait pattern for walk gait: (a) gait sequence; (b) phase 
relation; (c) phase-control signal

Fig. 2  Block diagram of the control system. vcom is the velocity of the CoM; pcom is the position of the CoM; pi is the footstep 
location
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3.3 Dynamic planning for the CoM

The CoM was dynamically planned in order to 
enhance its locomotion stability. To coordinate the mo‐
tions of the CoM with the swing, we first determined 
the cooperative scheme and then designed the motion 
trajectory of the CoM.

3.3.1　Synchronous cooperation design

The support triangle, which was determined by 
the cooperative scheme between the motions of the 
CoM and swing legs, influenced the planning of the 
CoM and control strategy. The two cooperative schemes 
for walk gait are shown in Fig. 4. Figs. 4a and 4b 
show the asynchronous and synchronous cooperative 

schemes, respectively, and Figs. 4c and 4d show their 
corresponding CoM velocities (vx,d=0.2 cm/s).

The two schemes generated different support tri‐
angles for the same swing leg (RH). In the asynchro‐
nous scheme (Fig. 4a), the CoM and swing leg of the 
robot moved sequentially. The ith swing leg moved 
first, followed by the CoM. The next leg then swung 
in sequence. In this scheme, the three stance legs 
formed the support triangle, and the support vertices 
were the foot positions of the stance legs.

In contrast, the designed synchronous scheme led 
to simultaneous motions of the CoM and swing leg 
(Fig.4b). The next leg and the CoM then moved at the 
same time. In our scheme, the legs other than the next 
swing leg formed the support triangle. The swing leg 
became a support leg, and its vertex was the planned 
footstep location.

The CoM velocities were discontinuous and varied 
more widely in asynchronous than in synchronous co‐
operation (Fig. 4c). During the movement of the swing 
leg, the CoM was stationary, and its velocity was zero. 
When the CoM moved, its velocity quickly increased 
from zero to peak. In contrast, as our scheme synchro‐
nized the motions of the CoM and swing leg (Fig. 4d), 
the velocity was more continuous, smoother, and varied 
over a smaller range than the velocities obtained in the 
asynchronous scheme.

3.3.2　Motion trajectory of the CoM design

The initial and target positions of the CoM pro‐
jection are defined as Pxy,d(t0) and Pxy,d(tm), respectively, 
where t0 and tm are the start and end times of the CoM 
planning, respectively. The positions of the three verti‐
ces P1(x1, y1), P2(x2, y2), and P3(x3, y3) on the projection 
plane of the support triangle are depicted in Fig. 5a.

The midpoint P0(x0, y0) of the maximum edge      
P1 P2 is given by

P0( x0 y0) =
é
ë
êêêê1

2
( )x1 + x2

1
2

( )y1 + y2
ù
û
úúúú

T

. (3)

The stability margin d, defining the distance from 
Pxy,d(tm) to P0(x0, y0) (Gonzalez de Santos et al., 1998), 
is calculated using Eq. (4). Pxy,d(tm) can be adjusted by 
varying the parameter d in the support-triangle plane. 
The inequation (5), which constrains the generated 
target position within the plane of the support triangle, 
must be satisfied.

Fig. 4  Two cooperative schemes (walk gait): (a) asynchronous 
scheme; (b) synchronous scheme; (c) CoM velocity in the 
asynchronous scheme; (d) CoM velocity in the synchronous 
scheme. The solid circle represents the current stance position 
of each leg, the dotted circle represents the planned location 
of the swing leg, and the areas surrounded by solid black 
lines represent support triangles in Figs. 4a and 4b
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d = ( )Pxd( )tm - x0

2

+ ( )Pyd( )tm - y0

2

 (4)

( )x3 - x0

2
+ ( )y3 - y0

2 ≥ ( )x3 -Pxd

2

+ ( )y3 -Pyd

2

.

(5)

The angle θ between 
         
P0 Pxyd( )tm  and the x-axis is 

found by

cos θ =
Pxd( )tm - x0

d
. (6)

To reduce the movement range of the base on 
the y-axis, we set the direction to be consistent with 
the locomotion direction of the robot:

cos θ =
vxd

( )vxd

2

+ ( )vyd

2
. (7)

A minimum-jerk quintic spline with a fourth-order 
continuous derivative was planned between the initial 
and target positions. The CoM velocities and accelera‐
tions were set to zero at the start and end times to 
ensure smooth movement of the CoM along the planned 
trajectory.

The designed scheme was appropriate for the 
walking gait, in which one leg swings at a time. Fig. 5b 
shows the cooperation between the CoM and swing legs 
of the robot in walking, along with the dynamic trajec‐
tory plan of the CoM. Also shown are the implementa‐
tion details of the synchronous cooperative scheme 
based on the step sequence generated by the gait schedu‑
ler. Note that the vertices of the support triangle are 
the stance positions in the next phase.

To extend the synchronous cooperative scheme to 
the trot gait, we took the positions of the stance legs 
as the two support vertices of the supportive triangle, 
and the third support vertex employed the planned 

Fig. 5  CoM planning and synchronous cooperative scheme in the projection plane: (a) CoM planning in the projection 
plane; (b) synchronous cooperation for walk gait; (c) synchronous cooperation for trot gait
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footstep location of the forward swing leg. Fig. 5c 
shows the support triangle formed by these vertices 
and the implementation details of the synchronous 
cooperative scheme during trotting.

3.3.3　State machine for motion control

The designed robot locomotion was a phased, con‐
tinuous, and repeated process. Fig. 6 shows the motion 
states and their transition operations.

When the ith leg is the swing leg, the contact 
state Si is set to 0. The desired footstep location pi,d(tm) 
is computed by Eq. (2). The cubic spline foot trajectory 
from the initial position to the target location is deter‐
mined, and the desired joint position qi,d(t) is then gen‐
erated by the IK equations. At this point, the planned 
footstep location of the ith leg is a vertex of the sup‐
port triangle. The projection target position pxy,d(tm) is 
computed by Eq. (4) depending on the determined sup‐
port triangle. When the ith leg is the stance leg, the con‐
tact state Si is set to 1. The ith leg is a support vertex 
of the support triangle (if it is not the next swing leg) 
and participates in the dynamic planning of the CoM. 
The CoM moves along the planned quintic spline tra‐
jectory from its initial position to the target position. 
The desired joint position qd(t) of the stance legs is 
then generated by the IK equations.

3.4 Motion-state estimation

We used a leg-odometry algorithm (Lin et al., 
2005) to estimate the robot’s state from the sensor 
measurements. The state contains the positions and 
velocities of the feet and the CoM.

In the world coordinate system, the foot position 
is computed as

W p i = W pcom + W RB × B p i (8)

where the upper-left superscript denotes the coordi‐
nate system (W: world; B: base) of the vector (Fig. 1a), 
W RBÎR3 ´ 3 is the rotation matrix from base to world 
coordinates, and the subscript i∈{1, 2, 3, 4} represents 
the LF, RF, RH, and LH legs, respectively.

The foot position B p i in the base coordinate is 
obtained through the forward kinematics by

é
ë

B pi ( )x
B p

i ( )y
B pi ( )z

ù
û

T

=

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úL4 s2 + L5 s23 + αL2

β ( )L3c1 + L1 + L4 s1c2 + L5 s1c23

βL3 s1 - L4c1c2 - L5c1c23

 (9)

where cj=cos(qi,j), sj=sin(qi,j), cjk=cos(qi,j+qi,k), sjk=sin(qi,j+
qi,k), qi,j represents the jth joint of the ith leg, and j, k∈
{1, 2, 3} represent the three joints, HAA, HFE, and 
KFE, respectively, as defined in Fig. 1a. α, β∈{−1, 1} 
are symbolic variables taking the following values:

α = {1       i = 1 4
-1    i = 2 3

      β = {1       i = 1 2
-1    i = 3 4.

(10)

The foot velocity B ṗ i in base coordinates is given by

B ṗ i = J i × B q̇ i (11)

where J iÎR3 ´ 3 is the Jacobian matrix, expressed as

J i =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú0 L4c2 + L5c23 L5c23

-βL3 s1 + L4c1c2 + L5c1c23 -L4 s1 s2 + L5 s1 s23 -L5 s1 s23

βL3c1 + L4 s1c2 + L5 s1c23 L4c1 s2 + L5c1 s23 L5c1 s23

. (12)

Fig. 6  Logic diagram of the state machine (SM). Rectangles represent the motion state, arrows indicate the direction of 
state transition, and dotted boxes represent related state-transition operations
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Taking the derivative of Eq. (8) and setting W ṗ i =
0 to ensure no slippage of the stance legs, the linear 
velocity of the CoM in world coordinates is given by

Wvcom =- W RB( BωB ´ × B p i + B ṗ i)  (13)

where BωB ´ÎR3 ´ 3 is given by

BωB ´ =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú0 - Bωz
Bωy

Bωz 0 - Bωx

- Bωy
Bωx 0

.

The position of the CoM at time t in world coor‐
dinates is then determined by

W pcom ( )t =
W pcom ( )t -DT + Wvcom ( )t × DT (14)

where DT is the sampling interval.
In the process of robot-state estimation, the mea‐

surements acquired from the sensors include high-
frequency noise, which is removed by a first-order low-
pass filter.

3.5 Optimization of the GRFs

To optimize the GRFs, we first computed the linear 
acceleration of the CoM and the angular acceleration 
of the base, and then solved for the GRFs using the 
simplified dynamics model.

3.5.1　Dynamics of the simplified rigid body

The desired linear acceleration of CoM and angu‐
lar acceleration of the robot were designed under the 
PD control law (Focchi et al., 2017) as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

acomd = kpa( )pcomd - pcom + kda( )vcomd - vcom 

ω̇Bd = kpb( )[ ]ϕd θd ψd

T
- [ ]ϕ θ ψ

T
+

kdb( )ωBd -ωB 

    (15)

where ϕ θ ψ ÎR are the roll, pitch, and yaw angles 
of the base, respectively, and kpa kda kpb kdbÎR3 ´ 3 are 
the proportional and derivative coefficient matrices, 
respectively.

As more than 70% of the robot mass is concen‐
trated in the base, the robot can be simplified as a sin‐
gle rigid body, in which the CoM coincides with the 
geometric center of the body (di Carlo et al., 2018). 

We further assume that the feet cannot generate mo‐
ments when contacting the ground and that the GRFs 
are the only external forces acting on the robot.

Based on the force analysis of the single-rigid-body 

model, the GRFs f ( fx fy fz ) Î R3n ´ 1 can be calculated 

by

         
é
ë
êêêê ù

û
úúúúI  I

r1 ´  rn ´
A

       [ ]f1  fn

T

f

=
       

é

ë

ê
êê
ê ù

û

ú
úú
úm ( )acomd + g

IG × ω̇Bd

b



(16)

where mÎR is the total mass of the robot, gÎR3 de‐

notes the gravity acceleration, IG ÎR3 ´ 3 is the inertia of 
the CoM, r i ÎR3 is the vector from the CoM to the foot 
position of the ith leg (in world coordinates), I ÎR3 ´ 3 
is the unit diagonal matrix, and n is the number of 
stance legs.

3.5.2　GRF distribution

Eq. (16) constitutes six equations with 6–12 (de‐
pending on gait) unknown values of f. Therefore, 
Eq. (16) can have an infinite number of solutions. Under 
certain constraints, the problem of solving this simul‐
taneous set of equations can be transformed into an 
optimization problem of quadratic programming.

We set the following objective function:

fd = min
fÎR12 (( Af - b)

T
S ( Af - b) + δf TWf ) 

dmin ≤ cf ≤ dmax
(17)

where SÎR6´6 and WÎR12´12 are positive definite weight 
matrices, δÎR is the weight of the secondary objective, 
cÎRp ´ 12 is the inequality constraint matrix, and dmax 
dminÎRp are the upper and lower bounds of the con‐
straint, respectively. Here, p denotes the number of 
inequality constraints.

From an energy-consumption perspective, motion 
efficiency is usually measured as the transport cost 
(CoT) (Zhou et al., 2021):

CoT =
P

mgv
 (18)

where P is the electrical power, and v is the locomotion 
velocity of the robot.
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CoT is proportional to the electric power P when 
the locomotion velocity is constant. Moreover, under 
normal working conditions, P is proportional to the 
joint torque τ, and a corresponding relationship exists 
between the joint torques and GRFs (see later Eq. (25)). 
Therefore, penalizing the GRFs means implicitly mini‐
mizing the CoT.

Standard quadratic programming is given by

min
f

1
2

f T Hf + f T g    dmin ≤ cf ≤ dmax (19)

where

ì
í
î

ïï
ïï

H = 2( )AT SA + δW 

g =-2( )AT Sb 
(20)

under the following constraints.
(1) Constraints on the upper and lower bounds 

of the GRFs:

fmin ≤ fxyz ≤ fmax. (21)

(2) Constraints by the friction cone (approximated 
as linear friction to simplify the solution):

ì
í
î

ïï

ïïïï

-μfz ≤ || fx ≤ μfz

-μfz ≤ || fy ≤ μfz
(22)

where μ is the friction coefficient.
(3) Zero GRFs during the swing phase:

ì
í
î

fi(xyz)¹ 0 Si = 1

fi(xyz)= 0 Si = 0.
(23)

3.5.3　Desired joint torques

The desired joint torques are obtained by summing 
the feedforward and feedback terms (Boaventura et al., 
2012):

τd = τff + τfb. (24)

The feedforward torques are generated by map‐
ping the GRFs fd ÎR12 to the joint space:

τff =-SτJ
T fd (25)

where Sτ ÎR12 ´ 12 is the selection matrix, and J T ÎR12 ´ 12 is 
the transpose of the Jacobian matrix.

The feedback torques are computed as

τfb = kp(qd - q) + kd( q̇d - q̇)  (26)

where kp kd ÎR12 ´ 12 denote the diagonal proportionali‐
ty matrix and derivative gain matrix, respectively, 
and qd q̇d q q̇ ÎR12 are the desired and actual joint 
positions and velocities, respectively.

When the ith leg is in the stance phase (Si=1), the 
gains kp and kd in Eq. (26) are set low, so the torques 
τd are mainly generated by the feedforward terms τff. 
When the ith leg is in the swing phase (Si=0), τff=0 
and the gains in Eq. (26) are set high, so the torques τd 
are entirely generated by the feedback terms τfb.

4 Simulation and experiment 

The stability of the locomotion-control strategy, 
based on dynamic planning of the CoM, was evaluated 
through simulations and experiments. We performed 
co-simulations in Matlab (R2018b) and V-REP (ver‐
sion 3.6.2). All experiments were implemented on the 
prototype shown in Fig. 1c, whose structure imitates 
the MIT Cheetah 3 robot. The controller parameters 
are listed in Table 2.

Table 2  Controller parameters

Parameter
Friction coefficient, μ
CoM proportional gain, kpa (N/m)
CoM derivative gain, kda (s·N/m)
Base proportional gain, kpb (N·m/rad)
Base derivative gain, kdb (s·N·m/rad)
Joint stiffness gain (swing phase), 

kp (high) (N·m/rad)
Joint damping gain (swing phase),

 kd (high) (s·N·m/rad)
Joint stiffness gain (stance phase), 

kp (low) (N·m/rad)
Joint damping gain (stance phase), 

kd (low) (s·N·m/rad)
CoM inertia, IG (kg∙m2)
Objective function weight, S
Minimum torque weight, W

Second objective weight, δ
Stability margin, d (m)
Desired height of robot, Hd (m)

Value
0.6

diag(50, 50, 50)
diag(10, 10, 10)
diag(50, 50, 50)
diag(10, 10, 10)

diag(100, 100, 100)

diag(12, 10, 7)

diag(10, 10, 10)

diag(5, 4.5, 3)

diag(0.31, 1.09, 1.12)
diag(5, 5, 10, 10, 10, 10)
diag(0.5, 0.5, 0.2, 0.5, 
0.5, 0.2, 0.5, 0.5, 0.2, 

0.5, 0.5, 0.2)
10

0.05
0.315
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4.1 Omnidirectional locomotion simulation

With vx,d, vy,d, and ωz,d set in Eq. (1), the robot moved 
along the x- and y-axis directions and rotated around the 
z-axis, thereby achieving omnidirectional locomotion.

The desired velocities were specified as

vcomd =
ì
í
î

ïï

ïï

[ ]0.2 0.1 0 0 0 0.1
T  gait = 1 walk

[ ]0.4 0.2 0 0 0 0.2
T  gait = 2 trot.

(27)

The simulation snapshots of the robot captured 
during omnidirectional locomotion are shown in Fig. 7. 
Whether walking (Fig. 7a) or trotting (Fig. 7b), the 
robot moved stably with the desired CoM velocity.

Fig. 8 shows the GRFs and joint torques of the 
RF leg during omnidirectional walking (Fig. 8a) and 
trotting (Fig. 8b). In the stance phase, the GRFs of the 
RF leg were mainly concentrated in the z direction and 
were very small in the x and y directions. In contrast, 
during the swing phase of the RF leg, the GRFs were 
zero because the foot was above the ground. Addition‐
ally, when the RF leg was in the stance phase, the 
desired torques were mainly dominated by the feed‐
forward terms, and the feedback terms were very small. 
When the RF leg was in the swing phase, the desired 
torques were wholly generated by the feedback terms 
because the feedforward terms were zero. These simu‐
lation results were consistent with the design scheme 
described in Section 3.5.

Fig. 9 shows the joint positions and velocities for 
the HAA, HFE, and KFE of the RF leg during walk‐
ing (Figs. 9a and 9b) and trotting (Figs. 9c and 9d). 
The tracking errors between the desired and simulated 
values of each joint position and velocity were very 

small in both gaits, indicating that the simulated results 
matched the expected results.

4.2 Omnidirectional locomotion experiment

Fig. 10 shows snapshots of the walking (Fig. 10a) 
and trotting (Fig. 10b) experiments, with the desired 
velocities set with Eq. (27). The robot completed the 
omnidirectional locomotion experiments in both gaits.

Fig. 11 presents the tracking of the CoM position 
and base orientation during omnidirectional walking 
and trotting. Figs. 11a and 11c indicate the positions 
of CoM in the x, y, and z directions in the two gaits, 
respectively. Figs. 11b and 11d indicate the roll, pitch, 
and yaw angles of the base in the two gaits, respec‐
tively. The simulated CoM and experimental CoM 
moved to the desired positions, and the errors in base 
orientation were very small. The positional and orien‐
tational tracking errors were slightly larger in the experi‐
ments than in the simulations in both gaits. Overall, 
the results matched expectations, verifying the correct‐
ness and effectiveness of the control strategy with CoM 
dynamic planning.

4.3 Tracking-error analysis

The robot moved at the desired CoM velocity 
(0.1 or 0.2 m/s along the x-axis in the walk gait; 0.2 or 
0.4 m/s along the x-axis in the trot gait). The base orien‐
tations were observed during the experiments, and the 
tracking errors at the different velocities are depicted 
in Fig. 12. Presented are the major ranges and limits 
of the variations in the base orientations during walk‐
ing (Fig. 12a) and trotting (Fig. 12b). Tracking fluctu‐
ations for Euler angles and root mean square errors 
(RMSEs) of the base orientations (Fig. 12c) increased 
slightly at higher velocities. The control capacity of 

Fig. 7  Simulation snapshots of omnidirectional locomotion: (a) omnidirectional walking; (b) omnidirectional trotting
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the robot remained stable at different speeds, and the 
experimental results continued to align with the ex‐
pected results.

4.4 Comparison of stability and energy consumption

This subsection compares the stability of the robot 
under the control strategies with and without CoM 
planning. Here, the robot was governed to walk or trot 
at vx,d=0.2 m/s. Fig. 13 shows the real-time stability mar‐
gins for the robot during walking (Fig. 13a) and trot‐
ting (Fig. 13b).

The body was steady when the stability margin 
was positive, meaning that the CoM remained in the 
support triangle. Conversely, the body was unsteady 
when the stability margin was negative (i.e., the CoM 
was outside the support triangle). When the support 
triangle changed during a phase switch in the designed 

control strategy, the stability margin became negative 
for a very brief period before recovering (indicating a 
quick return of the CoM to the support triangle interior). 
Furthermore, after including CoM planning in the con‐
trol strategy, the average stability margin and propor‐
tion of positive to negative stability margins (Fig. 13c) 
were improved by 0.0153 m and 27.25%, respectively, 
during walking, and by 0.0378 m and 37.25%, respec‐
tively, during trotting.

Finally, we compared the energy consumption of 
the robot when the objective function included or ex‐
cluded ECO during walking and trotting at vx,d=0.2 m/s. 
The real-time instantaneous powers and the mean GRFs 
(in the z direction) are shown in Fig. 14.

As shown in Fig. 14a, the control strategy with 
ECO in the objective function yielded a lower mean fz 
(GRF in the z direction) than the control strategy without 

Fig. 8  GRFs and joint torques of RF leg in omnidirectional locomotion: (a) during walking; (b) during trotting
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ECO. The comparisons were more evident in trotting 
than in walking; specifically, the GRFs decreased by 
13.42% and 24.45% during walking and trotting, respec‐
tively. As shown in Figs. 14b and 14c, the instanta‐
neous power-variation trends of the robot for the strat‐
egies with and without ECO were the same. The ECO 
reduced the GRFs of the legs in the stance phase, 
thereby decreasing the corresponding joint torques and 
the instantaneous power for the robot. Consequently, 
the control strategy with ECO reduced the average 

power by 11.25% and 13.83% during walking and trot‐
ting, respectively.

5 Conclusions 

This paper proposes a novel control strategy with 
dynamic CoM planning for a quadruped robot. Com‐
paring the control-scheme results with and without 
CoM planning, we demonstrated that the designed 
dynamic planning based on synchronous cooperation 
between the CoM and the swing legs could effectively 
improve the locomotion stability of the robot. When 
combined with ECO, the proposed control strategy 
reduces the locomotion energy consumption of the 
robot to a certain extent. The control strategy also ex‐
tends the adaptation range of stability from the walk 
gait to the trot gait. The effectiveness of the designed 
control system was verified in simulation and experi‐
mental results for omnidirectional locomotion. Tracking-
error analysis demonstrated that the controller oper‐
ates well and enables steady locomotion at different 
velocities.

Fig. 10  Experimental snapshots of omnidirectional 
locomotion: (a) omnidirectional walking; (b) omnidirectional 
trotting

Fig. 9  Leg-joint positions and velocities of RF leg in omnidirectional motion: (a) leg-joint positions during walking; (b) 
leg-joint velocities during walking; (c) leg-joint positions during trotting; (d) leg-joint velocities during trotting
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Fig. 11  Tracking of CoM positions and base orientations in omnidirectional locomotion: (a) CoM positions during walking; 
(b) base orientations during walking; (c) CoM positions during trotting; (d) base orientations during trotting. Solid, dashed, 
and dotted lines indicate the desired, simulated, and experimental results, respectively

Fig. 12  Tracking errors of the base orientation: (a) boxplots 
of base orientation during walking; (b) boxplots of base 
orientation during trotting; (c) bar plots of the tracking 
errors (RMSE) for both walk and trot gaits

Fig. 13  Stability margins with two control strategies: (a) 
during walking; (b) during trotting; (c) proportions and 
averages of stability margins
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The control strategy was applied for the typical 
walk and trot gaits. Because the velocities of the CoM 
and gait type are pre-programmed, the robot cannot 
select its gait or velocity in an actual situation. More‐
over, the robot was tested in a pre-set experimental 
scene rather than a natural terrain environment.

In the near future, we plan to incorporate the feed‐
back network of an animal motor nervous system, as 
well as biological reflexes, into the control system to 
improve the bionic ability and intelligence of our pro‐
totype. We hope that a control system based on multi-
level reflex modes will enhance the adaptive control 
ability of quadruped robots in unstructured terrain.
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