Jin Wang, Feng Shu, Ri-qing Chen, Yu-di Cui, Yu Chen, Jun Li, 2016. Adaptive robust beamformer for multi-pair two-way relay networks with imperfect channel state information. *Frontiers of Information Technology & Electronic Engineering*, **17**(3):265-280. http://dx.doi.org/10.1631/FITEE.1500134

Adaptive robust beamformer for multi-pair two-way relay networks with imperfect channel state information

Key words: Multi-pair two-way relay, Adaptive robust beamformer, Channel state information (CSI), Maximum signal-to-interference-and-noise ratio (Max-SINR), Maximum signal-to-leakage-and-noise ratio (Max-SLNR)

Corresponding author: Feng Shu E-mail: shufeng@njust.edu.cn

DORCID: http://orcid.org/0000-0003-0073-1965

Motivation

- In wideband multi-pair two-way relay networks, the performance of beamforming at a relay station (RS) is intimately related to the accuracy of the channel state information (CSI) available.
- The accuracy of CSI is determined by Doppler spread, delay between beamforming and channel estimation, and density of pilot symbols, including transmit power of pilot symbols.
- Therefore, we develop an adaptive robust Max-SINR plus Max-SLNR beamformer of tracking the channel variation by taking Doppler spread, delay between channel estimation and beamforming, and the density and power of pilot symbols into account.

Paper contribution

- We design the transmit and receive beamforming matrices at the RS by making use of Max-SINR and Max-SLNR criteria in the presence of imperfect CSI.
- The coefficients of the Gaussian-Markov CSI error model are modeled as a function of CSI delay, Doppler spread, and signal-to-noise ratio, and can be estimated in real time.
- In accordance with the real-time estimated coefficients of the error model, an adaptive robust Max-SINR plus maximum Max-SLNR beamformer at an RS is proposed to track the variation of CSI error.

System model

- One central relay station (RS) with N antennas
- K pairs of mobile stations (MSs) with M antennas

$$egin{aligned} oldsymbol{r}_{k_i}^{uq} = & eta \left(oldsymbol{G}_{k_i}^{uq}
ight)^{\mathrm{T}} oldsymbol{W}_{\mathrm{RS}}^{uq} oldsymbol{H}_{k_{(-i)}}^{uq} oldsymbol{s}_{k_{(-i)}}^{uq} \\ & + eta \left(oldsymbol{G}_{k_i}^{uq}
ight)^{\mathrm{T}} oldsymbol{W}_{\mathrm{RS}}^{uq} oldsymbol{H}_{k_i}^{uq} oldsymbol{s}_{k_i}^{uq} + oldsymbol{c}_{k_i}^{uq} \\ & + eta \left(oldsymbol{G}_{k_i}^{uq}
ight)^{\mathrm{T}} oldsymbol{W}_{\mathrm{RS}}^{uq} oldsymbol{z}_{\mathrm{RS}}^{uq} + oldsymbol{z}_{k_i}^{uq}, \end{aligned}$$

CSI error model

$$\widehat{\boldsymbol{H}}_{k_i}^{(u-\Delta u)q} =
ho_{\mathrm{H}} \boldsymbol{H}_{k_i}^{uq} + \sqrt{1-
ho_{\mathrm{H}}^2} \boldsymbol{H}_{\mathrm{e},k_i}^{uq}$$

$$\widehat{\boldsymbol{G}}_{k_i}^{(u-\Delta u)q} =
ho_{\mathrm{G}} \boldsymbol{G}_{k_i}^{uq} + \sqrt{1-
ho_{\mathrm{G}}^2} \boldsymbol{G}_{\mathrm{e},k_i}^{uq},$$

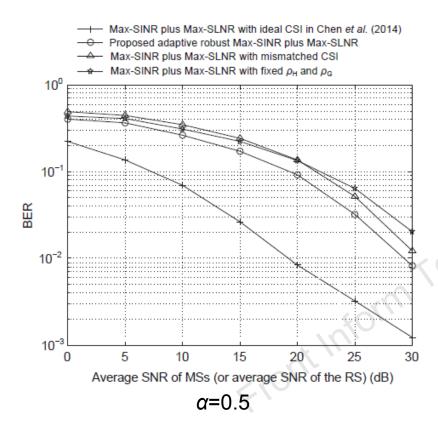
$$\widehat{\boldsymbol{G}}_{k_i}^{(u-\Delta u)q} = \rho_{\rm G} \boldsymbol{G}_{k_i}^{uq} + \sqrt{1 - \rho_{\rm G}^2} \boldsymbol{G}_{{\rm e},k_i}^{uq},$$

Proposed adaptive robust beamformer

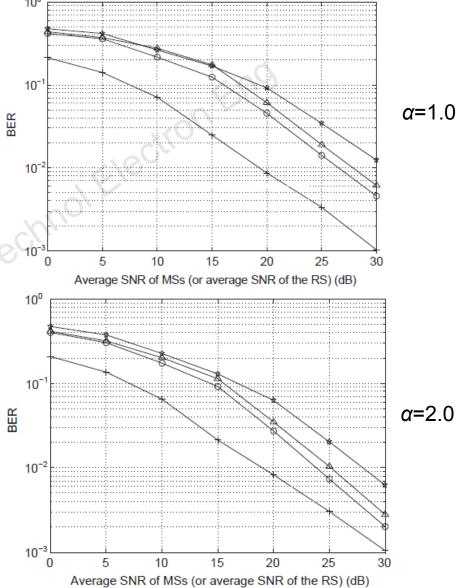
$$egin{aligned} oldsymbol{W}_{ ext{RS}}^{uq} &= \sum_{k=1}^K \sum_{i \in \{a,b\}} oldsymbol{W}_{ ext{t},k_i}^{uq} \left(oldsymbol{W}_{ ext{r},k_{(-i)}}^{uq}
ight)^{ ext{T}} \ oldsymbol{Max-SINR} oldsymbol{B}_{k_i} &= rac{oldsymbol{\Psi}_1}{\sigma_{ ext{RS}}^2 oldsymbol{I}_N + P_{ ext{RS}} N^{-1} \left(oldsymbol{\Psi}_2 + oldsymbol{\Psi}_3
ight)} egin{aligned} oldsymbol{Max-SINR} \ oldsymbol{A}_{k_{(-i)}} &= rac{oldsymbol{\Phi}_1^{ ext{T}}}{\sigma_{ ext{RS}}^2 oldsymbol{I}_N + P_{ ext{MS}} M^{-1} \left(oldsymbol{\Phi}_2 + oldsymbol{\Phi}_2
ight)} \end{aligned}$$

Real-time estimation of ρ

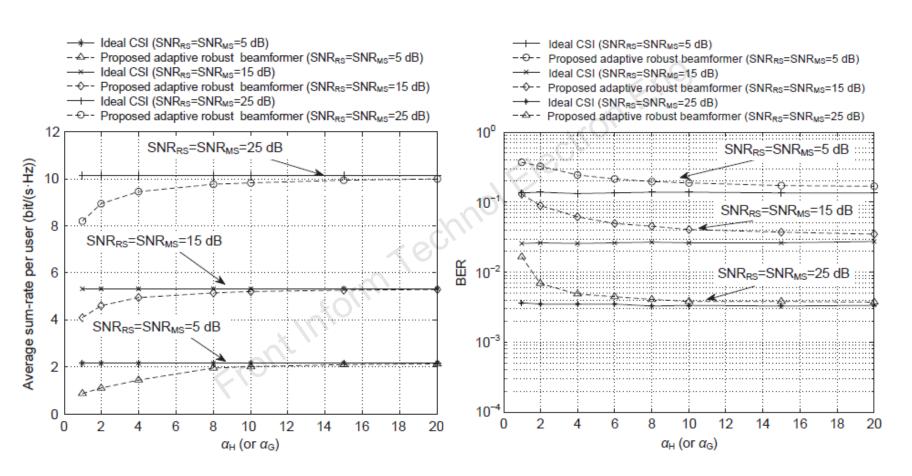
$$\rho_{\mathrm{H},k_i}^u = \rho_{\mathrm{H},k_i}^{\mathrm{ud}} \rho_{\mathrm{H},k_i}^{\mathrm{ue}}$$


effect of Doppler spread

$$\rho_{\mathrm{H},k_{i}}^{\mathrm{ud}} = \frac{\Re_{\mathrm{HH},k_{i}} \left(\Delta u, 0\right)}{\Re_{\mathrm{HH},k_{i}} \left(0, 0\right)}$$


effect of channel estimation error

$$\rho_{\mathrm{H},k_i}^{ue} = \frac{\mathrm{SNR}_{\mathrm{H},k_i}^{up}}{1 + \mathrm{SNR}_{\mathrm{H},k_i}^{up}}$$


Major results

Curves of BER versus SNR of the proposed adaptive robust beamformer and existing non-adaptive ones ($\Delta m f_d T_s = 0.01$)

Major results (Cont'd)

Curves of sum-rate and BER versus α of the proposed adaptive robust beamformer at SNR_{RS}=SNR_{MS}=5 dB, 15 dB, 25 dB ($\Delta mf_{\rm d}T_{\rm s}$ = 0.01)

Conclusions

- By real-time estimation of Doppler spread and SNR in the channel, an adaptive robust Max-SINR plus Max-SLNR beamformer at an RS is proposed to take into account some uncertainty or possible variation in the channel matrix.
- From simulation results and analysis, we find that the proposed robust method can adaptively track channel variation and performs much better than existing robust and non-robust Max-SINR plus Max-SLNR nonadaptive schemes.