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Abstract: A graphics processing unit (GPU)-accelerated vector-form particle-element method, i.e., the finite particle method 
(FPM), is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive 
contact calculations. A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural 
elastoplastic behaviors. The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is 
performed between adjacent cells to improve search efficiency. A connected list data structure is used for storing contact particles 
to facilitate the parallel contact search procedure. The contact constraints are enforced by explicitly applying normal and tangential 
contact forces to the contact particles. The proposed method is fully accelerated by GPU-based parallel computing. After 
verification, the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing 
two large-scale contact examples. The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for 
the overall computation and 340 for contact calculations. Therefore, the proposed method is shown to be effective and efficient.

Key words: Graphics processing unit (GPU); Parallel acceleration; Elastoplastic contact; Contact search; Finite particle method 
(FPM)

1 Introduction 

The numerical modeling of elastoplastic contact 
of structures is a demanding and challenging task in 
engineering scenarios (Kang and Kim, 2015; Gao et al., 
2022). The strong nonlinearities (i.e., geometrical, ma‐
terial, and contact nonlinearities) involved in elasto‐
plastic contact of structures make it difficult to get 
accurate solutions (Neto et al., 2017). In addition, the 
contact calculation processes, especially the contact 
search and contact constraint enforcement procedures, 
are usually very time-consuming for large-scale con‐
tacts (Wriggers, 2006). Therefore, an effective and 
efficient method is urgently needed to solve the elasto‐
plastic contact of structures.

The finite element method (FEM) is one of the 
most widely adopted methods for solving the elasto‐
plastic contact of structures. Hallquist et al. (1985) de‐
veloped the node-to-segment (NTS) contact algorithm 
in the FEM context, which is simple and reasonably 
accurate for simulating elastoplastic contacts with large 
deformation (Hesch and Betsch, 2011; Biabanaki et al., 
2014). Also, many algorithms have been developed to 
accelerate the time-consuming contact search proce‐
dures, such as the bucket sort algorithm (Benson and 
Hallquist, 1990) and the linear contact search algo‐
rithm (Chen et al., 2014). With the rapid development 
of computer technology, much effort has been put 
into accelerating contact algorithms using parallel com‐
puting techniques (Cai et al., 2015; Cao et al., 2020). 
However, some procedures of the FEM, such as as‐
sembling global stiffness matrices, are inherently diffi‐
cult to decouple for parallel computing, and lead to 
undesired computational efficiencies.

In addition to the above numerical methods, a 
vector-form particle-element method, i.e., the finite 
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particle method (FPM) (Yu and Luo, 2009; Luo and 
Yang, 2014; Yang et al., 2014; Zheng et al., 2021), 
also has the potential to model elastoplastic contact of 
structures. The FPM assumes that a structure is dis‐
cretized into elements and particles. The mechanical 
properties of the structure are represented by particles 
instead of elements. The motion equations of particles 
obey Newton’s second law, and they are solved using 
explicit time integration techniques. The rigid-body 
motion of FPM elements can be effectively separated 
from the total motion of the elements, making the FPM 
suitable for modeling large-deformation elastoplastic 
behaviors of structures. In addition, the contact algo‐
rithms used in the FEM, e.g., the NTS algorithm, can 
be used in the FPM. Furthermore, the FPM is highly 
parallelizable due to the intrinsically decoupled ele‐
mental and particle calculation processes. Therefore, 
the FPM accelerated by parallel computing techniques 
is promising as an effective and efficient way of mod‐
eling the elastoplastic contact of structures.

There are mainly two kinds of parallel comput‐
ing strategies: central processing unit (CPU)-based 
techniques and graphics processing unit (GPU)-based 
techniques. Specifically, general-purpose computing on 
GPUs (GPGPU) has been widely used in engineering 
fields (Hou et al., 2021; Wang SQ et al., 2021) with 
the development of GPU-oriented application program‐
ming interfaces such as NVIDIA compute unified de‐
vice architecture (CUDA). The GPGPU is more suit‐
able for the parallel acceleration of the FPM than the 
CPU-based techniques since the elemental and particle 
calculation procedures can be decoupled and assigned 
to massive GPU threads. Tang et al. (2020) made the 
first attempt to develop a universal GPU-based parallel 
strategy for explicit dynamic analysis using the FPM. 
Based on this work, the authors proposed a 2D par‐
allel contact algorithm for elastoplastic contacts and 
achieved a considerable improvement in computational 
efficiency (Wang W et al., 2021).

In this paper, a GPU-accelerated FPM for 3D 
elastoplastic contact of structures is proposed. Firstly, 
a hexahedral element with reduced integration and 
anti-hourglass is developed to model the 3D elasto‐
plastic behaviors of structures. Subsequently, a 3D 
parallel contact algorithm is proposed. Specifically, the 
3D space containing contact surfaces is decomposed 
into cubic cells, and the contact search is performed 
between adjacent cells to improve search efficiency. A 

connected list data structure is used for storing contact 
particles to facilitate the parallel contact search proce‐
dure. The contact constraints are enforced by explicitly 
applying contact forces to contact particles. All the 
computational procedures are designed to be carried out 
in GPU. The effectiveness and efficiency of the pro‐
posed method are verified in four numerical examples.

2 Hexahedral elements in the FPM 

This section presents the fundamentals of the 
hexahedral elements in the FPM. The motion equa‐
tions of particles and the solutions to the equations 
are given. Subsequently, the equations of hexahedral 
elements are described.

2.1 Motion equations

As illustrated in Fig. 1, a 3D structure is dis‐
cretized into particles and hexahedral elements. The 
motion of each particle in the FPM is governed by the 
following equation:

md̈ =Fext -F int -Fdmp +Fc (1)

where m and d denote the mass and displacement of 
the particle, respectively, Fext is the resultant external 
force, Fdmp is the damping force, Fc represents the con‐
tact force (Section 3.3), and Fint denotes the resultant 
internal force:

F int =∑
i = 1

ne

F̂ ei
int  (2)

where ne is the number of elements containing this 
particle, i denotes the ith element, and F̂ e

int is the ele‐
mental internal force, which is derived in Section 2.2. 
The damping force Fdmp = ξdmḋ in Eq. (1) is used to 
account for the mass damping effect, where ξd de‐
notes the mass damping coefficient.

Fig. 1  Discretization of a structure
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The central difference method is used to derive 
an explicit solution to Eq. (1):

d t +Dt =
c1Dt2

m
( F t

ext -F t
int +F t

c) + 2c1d t - c2d t -Dt (3)

where t denotes the time, Dt denotes the time step 

size, c1 = (1 + ξdDt/2)
-1

, and c2 = c1(1 - ξdDt/2).

2.2 Elemental internal forces

2.2.1　Fictitious reverse motion

The movement of a hexahedral element within a 
time step is shown in Fig. 2. The reference configura‐
tion at time ta is denoted by Ωa, while the configura‐
tion at time tb = ta +Dt is denoted as Ωb. The quadrilat‐
eral middle surfaces of the element at times ta and tb 
are denoted by Ma and Mb, respectively. The four nodes 
of the middle surface Ma, denoted as ma

1, m
a
2, m

a
3, and 

ma
4, are midpoints of the edges (1a, 5a), (2a, 6a), (3a, 7a), 

and (4a, 8a), respectively. The total displacement from 
configuration Ωa to configuration Ωb is denoted as Dd, 
which is composed of two parts: rigid-body displace‐
ment and deformation. The following procedures are 
performed to eliminate rigid-body displacement of the 
element.

At first, the configuration Ωb is translated to 
a fictitious configuration Ω′ to make sure that particle 
1′ coincides with particle 1a. The fictitious reverse 
vector is denoted as Dr.

Subsequently, the configuration Ω′ is rotated to 
fictitious configuration Ω″ to ensure that the middle 

surface M″ is coplanar with the middle surface Ma. 
This out-of-plane rotation is along the axis n′´ na, and 
the rotation angle is

θout = arcsin
|n′´ na|
|n′| × |na|

 (4)

where n′ and na denote the normal vectors of the mid‐
dle surfaces M ′ and Ma, respectively.

Afterwards, the configuration Ω″ is rotated to the 
fictitious configuration Ω‴  to make sure that the in-
plane rigid-body rotation of the middle surface is 
eliminated. This in-plane rotation is along the axis n″ 
(the normal vector of the middle surface M″ ), and the 
rotation angle is

θ in =
1
4∑

i = 1

4

arcsin
|e″ci ´ ea

ci|
|e″ci| × |ea

ci|
 (5)

where ea
ci is the vector pointing from the centroid of 

the middle surface Ma to the node ma
i (i = 1 2 3 4), 

and the vector e″ci is similarly defined.
Finally, the deformation vector Du from configu‐

ration Ωa to configuration Ω‴  is obtained.

2.2.2　Elastoplastic constitutive theory

Once the deformation of a hexahedral element 
has been obtained, the strain increment of the element 
Dε can be calculated by

Dε =BDu (6)

where B reflects the strain–displacement relationship.

Fig. 2  Obtaining deformation for hexahedral elements
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The equations of the stress increment are related 
to the material of the element. For elastic materials, 
the stress increment Dσ can be evaluated as

Dσ =DeDε (7)

where De denotes the elastic stress–strain relation. In 
addition, the J2 plasticity model with isotropic harden‐
ing is utilized in this study. The yield function is

f (σκ) = 2J2 - κ ≤ 0 (8)

where σ is the stress, J2 denotes the second invariant 
of the deviatoric stress tensor, and κ represents the 
plastic internal variable, which can be regarded as a 
linear function of the cumulative plastic strain. The 
detailed formulation of the J2 plasticity model is given 
in Section S1 of the electronic supplementary materi‐
als (ESM). The plastic strain and stress increments in 
each time step are computed using the radial return 
algorithm (Simo and Hughes, 1998; Borja, 2013).

2.2.3　Internal forces

The following equation can be obtained using the 
principle of virtual work:

(δDu)
T
F e

int = ∫
V
(δDε)

T
σdV. (9)

Substituting Eq. (6) into the right side of Eq. (9), 
the elemental internal forces F e

int can be expressed as 
the following integral form:

F e
int = ∫

V
BT σdV. (10)

The reduced integration in combination with hour‐
glass control techniques (Flanagan and Belytschko, 
1981) is adopted to solve Eq. (10), and the correspond‐
ing element is called FPM-H8R. Note that the ele‐
mental internal forces need to be corrected by adding 
anti-hourglass forces:

F̂ e
int =F e

int +F e
HG (11)

where F̂ e
int represents the corrected elemental internal 

forces, and F e
HG denotes the elemental anti-hourglass 

forces.

3 Parallel contact algorithm 

The parallel contact algorithm for 3D structures 
is described in this section. Section 3.1 discusses the 
discretization of contact surfaces, Section 3.2 gives 
the parallel contact search procedures, and Section 
3.3 describes the enforcement of contact constraints.

3.1 Discretization of contact surfaces

In a typical contact surface pair, as shown in Fig. 3, 
one contact surface is selected to be the contactor sur‐
face and the other to be the target surface. The contact 
surfaces are discretized using the NTS method. Note 
that the term “NTS” is referred to as “node-to-face 
(NTF)” in the following to better describe the 3D con‐
tact algorithm in this study. Using the NTF method, 
the contactor surface is discretized into contactor par‐
ticles and contactor faces, while the target surface is 
discretized into target particles and target faces. Note 
that only quadrilateral contact faces are considered in 
this study, and they coincide with the faces of hexahe‐
dral elements.

3.2 Parallel contact search

3.2.1　Decomposition of 3D space

As illustrated in Fig. 4, the potential ranges of 
motion of all contact particles are: xmin≤x≤xmax, ymin≤y≤
ymax, and zmin≤z≤zmax, which can be represented by a 
bounding box. The box is decomposed into a number 
of identical cubic cells. The cell size Lc is proportional 
to the average characteristic length of all contact faces.

Each contact particle icp in the bounding box is 
located in a cell ic:

ic = icx + icy Nx + icz Nx Ny (12)

Fig. 3  Contact particles and quadrilateral contact faces
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where Nx and Ny denote the cell counts in x and y di‐
rections, respectively. The cell index in each direction 
is expressed as

icx = floor ( xcp - xmin

Lc )   icy = floor ( ycp - ymin

Lc ) 
icz = floor ( zcp - zmin

Lc )  (13)

where floor(x) represents the largest integer less than 
x, and (xcp ycp zcp ) denotes the coordinate of parti‐
cle icp.

3.2.2　Connected list data structure

A connected list composed of two arrays is used 
to store contact particles. This data structure facilitates 
parallel contact search procedures and also reduces 
memory requirements in the search procedures. The 
illustration of the connected list is shown in Fig. 5. 
The first contact particle in each cell ic is stored in the 
array pHead, while the rest of the contact particles in 
this cell are linked one by one in the array pNext. A 
negative value, such as −1, is used to indicate the 
termination of the connected list in these two arrays. 
More details about constructing the connected list 
data structure can be found in our previous work (Wang 
W et al., 2021).

3.2.3　Search for the closest target particles

Once the connected list data structure has been 
constructed, the contact search procedure is carried 
out by searching for the closest target particles for the 
contactor particles. In this work, only target particles 
within cell ic and the adjacent 26 cells around cell ic 

will be searched (Zang et al., 2011), which significantly 
reduces the computational cost of the contact search. 
The algorithm for the parallel contact search proce‐
dures is summarized in Algorithm S1 of the ESM.

3.2.4　Projection onto target faces

After the closest target particles have been found, 
each contactor particle is then projected onto the target 
faces. As shown in Fig. 6, the contactor particle Pc 
is projected onto target face Si that is connected to the 
closest target particle Pt, and the projection point is pi. 
An isoparametric transformation between face Si and 
the quadrilateral isoparametric element is built, and 
the natural coordinate (ξ i η i ) of pi is obtained. The 
projection point pi is inside Si only if the following 
condition is met:

-1 ≤ ξ i ≤ 1  - 1 ≤ η i ≤ 1. (14)

The gap vector that points from Pt to Pc is denoted 
by g, and the normal gap is calculated by

gn = g × n i (15)

where ni denotes the normal vector of Si. In a typical 
contactor particle-target face pair as depicted in Fig. 6, 

Fig. 4  Decomposition of the 3D space containing contact 
particles

Fig. 5  Schematic illustration of the connected list

Fig. 6  Projection of contact particles onto target faces
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the particle Pc and the face Si are assumed to be sepa‐
rated if a positive normal gap (gn≥0) is obtained, and 
it is not necessary to compute contact forces in this case. 
By contrast, contact constraints should be enforced 
on contact particles that show a negative normal gap 
(gn<0).

3.3 Enforcement of contact constraints

The enforcement of contact constraints is per‐
formed by directly exerting contact forces on contact 
particles. The contact forces are computed using the 
equations of the penalty method.

3.3.1　Non-penetration constraint

The normal contact forces are applied to contact 
particles to ensure that contactor particles do not pene‐
trate into target faces. Using the penalty method, the 
normal contact force of particle Pc is obtained by

Fn =
ì
í
î

kni|gn| × n i gn < 0

0 gn ≥ 0
(16)

where kn,i is the normal penalty stiffness (Hallquist 
et al., 1985) of the target face Si. The expression of kn,i 
is given in Section S3 of the ESM.

3.3.2　Friction constraint

The tangential contact forces, i.e., friction forces, 
are exerted on contact particles to account for friction 
between contact surfaces. The friction force of a con‐
tactor particle-target face pair is computed based on 
the smoothed friction model (Benson and Hallquist, 
1990). Given the friction force F t -Dt

s  at the previous 
time step (t−∆t), and the normal contact force F t

n, one 
can compute the friction force at the current time step:

F t
s =

ì

í

î

ïïïï

ïïïï

F *
s  ||F *

s || ≤ F t
smax

F t
smax

F *
s

||F *
s ||
 ||F *

s || >F t
smax

(17)

where F t
smax = μ||F t

n||, μ denotes the friction coefficient, 
and F *

s  denotes the trial friction force:

F *
s =F t -Dt

s - k ti(d t
r - d t -Dt

r )  (18)

where k ti represents the tangential penalty stiffness, 
d t -Dt

r  and d t
r  represent the relative displacements of 

this contactor particle–target face pair at the previous 
time step and the current time step, respectively. The 
expression of k ti is given in Section S3 of the ESM.

4 Parallel implementation 

The proposed method is implemented based on 
the software developed in our previous studies (Tang 
et al., 2020; Wang W et al., 2021) using Visual C++ 
and CUDA toolkit. This section focuses on the paral‐
lel implementation of the proposed method.

4.1 Flowchart of parallel FPM solvers

The implementation of the proposed method 
mainly consists of element, contact, and particle solvers. 
The flowchart of the parallel FPM solvers is given in 
Fig. S1 of the ESM. At a certain time step, these three 
solvers are executed sequentially. The computational 
procedures in the solvers are performed in GPU threads, 
and the thread counts are listed in Table S1 of the ESM.

4.2 GPU memory optimization

Among all kinds of GPU memories, i.e., device 
memories, the global memory has the largest memory 
space and can be accessed by all GPU threads during 
their executions. Thus, the global memory is used to 
store all simulation data in FPM solvers.

The aligned and coalesced memory accesses are 
required to maximize the global memory bandwidth 
(Bartezzaghi et al., 2015). To this end, the simulation 
data in FPM solvers is organized using the storage 
pattern of SoA (structure of arrays) (Cheng et al., 2014; 
Lacasta et al., 2014). For example, the device array 
pForce is a typical array used to store resultant forces 
of particles, which can be represented by a Np×3 ma‐
trix, where Np denotes the number of particles. This 
array is organized using the SoA memory layout, as 
shown in Fig. 7. The force component fx is first stored 
in the array for each particle one by one, followed by 

Fig. 7  SoA memory layout
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the components fy and fz. If there is a memory opera‐
tion that needs to access the component fx, then the 
threads t0, t1, t2, … access f0x, f1x, f2x, … simultaneously. 
Because the memory addresses of f0x, f1x, f2x, … are 
adjacent to each other, aligned and coalesced memory 
accesses are achieved.

5 Numerical examples 

This section presents several verification exam‐
ples and efficiency tests. The hexahedral element FPM-
H8R is used in FPM, while the linear brick element 
with reduced integration C3D8R is used in Abaqus/
Explicit. The surface-to-surface contact approach and 
the penalty contact method are used in Abaqus to 
model contact.

5.1 Verification examples

Two verification examples are investigated to 
demonstrate the effectiveness of the proposed method. 
The first example is an elastic contact case, which 
is given in Section S5 of the ESM. The second exam‐
ple is an elastoplastic case, which is presented in the 
following.

The “squeezed plastic tube” example (Seitz et al., 
2015) is studied. As shown in Fig. 8, a cylindrical tube 
structure is squeezed in the middle by two rigid cylin‐
drical dies. The length, inner radius, and outer radius 
of the tube are 400, 40, and 50 mm, respectively, while 
those of the dies are 200, 45, and 50 mm, respectively. 
The tube and the rigid die are discretized into 71680 
and 1280 hexahedral elements, respectively.

The two cylindrical dies are subjected to pre‐
scribed displacements of ∆z=30 mm towards each other 
from t=0 to t=1 s. Young’s modulus and Poisson’s 
ratio of the tube are 2069 MPa and 0.29, respectively. 

The plastic properties are given by the initial yield 
stress of 4.5 MPa and the isotropic linear plastic mod‐
ulus of 1.0 MPa. The friction coefficient between all 
contact surfaces is 0.3. The scaling factors sn and st 
are set to 0.10 and 0.01, respectively. The mass damp‐
ing coefficient is set to 10.0.

The displacement contour and equivalent plastic 
strain contour are presented in Figs. 9a and 9b, respec‐
tively. It can be found that the plastic regions mainly 
appear near the middle position of the tube along the 
axial direction. The time history of total contact forces 
subjected by the upper die is depicted in Fig. 10. The 

Fig. 10  Squeezed plastic tube: total contact forces

Fig. 9  Contour plots of the tube: (a) displacement U; 
(b) equivalent plastic strain PEEQ

Fig. 8  Squeezed plastic tube: geometry
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result obtained by FPM is compared with that obtained 
by Abaqus as well as that in the literature (Seitz et al., 
2015) using the semi-smooth Newton method. The 
above results are in good agreement, indicating the 
feasibility of the proposed method in modeling elasto‐
plastic frictional contact of structures undergoing large 
deformation.

5.2 Efficiency tests

The efficiency tests of the proposed method are 
performed on a computer with double precision. The 
configuration of the computer is given in Section S6 
of the ESM. Two large-scale contact examples are 
tested. A quasi-static elastic contact example is given 
in Section S7 of the ESM, and a dynamic elastoplastic 
contact example is given in the following text. Note 
that the contact face count and the element count have 
the same order of magnitude in the above two exam‐
ples, thus the contact calculation time and the total 
computational time are comparable. These two exam‐
ples are solved in three types of solvers, i.e., the paral‐
lel FPM solvers running on a GPU, the serial FPM 
solvers running on a single-core CPU, and Abaqus/
Explicit solvers running on the same CPU. It should 
be pointed out that the parallel FPM solvers and the 
serial FPM solvers share the same kernel codes. The 
speedup ratio is introduced to quantify the perfor‐
mance of the parallel implementation (Wang W et al., 
2021).

The elastoplastic contact example is adapted from 
the dynamic elastoplastic contact of a multilayer plate 
under impact loading (Sharma et al., 2018). As shown 
in Fig. 11, a cylindrical rod strikes the center of a rect‐
angular multilayer plate. The entire boundary of the 
plate is constrained. The dimension of the plate is 
200 mm×200 mm×5 mm. The radius and height of the 
rod are 10 and 50 mm, respectively. The initial velocity 
of the rod is v0=5×104 mm/s.

The elastic material properties of the plate are 
given by Young’s modulus of 70 GPa and Poisson’s 
ratio of 0.3, while the plastic properties are given by 
the initial yield stress of 285 MPa and the isotropic 
linear plastic modulus of 900 MPa. Young’s modulus 
and Poisson’s ratio of the rod are 210 GPa and 0.3, re‐
spectively. The densities of the plate and the rod are 
2700 and 7850 kg/m3, respectively. The scaling factor 
sn is set to 1.0. The friction between contact surfaces 
is ignored. Only a quarter of the model is analyzed 
due to symmetry.

A three-layer plate is first studied to demonstrate 
the results. Each layer of the quarter plate is discretized 
into 2500 hexahedral elements, and the quarter rod is 
discretized into 240 hexahedral elements. An elastic 
case and an elastoplastic case are studied, in which 
the material of the plate is assumed to be elastic and 
elastoplastic, respectively. The time history of the ver‐
tical displacement of the center node on the bottom 
surface of the cylinder is shown in Fig. 12, where the 
results obtained by FPM and Abaqus are in good agree‐
ment. The maximum deformation of the plate in the 
elastoplastic case is, as expected, greater than that in 
the elastic case. The deformed configurations of the 
plate with displacement contours at three instants in 
the elastoplastic case are presented in Fig. 13. The dis‐
placement field is continuous at all contact surfaces of 
the multilayer plate, indicating the effectiveness of the 
contact algorithm.

Multilayer plates with five groups of layer counts 
are studied to test the efficiency of the parallel FPM solv‐
ers in elastoplastic contacts. Each layer has a thickness 

Fig. 11  Multilayer plate under impact loading: geometry

Fig. 12  Vertical displacement uz of the cylinder
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of 0.25 mm and is discretized into 62500 (250×250×1) 
hexahedral elements. All cases are solved with a time 
period of 0.02 ms and a constant time increment of 
2×10−5 ms. The material of the plate is assumed to be 
elastoplastic.

The computational times of contact calculation 
and overall computation are given in Table S4 of the 
ESM. Specifically, the CPU time consumed by Abaqus 
contact solver is approximated by Eq. (S5) of the ESM.

The speedups of this example are shown in Fig. 14. 
In respect of the contact calculation, the parallel FPM 
is approximately 148 times faster than the serial FPM, 
while 313 times faster than Abaqus. In respect of the 
overall computation, the above maximum speedups are 
132 and 75, respectively.

Fig. 14 also indicates that the GPU is running 
at full load when the number of elements reaches ap‐
proximately 0.8–1.2 million, and the improvement of 
computational efficiency gradually stabilizes. Similar 
observations can be found in the literature (Dong et al., 
2015). One can achieve higher speedups by using GPUs 
with larger device memory and more CUDA cores.

The proportions of contact calculation in the 
overall computational time are approximately 75%, 
20%, and 18% in Abaqus, serial FPM, and parallel 
FPM, respectively, as shown in Fig. 15. Therefore, the 

Fig. 13  Contour plots of displacement: (a) t=0.15 ms; (b) t=
0.25 ms; (c) t=0.35 ms

Fig. 15  Multilayer plate under impact loading: proportion 
of contact calculation time

Fig. 14  Multilayer plate under impact loading: (a) speedup 
of contact calculation; (b) speedup of overall computation
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parallel FPM solvers are proved to be efficient in elas‐
toplastic contacts.

6 Conclusions 

A GPU-accelerated FPM is proposed for model‐
ing the 3D elastoplastic contact of structures. A hexa‐
hedral element with reduced integration and anti-
hourglass is developed to model structural elastoplastic 
behaviors. In addition, a 3D contact algorithm is pro‐
posed. The whole computational procedures of the FPM 
are implemented to be executed on a GPU. Four illus‐
trative examples are investigated to show the effec‐
tiveness and efficiency of the proposed method. Sev‐
eral observations can be drawn:

1. Two verification examples that involve elastic 
and elastoplastic frictional contacts are investigated. The 
results obtained by FPM are consistent with the refer‐
ence results. Thus, the proposed method is effective.

2. The efficiency of the GPU-accelerated FPM is 
investigated by testing two large-scale contact examples 
and it is shown that the proposed method is efficient 
in both elastic and elastoplastic large-scale contacts.

3. The GPU-accelerated FPM is approximately 130–
140 times faster than the serial one, and 70–80 times 
faster than Abaqus. Specifically, the GPU-accelerated 
FPM contact solver is approximately 110–140 times 
faster than the serial FPM contact solver, and 310–
340 times faster than the Abaqus contact solver.

4. The time proportions of the contact calculation 
in the overall computation are approximately 18%–
19% in the GPU-accelerated FPM, and 75%–80% in 
Abaqus, indicating that the proposed method dramati‐
cally decreases the time consumed in contact calcula‐
tion processes.

In summary, the proposed method is shown to be 
efficient, while maintaining computational accuracy, and 
is promising for modeling large-scale contact in struc‐
tures. In future work, parallel acceleration using mul‐
tiple GPUs simultaneously could be studied to further 
improve the computational efficiency.
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