Xie Wang, Mei-qin Liu, Zhen Fan, Sen-lin Zhang, 2016. A novel approach of noise statistics estimate using  $H_{\infty}$  filter in target tracking. *Frontiers of Information Technology & Electronic Engineering*, **17**(5):449-457 http://dx.doi.org/10.1631/FITEE.1500262

# A novel approach of noise statistics estimate using $H_{\infty}$ filter in target tracking

**Key words:** Noise estimate,  $H_{\infty}$  filter, Target tracking

Contact: Xie Wang E-mail: wangxiek@zju.edu.cn ORCID: http://orcid.org/0000-0001-6518-7564

## Motivation

- Noise statistics is essential for estimation performance. In practical situations, the information of noise statistics is often unknown.
- In modern industrial embedded real-time systems, recursive estimators are in serious need under the computational limits.
- Previous studies on noise statistics identification in linear systems are still constrained by the Kalman filter or Bayesian method, which require a priori knowledge about the noise statistics.

### Main idea

- Apply the  $H_{\infty}$  filter to obtain the system state estimates without a priori knowledge of the noise statistics.
- By applying state estimates obtained from the H<sub>∞</sub> filter, we can achieve better estimates of the noise mean and covariance.

## Method

- 1. Without a priori knowledge of the noise statistics, employ the  $H_{\infty}$  filter to obtain the system state estimates.
- 2. Based on the measurement sequence and the system state estimates obtained from the  $H_{\infty}$  filter, achieve the residual sequences first, then construct a estimator to obtain the mean and the covariance of process noise and measurement noise.
- 3. Carry out several numerical simulations based on the proposed approach.

### **Major results**

 Compared with the same framework based on Kalman filter, our approach can provide more precise noise statistics estimates.



Fig. 4 Root mean square errors (RMSEs) between the system state and the estimated state: (a) X component of the position; (b) Y component of the position





Fig. 5 Root mean square errors (RMSEs) between the process noise mean estimates and the actual values for  $w_1$  (a) and  $w_2$  (b), and the RMSEs between the measurement noise mean estimates and the actual values for  $v_1$  (c) and  $v_2$  (d)

Fig. 6 Root mean square errors (RMSEs) between the process noise covariance estimates and the actual values for  $Q_{11}$  (a) and  $Q_{22}$  (b), and the RMSEs between the measurement noise covariance estimates and the actual values for  $R_{11}$  (c) and  $R_{22}$  (d)

#### Conclusions

- Without a priori knowledge of noise statistics, a novel approach is presented to estimate the process noise and measurement noise statistics in linear discrete system.
- The H<sub>∞</sub> filter is introduced to construct the estimation approach. Based on the system estimates obtained from H<sub>∞</sub> filter, better residual samples can be achieved to estimate the noise statistics.
- Compared with the same framework based on Kalman filter, the estimation performance is demonstrated through several simulations.