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Introduction 

• The monitoring performance of traditional multivariate 
statistical process control (MSPC) methods may be 
degraded for multimode process. 

 
• Clustering and mixture model approaches are typical of 

monitoring methods used for multimode process. They 
work well under the assumption that each operation 
mode follows a Gaussian distribution. However, in many 
applications, the process data do not exactly follow a 
Gaussian distribution.  

Front In
form Technol & Electron Eng



  
• The separation of common information, specific mode 

information, and transition information can enhance 
nonlinear multimode monitoring performance and 
understanding of multiple mode behaviors. 

 
• It is necessary to simultaneously partition the data into 

multiple subspaces and find the low-dimensional 
underlying subspace to fit with instances associated with 
one cluster. 

 
• A local discriminant regularized soft k-means (LDRSKM) 

approach integrating with Bayesian inference is 
presented for multimode process monitoring.  
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A regularized soft k-means with 
locality preservation algorithm 

The optimization problem of a regularized soft k-means 
with locality preserving (LPRSKM) proposed in this study 
is defined as follows: 

The approach exploits the intrinsic geometry of the 
probability distribution and locality discriminative 
information, and the cluster assignments are found via 
membership degrees.  
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The centroids, covariance matrices, and membership are 
iteratively updated  as follows: 

      where 

and the proof of the convergence of LPRSKM is similar to that 
described by Miyamoto and Mukaidono (1997) and Jing et al. (2007). 
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Generalized linear discriminant analysis   

   Just like traditional LDA, GELDA obtains low-
dimensional subspaces using the membership degrees 
from soft clustering in a supervised situation. The 
between-cluster matrix Sb, within-cluster matrix Sw, and 
total scatter matrix St are defined by  
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An optimal projection matrix is achieved by 
maximizing the following objective function: 
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where tr(·) represents the trace operator of a 
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 The construction of monitoring statistics  

•  First, multiple kernel SVDDs (KSVDD) are used 
for the construction of monitoring statistics and 
control limits for all process modes.  

• Then Bayesian inference based monitoring 
statistics are established by combining 
monitoring results of all the principal and 
residual subspaces in a probabilistic manner.  
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 Flow chart of the proposed monitoring method 
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Tennessee Eastman benchmark 
simulations 

     Three operation modes  were chosen in this study, 16 
variables listed in Table 1 were selected for monitoring 
purposes, as in Kano et al. (2002). The process data were 
collected by running the simulation for 60 h under normal 
conditions. Each normal mode lasts 20 h. 
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Simulation results 
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Simulation results (Con’d) 
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Simulation results (Con’d) 
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Simulation results (Con’d) 
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Simulation results (Con’d) 
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Simulation results (Con’d) 
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Conclusions 

• The proposed approach can partition the overlapped 
multimodal operating data into optimal discriminant low-
dimensional subspaces by iteratively performing soft 
clustering and discriminant dimensionality reduction, 
enhancing the separability of  data residing in different 
subspaces.  

• Compared to the state-of-the-art multimode process 
monitoring approaches, our method can detect faults 
effectively and reliably and show satisfactory monitoring 
performance. 
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