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The difference between sleep and wakefulness is 
critical for human health. Sleep takes up one third of 
our lives and remains one of the most mysterious con‐
ditions; it plays an important role in memory consoli‐
dation and health restoration. Distinct neural behaviors 
take place under awake and asleep conditions, accord‐
ing to neuroimaging studies. While disordered transi‐
tions between wakefulness and sleep accompany brain 
disease, further investigation of their specific charac‐
teristics is required. In this study, the difference is 
objectively quantified by means of network controlla‐
bility. We propose a new pipeline using a public intra‐
cranial stereo-electroencephalography (stereo-EEG) 
dataset to unravel differences in the two conditions 
in terms of system neuroscience. Because intracranial 
stereo-EEG records neural oscillations covering large-
scale cerebral areas, it offers the highest temporal 
resolution for recording neural behaviors. After EEG 
preprocessing, the EEG signals are band-passed in‐
to sub-slow (0.1–1 Hz), delta (1–4 Hz), theta (4–8 Hz), 
alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
45 Hz) band oscillations. Then, dynamic functional 
connectivity is extracted from time-windowed EEG 
neural oscillations through phase-locking value (PLV) 
and non-overlapping sliding time windows. Next, 
average and modal network controllability are imple‐
mented on these time-varying brain networks. Based 
on this preliminary study, it appears that significant 

differences exist in the dorsolateral frontal-parietal 
network (FPN), salience network (SN), and default-
mode network (DMN). The combination of network 
controllability and dynamic functional networks offers 
new insight for characterizing distinctions between 
awake and asleep stages in the brain. In other words, 
network controllability captures the underlying brain 
dynamics under both awake and asleep conditions.

Sleep and wakefulness act as a double onion-like 
framework in the brain (Ioannides, 2018). Entangle‐
ment of sleep and wakefulness is accompanied with 
neural pathology (Ioannides, 2018; Sarasso et al., 2020; 
Andrillon et al., 2021). For example, one main cause 
of attentional lapses is the appearance of sleep-like 
slow waves in the awake state (Andrillon et al., 2021). 
In focal brain injury, neural activity is disturbed by 
local sleep-liked behavior while awake (Sarasso et al., 
2020). Sleep problems can cause aberrant neural be‐
haviors to appear in the DMN, central executive net‐
work (CEN), and SN in many psychiatric disorders 
(Ioannides, 2018). Attention deficiency is closely linked 
to occurrences of sleep-like activity under awake con‐
dition (Andrillon et al., 2021). In obstructive sleep 
apnea, aberrant neural activity appears during wake‐
fulness, and its severity is related to the status of the 
insula and prefrontal cortex (Wu et al., 2020). 

Multiple brain areas are involved in sleep and 
wakefulness, and it is necessary to look at the brain 
from the perspective of system neuroscience. Network 
representation depicts paramount interactions among 
neuron populations in the brain (Liao et al., 2018; Xue 
et al., 2018). Graph theory is generally adopted as an 
important theoretical architecture because of its capabil‐
ity to estimate, model, and simulate the brain network. 
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Structural connectivity represents the white matter 
wiring derived from diffusion tensor imaging, while 
functional connectivity emphasizes the synchronous 
reaction of separate brain areas in general. The latter 
also reflects the information flow of neural oscillations, 
and will be our focus in this paper.

Network control detects the navigation of global 
dynamics through local perturbation along certain 
trajectories, and has attracted much attention in the 
area of brain network investigation (Gu et al., 2015). 
Empirical evidence has shown the relationships be‐
tween network controllability and working memory 
(Beynel et al., 2020), language perception (Medaglia 
et al., 2021), cognitive control function (Gu et al., 2015), 
creativity and intelligence (Kenett et al., 2018), execu‐
tive function (Cornblath et al., 2019), psychosis symp‐
toms (Parkes et al., 2021), and schizophrenia (Tang 
et al., 2022). While network control theory offers great 
help for exploiting working mechanisms, it mainly 
focuses on structural connectivity in the brain. More 

attention should be paid to the role of network con‐
trollability in functional interactions.

The proposed pipeline is illustrated in Fig. 1. We 
derived time-varying functional connectivity to evalu‐
ate network controllability, and the involved cerebral 
areas were the SN, FPN, and DMN. Particularly, SN 
is comprised of the anterior insula (AI) and anterior 
cingulate cortex (ACC), FPN contains the middle 
frontal gyrus (MFG) and supramarginal gyrus (SMG), 
and DMN is constituted with the posterior cingulate 
cortex (PCC) and precuneus in this work. Neural oscil‐
lations offer subjective monitoring of the brain (Doel‐
ling et al., 2021). All EEG signals were band-passed 
into six separate sub-bands; we paid special attention 
to sub-slow (0.1–1 Hz) band oscillations, as they play 
critical roles in non-rapid eye movement stage 3 (N3) 
sleep. When phase-locking value and time windows 
were combined, we regarded the strength of instanta‐
neous phase-locking as representing the adjacency ele‐
ments in the brain networks. Both average controllability 

Fig. 1  Framework illustration of the proposed pipeline. (a) The involved techniques; (b) Large spatial time-varying network 
states under awake and asleep conditions; (c) Schematic diagram of network control; (d) Violin plot of average network 
controllability metrics in the precuneus under awake and asleep conditions. EEG: electroencephalography; PLV: phase-locking 
value; REM: rapid eye movement; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3; ACC: anterior 
cingulate cortex; AI: anterior insula; PCC: posterior cingulate cortex; MFG: middle frontal gyrus; SMG: supramarginal gyrus.
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and modal controllability metrics were adopted to track 
and quantify brain dynamics under the correspond‐
ing four conditions as follows: rapid eye movement 
(REM), non-rapid eye movement stage 2 (N2), N3, and 
awake. The detailed methods are provided in the elec‐
tronic supplementary materials for this paper.

As demonstrated in Table S1, significant differ‐
ences existed among all six frequency components 
in the targeted areas, based on modal controllability 
metrics (P<0.001). The PCC and precuneus demon‐
strated the frequency-dependent variations covering 
all four different conditions. Significant differences ap‐
peared in the AI under asleep condition but not awake 
condition.

Since average controllability and modal control‐
lability in turn depict easy and hard-to-attain states, 
respectively, in the frame of network control theory, 
we calculated the correlation between them. We car‐
ried out an analysis of variance (ANOVA) test to 
explore distinctions between them. As described in 
Table S2, there were significant differences among 
networks that were derived from six sub-band fre‐
quency components, when considering modal and aver‐
age controllability metrics. Specifically, ACC, AI, MFG, 
and PCC all showed significant differences, especially 
under awake condition.

In view of the brain state of certain areas that can 
be defined as the power of amplitude in recorded EEG 
signals, we calculated the power in all six sub-band EEG 
signals, and compared their ratios with each other. We 
found that there was a tiny sub-slow band EEG sig‐
nal owing a ratio one ten-thousandth of that was de‐
rived from beta- or gamma-band EEG oscillation. There‐
fore, we removed sub-band EEG signals, and imple‐
mented average controllability on the networks de‐
rived from the remaining five sub-band EEG sig‐
nals. Significant differences appeared in almost all six 
brain areas under all four conditions, as presented in 
Table S3. Exceptions were: MFG under N2 or REM 
conditions, SMG under REM, and AI under awake 
condition, where no significance appeared. Specifi‐
cally, non-significant difference appeared in the MFG 
under N2 (P=0.0821) or REM (P=0.3076) condi‐
tion, while the SMG (P=0.0211) or precuneus (P=
0.0022) showed no significant differences under REM 
condition.

Ultimately, we took three spatial levels of net‐
work connectivity into consideration for network 
controllability evaluation. It is found out that average 

network controllability is not only frequency-dependent 
but also spatially dependent. At the first level, indi‐
vidual brain areas were considered, including the AI, 
ACC, MFG, SMG, PCC, and precuneus. Then, at the 
second level, network controllability was estimated 
for the SN, FPN, and DMN, which are constituted by 
the AI and ACC, MFG and SMG, and PCC and pre‐
cuneus, respectively. Finally, at the third level, the 
SN, FPN, and DMN made up the largest spatial SN-
FPN-DMN network. Average controllability was im‐
plemented on the corresponding networks. Based on 
the preliminary results, we determined that extensive 
frequency-dependent network controllability existed 
in most enrolled individual brain areas. At the medial 
spatial network level, significant differences only ex‐
isted in the SN network under REM, N3, and awake 
condition, while no significant difference appeared in 
the large SN-FPN-DMN network.

To sum up, all six cerebral areas had certain 
frequency-dependent differences in network control‐
lability under awake condition at the small spatial 
network level, whereas no such significant frequency-
dependent differences emerged in the large spatial 
SN-FPN-DMN network.

Normally, the brain is optimized to easily transi‐
tion from sleep to wakefulness or vice versa. Awake 
and asleep states are apparently different from each 
other, and entanglement between them signifies brain 
disorder to some extent. However, quantified biomarkers 
to distinguish between the states are lacking. Klimesch 
(2018) proposed the frequency framework of neural 
oscillations in the brain. According to our prelimi‐
nary results, the existence of frequency-dependent net‐
work controllability provides one available biomarker, 
and reveals the foundation for seemingly effortless 
wake-to-sleep manipulation. As previously illustrated, 
a densely connected DMN controls easy tasks, while 
a weakly linked cognitive control network is respon‐
sible for difficult control issues. As nonstationary neu‐
ral oscillations interact with each other across the large-
scale cerebral cortex, trajectory controlling refers 
to driving the system from one condition to another 
desired condition, such as moving to the nearby states 
or distant states. The way in which they are inte‐
grated and segregated exhibits controlling trajecto‐
ries under diverse cognitive conditions. With the as‐
sistance of network control theory, our results demon‐
strate the distinctions among frequency components, 
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signifying their diverse roles in network adaption and 
manipulation.

In general, modal controllability and average con‐
trollability are believed to act differently, as the for‐
mer handles difficult tasks and the latter easy ones. 
The former requires integration and cooperation among 
more brain areas, while the latter brings neighboring 
areas together in order to achieve the goal. Certain 
brain areas prefer solving difficult problems, while 
others favor easy ones. Cheng et al. (2018) reported 
that the PCC is critical in sleep and depressive prob‐
lems. In modal controllability, when all six sub-band 
EEG signals are considered, the PCC exhibits signifi‐
cant differences under all four conditions, including 
asleep and awake states. Meanwhile, the precuneus 
shows significant differences from the N3 condition, 
while one distinction of N3 sleep is its dominance in 
slow-wave EEG oscillation. Kinreich et al. (2014) 
suggested that the AI plays important roles in the tran‐
sition between wakefulness and sleep; it reflected sig‐
nificant differences among the three conditions other 
than the awake condition in this study. When modal 
controllability and average controllability are com‐
bined, the ACC, MFG, PCC, and precuneus show 
significant differences among brain networks; these 
differences are most apparent under awake condition. 
Besides, five sub-band EEG signals are enrolled while 
the sub-slow (0.1–1 Hz) band is removed due to its 
low amplitude. Average controllability shows signifi‐
cant differences in almost all six brain areas under the 
four distinct brain conditions.

In this work, we employed intracranial stereo-
EEG recordings and network controllability to investi‐
gate the roles that frequency components play in the 
brain. The difference between awake and asleep con‐
ditions is revealed in terms of network controllability. 
Frequency-dependent network controllability provides 
new insights into understanding the working mech‑
anisms of the brain. Because stereo-EEG can detect 
temporal variations of neuron populations in large-
scale brain areas, it offers a gold standard for evaluat‐
ing neural activity. In detail, individual cortical regions 
demonstrate frequency-dependent network controllabil‐
ity to a greater extent than inter-regional interactions. 
Our findings demonstrate that network control theory 
offers a distinct systematic way of understanding fre‐
quency components in the brain. In consequence, sys‐
tem science should be considered as a future means 
of uncovering the network dynamics of frequency 

components in neural oscillation, which could lay a 
theoretical foundation for electrical neuromodulation 
in clinics. However, due to the limited number of 
participants involved in this study, more participants 
should be recruited to unravel the network control 
mystery of the brain in future work. Further investiga‐
tion is necessary to uncover the individual systematic 
role that frequency components play in different brain 
regions for certain complex cognitive tasks.

Materials and methods
Detailed methods are provided in the electronic supple‐

mentary materials of this paper.
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