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Abstract: High-speed railways are very important in global transportation. However, the railway subgrade is significantly 
affected by the environment due to its exposure to the atmosphere. At present, global warming is the primary trend in world 
climate change and seriously damages railway infrastructure. Owing to the coupling effect of extreme environmental and train 
loads, various subgrade problems tend to arise, such as settlement, ballast fouling, and mud pumping, thus inducing frequent 
railway accidents and reducing travel safety. Insights into the problems triggered by extreme climate and train loads are critical 
to the design and long-term operation of high-speed railway subgrades. This study therefore presents a detailed survey of recent 
advances in typical subgrade problems through analyzing the problem formation mechanisms and influences. Traditional and 
emerging detection/monitoring technologies in respect of subgrade problems are discussed in detail, as well as pre-accident and 
post-accident maintenance methods. Finally, according to the existing challenges in long-term subgrade shakedown assessment, 
an outlook on open opportunities is provided for future research.
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1 Introduction 

In recent years, as a form of fast and environ‐
mentally friendly mass transportation, high-speed rail‐
ways have rapidly developed globally to meet the 
growing requirements for transport of freight and 
people. The total mileages of high-speed railways in 
China, Spain, Germany, etc., increased significantly 
from 2009 to 2021, with the maximum speed of tradi‐
tional wheeled vehicles in daily operation varying from 
300 to 350 km/h (Fig. 1). The operation of maglev 
trains is not considered here. It is noteworthy that trains 
can reach higher speeds in tests, e.g., the China high-
speed train CRH380A exceeded 400 km/h in experi‐
ments (Zhai et al., 2015). However, such high speeds 
in long-term operation would decrease subgrade per‐
formance, thereby increasing railway accidents.

Climate change inevitably influences subgrade 
performance as the subgrade is exposed to the atmo‐
sphere. According to (WMO, 2019), global warming 
increases precipitation and extreme climate events. 
The delay times of train operation attributed to severe 
weather have grown by an average of 7200 min/a 
during 2014–2019 in the UK, with most being relat‐
ed to variations of precipitation and temperature 
(DeVinne et al., 2022). The trend of extreme precip‐
itation in China is a generally increasing one and 
the peak frequency of railway accidents corresponds 
to the years with frequent precipitation (Figs. 2a 
and 2b). Specifically, the peak frequencies in 1981 
and 2013 are attributed to flood and typhoon, re‐
spectively. Overall, subgrade problems, geological 
disasters, and infrastructural damage are critical 
factors that induce railway accidents (Hong et al., 
2015; Lu and Cai, 2019). Here, subgrade problems 
refer to subgrade damage caused by excessive settle‐
ment, mud pumping, etc.; geological disasters are 
railway lines disrupted by landslide, flood, etc.; in‐
frastructural damage refers to overhead lines de‐
stroyed by strong winds, lightning, etc. (DeVinne 
et al., 2022).
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Subgrade problems such as earthwork failure and 
ballast fouling caused by the increase of extreme cli‐
mate events directly induce railway accidents (DeVinne 
et al., 2022). Fig. 3 shows the proportion of subgrade 
problems in China, including settlement, poor drain‐
age, and slope failure. Here, settlement and poor drain‐
age are the most prominent, accounting for 42.15% 
and 38.79%, respectively, which significantly affect 
subgrade performance. Considerable efforts have been 
made in the investigation of subgrade problems, rang‐
ing from their formation mechanisms to their evolution 
trends and influencing factors, through theoretical 

modeling, numerical analysis, and field tests, so as to 
provide guidelines for the construction, monitoring, 
and maintenance of high-speed railways. In this paper, 
we present a detailed review of recent advances in 
these subgrade problems. We begin with the causes 
and characteristics of subgrade problems in Section 2, 
followed by brief descriptions of detection, monitor‐
ing, and maintenance in Sections 3 and 4. Finally, we 
summarize the current challenges and recommend op‐
portunities for future research.

2 Subgrade problems under extreme climate 
and train loads 

High-speed railways are mainly classified into 
two categories: those with ballasted tracks and those 
with ballastless tracks. Ballasted tracks, comprising 
rail, sleepers, ballast, sub-ballast, and subgrade, exhibit 
great advantages, such as easy maintenance, low cost, 
and convenient laying. Ballastless tracks have the ad‐
vantages of high smoothness and comprise rails, slab, 
cement asphalt mortar layer, concrete base, roadbed, 
and subgrade. Fig. 4 shows the subgrade problems in 
the ballasted and ballastless tracks induced by extreme 
climate and train loads. Based on the research of Li 
and Selig (1995), various typical subgrade problems 
are further summarized (Table 1).

2.1 Strong vibration and shock by high-speed train

When the train speed reaches a certain level (i.e., 
the critical speed), the track system resonates with the 
substructure. Under such circumstances, the subgrade 
dynamic response is strongly amplified. This phenom‐
enon was originally observed in Ledsgard, where the 
maximum deflection of the track reached 15 mm at a 

Fig. 3  Railway subgrade problems in China modified 
from Guo et al. (2019)

Fig. 1  Total mileages and the maximum speeds of high-
speed railways

Fig. 2  Effect of extreme climate in China: (a) frequency of 
extreme daily precipitation from 1961 to 2019 from China 
Meteorological Administration; (b) frequency of railway 
accident events, reprinted from Cui and Guo (2018), 
Copyright 2018, with permission from Meteorological and 
Environmental Sciences
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train speed of 200 km/h (Holm et al., 2002). There‐
fore, this critical speed is the factor restricting train 
speed. Remarkable progress has been made in the the‐
ory of critical speed by frequency–wavenumber spec‐
trum approaches (Madshus and Kaynia, 2000; Take‐
miya, 2003; Bian et al., 2008), dispersion curve strate‐
gies (Cao, 2006; Bian et al., 2016a), or dynamic 

amplified factor methods (Hu et al., 2016; Sayeed and 
Shahin, 2016; Hu and Bian, 2022). By the frequency–
wavenumber spectrum approaches, Takemiya (2003) 
proposed that the amplified track response attributes 
to the interaction of track vibration and Rayleigh wave 
propagation when the train reaches the critical speed. 
Based on dispersion curve strategies, Costa et al. 

Table 1  Types, causes, and characteristics of typical subgrade problems

Failure or deformation type

Ballast pocket

Ballast fouling

Progressive shear failure

Mud pumping in ballasted 
track

Mud pumping in slab track

Slope failure

Swelling/shrinkage

Frost action

Feature

Uneven subgrade settlement; 
ballast pocket formation

Reducing tie support; poor 
ballast drainage; fouled ballast

Squeezing near subgrade 
surface; heaves in the crib 
and/or shoulder

Muddy ballast; inadequate 
sub-ballast; poor ballast 
drainage; squeezing out 
fine particles

Squeezing out of fine particles; 
occur in the expansion joints

Soil washed away

Rough track surface

Occur in the winter/spring 
period; rough track surface

Possible reason

Repeated cyclic loads; soft or loose soils

Presence of water (Ishikawa et al., 2016); fine-grained 
subgrade soil (Indraratna et al., 2013a); coal dust 
(Indraratna et al., 2014)

Repeated overstressing of subgrade; fine-grained 
subgrade soils; high water content

Repeated loading (Abeywickrama et al., 2019); 
fine-grained sub-ballast soil (Indraratna et al., 2020); 
interlayer (Duong et al., 2014); saturated subgrade

Fine-grained roadbed soil (Huang et al., 2019a); repeated 
loading (Wang et al., 2020); saturated subgrade

High water content; high pore pressure

Expansive soils; changing moisture content; soluble 
salty soils

Periodic freezing; presence of water; frost susceptible 
soils

Fig. 4  Subgrade problems caused by extreme climate and train loads (Li and Selig, 1995; Bian et al., 2018)
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(2020) developed an experimental–analytical approach 
to assess critical speed. Firstly, they obtained the 
ground dispersion curve by the geophysical spectral 
analysis of surface waves (SASW) setup and then cal‐
culated the track dispersion curve by the analytical 
method. Then, the critical speed was obtained as the 
intersection of two curves. In this approach, the soil 
property uncertainties could be fully considered. Com‐
pared with the above approaches, dynamic amplified 
factor methods are time-consuming but straightfor‐
ward, because multiple models are developed to de‐
rive the maximum vertical displacement of subgrade as 
a function of the train speed, with the critical speed 
corresponding to the largest displacement. Sheng et al. 
(2004a) exploited the dynamic amplified factor meth‐
ods and concluded that a decrease in track mass could 
enhance the critical speed for the ballasted track.

The critical speed is related to the conditions of 
track, subgrade, and foundation (Connolly and Costa, 
2020). The critical speed of the track–substructure 
system is close to the Rayleigh wave velocity of ho‐
mogeneous subsoil (Zhou and Jiang, 2006). Addition‐
ally, increasing the track bending stiffness or adding 
a subgrade enhances the critical speed (Sheng et al., 
2004b; Hu et al., 2019), and the stiffness ratio of the 
adjacent subsoil layers also affects it (Costa et al., 
2015). Moreover, Bian et al. (2019b) and Gao et al. 
(2012) used a 2.5-dimensional (2.5D) finite element 
approach to investigate the critical speed in a saturated 
foundation. Numerical results showed that the excess 
pore pressure and dynamic responses were amplified 
when the train speed approached the Rayleigh wave 
velocity of the saturated subsoil.

Briefly, critical speed is a critical factor in sub‐
grade dynamic response. As shown in Fig. 5, at a low 
train speed, the subgrade dynamic response is quasi-
static. The vertical deformation is induced near the 
axle position (Fig. 5a). With increasing train speed, 
the dynamic response first increases to the maximum 
(Fig. 5b) and then decreases after the train exceeds 
the critical speed (Fig. 5c) (Bian et al., 2014). In the 
meantime, the surrounding ground also deforms verti‐
cally, indicating that the wave propagates to far field. 
A shockwave also can be observed in Figs. 5b and 5c 
which is known as the Mach cone. Consequently, aca‐
demic opinions are that the train speed should be lim‐
ited to 70% of the critical speed, as it is a critical 
point for an intense increase in dynamic response 

(Woldringh and New, 1999; Mezher et al., 2016; Say‐
eed and Shahin, 2016). In daily operation, the maxi‐
mum allowable speed is affected by various factors 
such as track geometry, train design, and subgrade sta‐
bility (Zicha, 1989). In terms of track geometry, the di‐
rectional curvature of the railway limits the train speed 
to ensure sufficient centripetal force (Hodas, 2014). 
Also, the geometric deterioration of turnouts decreases 
train average speed (Sadeghi et al., 2016). Further‐
more, the aerodynamic drag increases dramatically 
with increasing train speed, so the maximum allow‐
able speed is also limited by aerodynamic design 
(Ding et al., 2016). Additionally, the subgrade dynamic 
response is amplified when the train reaches the criti‐
cal speed, increasing the risk of derailment.

2.2 Subgrade settlement

Settlement is a serious subgrade problem that re‐
duces subgrade stability and driving safety. Both theo‐
retical and experimental studies have shown that the 
settlement of ballasted tracks is mostly attributable to 
the ballast layer, with ballast breakage and movement 

Fig. 5  Vertical displacement response of ground at different 
train speeds: (a) below the critical speed; (b) close to the 
critical speed; (c) exceeding the critical speed. Adapted from 
(Bian et al., 2016a), Copyright 2014, with permission from 
Springer Nature
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(Abadi et al., 2018), accounting for about 50%–70% of 
the total settlement (Selig and Maters, 1994; Mishra 
et al., 2014, 2017; Li et al., 2018). Furthermore, the 
settlement of ballastless tracks mainly involve the 
accumulated settlement of subgrades and foundations 
(Liu et al., 2022). Under heavy rain and train loads, 
pore pressure accumulates, and the effective stress in 
the soil decreases, thereby inducing settlement (Chen 
XX et al., 2021). Moisture content affects settlement 
through variation in resilient modulus (Khan et al., 
2011). As the moisture content decreases, the resilient 
modulus increases because high matric suction reduces 
lubrication between the soil particles and limits parti‐
cle movement (Chen et al., 2020), thereby decreasing 
settlement (Liu XL et al., 2019; Blackmore et al., 
2020). Jiang et al. (2015, 2016) and Bian et al. (2016b) 
established a full-scale physical model to study the 
impact of water levels on subgrade settlement. When 
the water table is at the subsoil surface, excess pore 
pressure increases gradually and settlement quickly 
accumulates due to incomplete drainage. When the 
water table rises to the subgrade surface, the accumu‐
lative settlement evolves dramatically. After 700000 
cyclic loadings at a train speed of 360 km/h, the accu‐
mulative settlement approaches 76 mm and exceeds 
the control limit of 15 mm in the criterion. After the 
water table recedes to the subsoil surface, the accumu‐
lative settlement still rises as the load cycles increase.

2.3 Ballast fouling

As the ballast is pushed into the subgrade due to 
uneven dynamic stress, the underlying subgrade forms 
a pocket-like structure in which ballast and water are 
held. The broken ballast is pressed down, and the un‐
derlying soil becomes soft under repeated train loads. 
Meanwhile, plastic deformation in the subgrade accu‐
mulates. Thus, the cavity deepens and forms a large 
water-filled pocket (i.e., the ballast pocket). Further‐
more, the ballast becomes fouled owing to the sub‐
grade particles and outside fines. Additionally, the 
overstressed soft subgrade soil is progressively squee‑
zed sideways and upward under train loads, inducing 
progressive shear failure (i.e., cess heave).

Most ballast degradation is attributed to abrasion 
rather than bulk fracture, and usually arises beneath 
the sleeper (McDowell et al., 2005). Moreover, the in‐
crease of train speed and axle load intensifies ballast 
abrasion and breakage, especially the ballast in platy, 

bladed, and elongated shapes, rendering the particles 
smooth in surface and round in shape (Bian et al., 
2021a; Xu et al., 2021; Gu et al., 2022). To investi‐
gate the micro-mechanical behavior of ballast, some 
researchers developed discrete element method (DEM) 
models considering realistic particle shape and inertia, 
as well as the friction and abrasion between ballast ag‐
gregates; the predicted ballast settlement agrees well 
with the field test results (Lu and McDowell, 2006; 
Ferellec and McDowell, 2010; de Bono et al., 2020; 
Suhr et al., 2020).

Broken ballast or external fines mixing with 
water results in ballast fouling. Kashani et al. (2018) 
carried out triaxial tests and found that ballast degra‐
dation is mainly caused by water content. As the water 
infiltrates continuously, the resulting filler in the pocket 
reduces the interlocking and frictional resistance be‐
tween the ballast particles, thereby decreasing the sub‐
grade shear strength (Danesh et al., 2018). Addition‐
ally, an approximately 3% increase in water content 
can triple the track’s elastic deformation in moderately 
or highly fouled ballast (Kashani et al., 2017), and 
reduce shear strength by approximately 50% in dry 
fouled ballast (Qian et al., 2016). Moreover, the 
fouled materials also reduce the shear strength of bal‐
last particles. Huang et al. (2009) found that coal dust 
decreases the shear strength most among various foul‐
ing agents such as plastic clayey soil and mineral 
filler. Furthermore, Budiono et al. (2004) stated that 
the resiliency of coal-fouled ballast reduces as the 
fouling level increases. Through triaxial tests, Touqan 
et al. (2020) found that the axial strain rate in fouled 
ballast increases with increasing loading frequency. 
Combined with laboratory experiments, DEM can be 
used to investigate the mechanical properties of the 
ballast layer. Xu et al. (2015) and Chen J et al. (2021) 
showed that small-size fouling materials have more 
detrimental effect on the shear strength of ballast ag‐
gregates. Besides, fouled ballast reduces the track’s 
lateral resistance by more than 50%, and increases the 
risk of track bulking (Xu et al., 2016; Ngamkhanong 
et al., 2021). To increase the stability of the ballast 
layer, geogrid is utilized to constrain particle move‐
ment and to provide interlocking between ballast 
aggregates, thereby increasing the shear strength of 
fouled ballast. However, that enhancement declines 
with increasing fouling levels (Indraratna et al., 2011, 
2013b).
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2.4 Mud pumping

Fines, excess water infiltration, and repeated train 
loads significantly influence mud pumping formation 
(Duong et al., 2016; Bian et al., 2022; Wan et al., 
2022). Based on the statistical analysis of on-site soil 
samples, mud pumping incidents usually occur in fine 
soil with a low-to-moderate plastic index (Bian et al., 
2022).

For the ballasted track, the fine particles from 
the ballast breakage, subgrade, and the external envi‐
ronment (i.e., the coal dropped from freight trains or 
the dust transported by wind) form slurry by water in‐
filtration in the ballast layer and then are pumped up 
to the track surface due to the train loads. Based on 
physical model tests, Duong et al. (2014) stated that 
the dissipation of excess pore pressure enables fine 
particles to migrate upward only in saturated situa‐
tions. Additionally, the suction-driven model proposed 
by Takatoshi (1997) is acknowledged in this area. In 
this model, the suction from the sleeper bottom drives 
the migration of fine particles under repeated train 
loads.

However, for the ballastless track, mud pumping 
usually occurs in the expansion gaps between adjacent 
concrete bases and extends to both ends of the gaps. 
Through X-ray diffraction tests, Bian et al. (2022) 
revealed that fine particles mostly came from the road‐
bed instead of the underlying subgrade. Moreover, 
field tests indicated that the strong vibration at the end 
of the concrete base induced a whipping effect, there‐
by prompting detachments between the concrete base 
and the roadbed (Wan et al., 2022). Furthermore, 
under heavy rain and train loads, the slurry from the 
mixture of rain and fines is pumped out to the track 
surface by a nonuniform hydraulic gradient and then 
reduces the contact pressure between concrete base and 
roadbed. Thus, the subgrade bearing capability de‐
creases and the settlement increases (Huang et al., 
2019a; Bian et al., 2022).

2.5 Subgrade problems in special geological areas

In saline soil areas, track deteriorations and sub‐
grade sinkage are likely to occur because of salt ex‐
pansion and collapsibility (Tan et al., 2011). In karst 
areas, the subgrade tends to be washed and submerged 
by abundant groundwater, leading to water bursts, 
slope collapses, subgrade subsidence, etc. (Jiang, 
2001). In expansive soil areas, the reciprocating 

swelling–shrinkage behavior of the expansive soil in‐
duces nonuniform settlement. As the ballastless track 
is sensitive to substructure deformation (Duan et al., 
2020; Wang et al., 2021b), it should be constructed 
beyond a reasonable subgrade height (Jiang et al., 
2018). In frozen soil areas, temperature, water, and soil 
properties are critical to freeze–thaw behaviors (Niu 
et al., 2017). In winter, the water becomes ice and the 
volume expands, and thus the subgrade is prone to 
frost-heave; conversely, in summer, the water from 
melting ice migrates upwards, and thaw settlement in 
the subgrade surface arises (Li et al., 2018). Some re‐
search has focused on the relationship between water 
content, frost-heave, and settlement. Niu et al. (2020) 
found, by field measurement, that most frost-heave 
happened in the gravel layer (0–0.5 m). Even though 
this layer is composed of “non-frost susceptible” ma‐
terials and well graded, the frost-heave in this layer, 
accounts for 66% of the total deformation. A feasible 
explanation is that the water comes into the gravel 
layer downwards through the track cracks and then ac‐
cumulates in the top layer. Furthermore, Sheng et al. 
(2014) proposed a pump-enhanced frost-heave theory 
to investigate the interaction between train loads and 
frost-heave. In their model, the excess pore pressure 
is assumed to increase under cyclic train loads, and 
hence “pumps” up the water table to the frost front and 
turns water into an ice lens in the subgrade. Thus, the 
maximum frost-heave arises in the railway centerline. 
Moreover, Teng et al. (2022) took a series of laboratory 
experiments of frost-heave and developed a frost-
heave model considering vapor flow. They pointed out 
that vapor flow is a critical factor for frost-heave in 
coarse-grained soils.

3 Subgrade detection and monitoring 
technologies

Settlement monitoring is an important part of 
long-term subgrade monitoring. Traditional monitor‐
ing technologies of subgrade settlement (i.e., the set‐
tlement plate, observation pile, and settlement meter) 
are interfered by the environment, but they are still fre‐
quently used because of their convenient operation and 
low cost (Wang, 2008; Hua, 2014). Besides, the detec‐
tion of subgrade problems is necessary along with 
long-term monitoring. Detection is usually conducted 
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during the skylight period; thus, the time for operation 
is short. Moreover, a large-span, high-speed railway is 
exposed to the atmosphere, and its geological condi‐
tions vary along the lines. Consequently, the equipment 
for detection and monitoring must be durable and 
strong. In traditional methods, sensors are usually em‐
bedded in a problematic location to measure the me‐
chanical properties of the soil and analyze the cause 
of subgrade problems. However, these methods dam‐
age the subgrade and have poor efficiency. Therefore, 
emerging monitoring and detection techniques can 
compensate for the shortcomings of traditional tech‐
nologies (Table 2).

Ground penetrating radar (GPR) relies on the 
reflection signal generated in the interface of media 
with different electromagnetic properties, by launch‐
ing a signal into the soil. It is utilized for initially de‐
tecting soil distribution (Hugenschmidt, 2000); the 
subgrade settlement profile can then be obtained by 
analyzing the change in the soil interface (Gallagher 
et al., 1999; Jack and Jackson, 1999; Sussmann et al., 
2003; Xie et al., 2010; Popov et al., 2022). Addition‐
ally, GPR can also locate the aquifer approximately 
(Liu et al., 2020). Therefore, GPR is widely used in 
the detection of subgrade problems, such as ballast 
fouling (Roberts et al., 2007; Al-Qadi et al., 2010; de 
Bold et al., 2015, 2021; Anbazhagan et al., 2016), 

mud pumping (Yang, 2002; Yang and Gao, 2004), 
and frozen subgrade (Guo et al., 2015).

Compared with traditional deformation measur‐
ing instruments, such as the displacement meter, dial 
indicator, and extensometer (Dunnicliff, 1993), fiber 
sensors are durable and capable of continuous large-
scale measuring. They launch light into the soil and 
then receive its reflection. As the wavelength and 
phase of the reflected light change with temperature 
and strain, the physical parameters of the soil can be 
obtained using a fiber-grating demodulator. Moreover, 
the fiber sensor can be combined with a clinometer 
and settlement plate to monitor the subgrade settle‐
ment (Hao and Zhu, 2010; Xing, 2018). Additionally, 
Xu et al. (2017) and He et al. (2020) developed a dis‐
tributed optical fiber strain-vibration joint system to 
measure sinkhole collapse. Furthermore, Huang et al. 
(2012) fabricated a piezometer system by integrating 
a pressure sensor with an optical fiber Bragg grating 
(FBG) to monitor the long-term pore pressure of the 
subgrade slope. The lateral displacement of ballast 
and the tensile force distribution of the geogrid can al‐
so be measured by integrating fiber sensors with the 
geogrid (Hussaini et al., 2015).

InSAR can obtain surficial deformation accord‐
ing to the phase difference of the echo received by a 
satellite or aircraft. This technology can monitor large 

Table 2  Subgrade detection and monitoring technologies

Technology

GPR

Fiber 
displacement 
sensors

Synthetic 
aperture 
radar 
interferometry
 (InSAR)

Time domain 
reflectometry 
(TDR)

Accuracy

2 cm

1 pm

2 mm

3%

Target

Ballast pocket; 
mud pumping; 
ballast fouling; 
frozen action

Settlement; 
slope stability

Surficial 
deformation

Water content

Advantage

Low cost; high 
efficiency; 
nondestructive; 
consecutive

Lightweight; 
small size; high 
sensitivity; high 
automation; 
large bandwidth

High automation; 
high space 
resolution; 
large-scale 
monitoring

Easy operation; 
fast; 
nondestructive

Disadvantage

Complex data process

Expensive; 
complex operation

Complex data process

Not applicable for 
high-plastic soil and 
high-conductive soil

Reference

Jack and Jackson, 1999; 
Hugenschmidt, 2000; Yang, 
2002; Yang and Gao, 2004; 
Roberts et al., 2007; Al-Qadi 
et al., 2010; Xie et al., 2010; 
de Bold et al., 2015, 2021; Guo 
et al., 2015; Anbazhagan et al., 
2016

Hao and Zhu, 2010; Chai et al., 
2015; Xu et al., 2017; Xing, 
2018; He et al., 2020

Tarchi et al., 2003; Wang C et al., 
2017; Zhou et al., 2017; Wang 
J et al., 2021a
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areas and the deformation of complex terrains such as 
deserts, mountains, and glaciers, at millimeter-level 
accuracy and has great advantages on long-span high-
speed railway monitoring (El Kamali et al., 2020). At 
present, InSAR is used to monitor surficial deforma‐
tion along railway lines (Zhou et al., 2017). In addi‐
tion, seasonal settlements due to the sunny–shady 
slope effect and frozen soil distribution are being 
monitored along the Qinghai–Tibet railway (Wang C 
et al., 2017; Wang J et al., 2021a).

As mentioned above, water is closely related to 
subgrade problems, so the measurement of water con‐
tent is important. TDR obtains the water content 
based on variations in permittivity and it fulfills the 
accuracy requirement of common subgrade fillers. 
However, a large discrepancy arises in the test for 
highly plastic soil. Peng (2011) solved the deviation 
of TDR in the red clay subgrade by laboratory calibra‐
tion tests and field applications. In addition, Yu et al. 
(2012) introduced a new TDR sensor to monitor the 
freezing–thawing status of subgrade and determined 
the freezing–thawing degree by developing an empiri‐
cal analysis algorithm.

4 Subgrade maintenance 

Based on China’s high-speed railway design code 
(TB10621–2014) (NRA, 2015), while the rate of 

wheel load reduction is limited to below 60% to 
ensure driving safety, vehicle vibration acceleration is 
limited to below 1.3 m/s2 to ensure passenger comfort. 
Additionally, settlement is a comprehensive indicator 
of subgrade performance, and the post-construction 
settlement is specified in the design code. Moreover, 
water infiltrates the subgrade by surface running and 
water level rising, thereby affecting subgrade perfor‐
mance. Therefore, the high-speed railway substruc‐
ture requires external and internal drainage. The drain‐
age requirements in the criteria are shown in Table 3. 
The key to ballasted track drainage is to remove con‐
tained water in the ballast layer, whereas for the bal‐
lastless track, it is to discharge surface runoff. Consid‐
ering the factors above, maintenances such as founda‐
tion treatment, drainage optimization, and material im‐
provement have been proposed in engineering and re‐
search to ensure subgrade performance.

4.1 Foundation treatment

Geological conditions should first be investigat‐
ed in the design stage of the high-speed railway, and 
the foundations can then be treated to reduce the sub‐
grade settlement from repeated train loads. Common 
technologies of foundation treatment are shown in 
Table 4. Notably, building a pile-supported embank‐
ment to reinforce the foundation is widely used in 
high-speed railway construction.

Table 3  Drainage requirement of ballasted and ballastless tracks

Track

Ballasted

Ballastless

Design working life of 
drainage facilities

60 a

60 a

Design rainfall 
recurrence period

50 a

50 a

Drainage characteristic

The contained water in the ballast 
layer needs to be removed

The concrete structure cannot 
provide drainage channels

Surface 
waterproof layer

No need

In demand

Drainage slope

Inclination not 
less than 4%

Inclination not 
less than 4%

Table 4  Technologies of foundation treatment (Raju and Daramalinggam, 2012)

Principle

Consolidation

Chemical 
modification

Densification

Reinforcement

Technology

Vacuum 
consolidation

Jet grouting

Vibro compaction

Vibro stone 
column

Soil type

Gravel

–

–

√
–

Sand

–

√
√
√

Silt

√
√
–

√

Clay

√
√
–

√

Advantage

Fast; convenient; 
environmentally friendly

Fast; cost-effective; noiseless

Fast; cost-effective; deep 
reinforcement

Cost-effective; relieve 
liquefaction; 
environmentally friendly

Disadvantage

Cracks arise on the surface (Chai 
et al., 2006)

Complex process

Only applicable to foundations 
with the flat workbench

Extensive analysis according to 
design guidelines
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4.2 Drainage optimization

Fabricating new drainage materials and optimiz‐
ing drainage design can reduce the water retained in 
the subgrade. The subgrade is prone to mud compris‐
ing fine particles with high water content, so the drain‐
age system requires good drainability, corrosion resis‐
tance, and non-clogging. Based on the above consid‐
erations, Tasalloti et al. (2020) developed a geocellu‐
lar system installed between sleepers to remove water 
and fine particles in the ballast layer. Guo et al. (2018) 
developed a new polyvinyl chloride (PVC) pipe by 
exploiting a capillary permeable belt. For the ballast‐
less track, a polyurethane-improved waterproof layer 
can be used on roadbed surfaces to reduce water infil‐
tration (Huang et al., 2019b). Additionally, drainage 
facilities should bear frost-heave stress in frozen soil 
areas. Thus, Tian et al. (2019) embedded a coarse-
grained transition layer and impermeable geotextile 
into drainage facilities to ensure thermal insulation and 
impermeability. Moreover, the drainage layout should 
be adjusted to local conditions. Liu MS et al. (2019) 
proposed a drainage design method called the perme‐
able subgrade shoulder, providing guidelines for mud 
pumping prevention of the ballastless track.

4.3 New improved and repaired materials

Subgrade problems of the ballasted track increase 
mostly owing to ballast breakage and water infiltration. 
These problems can be solved by replacing with clean 
ballast. However, this method is inefficient. There‐
fore, new materials have been developed to improve 

ballast integrity (Sol-Sánchez and d’Angelo, 2017; 
Gundavaram and Hussaini, 2019; Jing et al., 2019). 
In addition, rubber cushions can be embedded in the 
ballast layer to increase the elasticity of ballasted tracks 
(Navaratnarajah and Indraratna, 2017; Kumar et al., 
2019; Ngo et al., 2019). Table 5 shows the improved 
materials and their effects. As the aim of ballastless 
track repairment is subgrade, Bian et al. (2014, 2021b), 
Liu et al. (2015), and Wan et al. (2020) proposed poly‐
urethane chemical injection and chemical glue injec‐
tion, respectively, to repair subgrade settlement and 
mud pumping.

5 Conclusions and future work 

The service life of a railway is 100 a, including 
safe operations, performance degradation, and unsafe 
service periods. In the early stage of a newly-built 
railway, the subgrade becomes stabilized under self-
weight and train loads, indicating that the subgrade is 
in a shakedown and the railway is in a safe operation 
period. However, the subgrade is exposed to the atmo‐
sphere and subjected to both train and environmental 
loads, such as rainfall infiltration, and seasonal dry –
wet and freezing–thawing cycles. Thereafter, the rail‐
way performance decays because the subgrade shake‐
down decreases. At present, high-speed railways in 
China have been operating for more than 10 a and 
have gradually entered the decayed performance 
period. As a result, studying the change in subgrade 

Table 5  Improved materials of ballasted track

Material

XiTRACK

Elastotrack

Polyurethane stabilized ballast (PSB)

Bitumen stabilized ballast (BSB)

Resiliently bound ballast (RBB)

Neoballast

Ballastic

Asphalt trackbed
Rubber under-ballast mats (UBM)

Geosynthetics

Effect

Ballast 
breakage
–

Reduce

Little effect

Reduce

Reduce

Reduce

–

–
Reduce

Reduce

Settlement

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce

Reduce
Reduce

Reduce

Stiffness

Increase

–

Reduce slightly

–

–

Reduce

Reduce slightly

Increase
Reduce

Increase

Drainage

Little effect

Little effect

Reduce

Little effect

–

–

–

–
–

Increase

Reference

Woodward et al., 2012, 2014; 
Kennedy et al., 2013

Dersch et al., 2010

Kennedy et al., 2013

d’Angelo et al., 2018

Ho et al., 2013

Fontserè et al., 2016; Sol-Sánchez 
et al., 2018

Sol-Sánchez et al., 2015

Fang et al., 2020; Gao et al., 2022
Navaratnarajah and Indraratna, 

2017; Ngo et al., 2019
Chawla and Shahu, 2016; Bian 

et al., 2019a
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performance under train and environmental loads is 
necessary.

However, the development of subgrade shake‐
down takes a few decades and is difficult to observe 
by field tests and reproduce by physical modeling. 
Therefore, mechanisms and laws cannot be obtained. 
With advances in China’s Western Development Policy 
and the Belt and Road Initiative, the mileage of high-
speed railways is about to reach another record high, 
but subgrade performance degradation threatens rail‐
way driving safety. Consequently, the maintenance and 
improvement of subgrade shakedown under train and 
environmental loads have become an urgent technical 
challenge.

The gravels in the ballast layer and roadbed are 
broken under long-term train loads, reducing the inter‐
locking between particles and the subgrade bearing 
capacity, thereby causing progressive accumulated set‐
tlement. Meanwhile, fine particles due to gravel break‐
age reduce the permeability of the ballast layer and 
subgrade, resulting in poor drainage. Moreover, cou‐
pled with environmental loads, the subgrade and foun‐
dation are fluidized, which is an important reason for 
subgrade degradation, inducing various subgrade prob‐
lems such as mud pumping, subgrade sinkage, and 
even subgrade collapse. In addition, it is a complicated 
phenomenon, including phase transition and fluidiza‐
tion, and is hard to explain by existing soil mechan‐
ical models. At present, many studies on mud pump‐
ing have been carried out through field tests and labo‐
ratory experiments, and considerable progress has been 
achieved in establishing the formation mechanism and 
the influencing factors. However, quantitative models 
and theories for mud pumping are still few and imma‐
ture, and criteria for railway subgrade design and con‐
struction considering mud pumping have not yet been 
established.

The annual rainfall along the Sichuan–Tibet rail‐
way reaches 2000 mm, and the temperature changes 
greatly, reaching 40 ℃ in summer and −20 ℃ in 
winter. The special climate and complicated geologi‐
cal conditions require a higher subgrade shakedown. 
Therefore, studying the subgrade failure mechanism 
under train loads alongside dry–wet and freezing–
thawing cycles is imperative. However, most of the 
current studies only consider the effect of train loads or 
freezing–thawing individually and the failure mecha‐
nism of subgrade under the combination of these two 

effects remains unclear. Moreover, the present hydro-
thermal-mechanical theories on freeze–thaw mostly 
focus on hydro-thermal coupling. Although the stress 
distribution in the subgrade can affect the pore ratio, 
pore pressure, and water–ice phase-transition tempera‐
ture, these influences are neglected in current models. 
Additionally, the rules for water source and migration 
remain unclear currently, so precautionary methods 
for mud pumping and frost-heave have not yet been 
developed. Regarding technological development, es‐
tablishing a functional system, including reinforce‐
ment, waterproof, and shakedown sensing, is neces‐
sary to ensure the subgrade’s long-term performance. 
For example, an intelligent sensing geogrid can be 
devised to monitor the temperature and water con‐
tent of the subgrade, and to report on the soil freezing–
thawing status and water infiltration. Meanwhile, lim‐
iting particle movement controls the settlement ac‐
cording to the geogrid. Additionally, a new polymer-
reinforced ballasted track could be developed to reduce 
vibration and ballast degradation while preventing water 
infiltration to avoid freeze–thaw and mud pumping.

Reproducing and observing the development of 
subgrade performance over the decades is a critical 
challenge in recent research on subgrade shakedown. 
The advantage of the centrifuge tests is that they reduce 
the model size and time, providing a unique method to 
solve the problem. The dry–wet and freezing–thawing 
cycles due to climate change can recur in centrifuge 
tests. Furthermore, train loads can be applied by self-
developed high-speed railway loading devices. There‐
fore, the coupled hydraulic-thermal-mechanical cata‐
strophic mechanism of the subgrade under train and en‐
vironmental loads can be reproduced promptly. Finally, 
the water migration rules, mechanism of subgrade flu‐
idization, mud pumping, and subgrade-foundation 
system failure can be obtained to establish laws of sub‐
grade shakedown.
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