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Motivation

» Disadvantages of NMF:

» NMF suffers from the large computational complexity
for the popular multiplicative iteration rule;

» NMF is sensitive to noise (outliers), and thus the
corrupted data will make the results of NMF
meaningless.

» Limitation of using PCA on NMF:
the PCA transformed data will contain negative numbers,
hindering the direct use of NMF's multiplicative iteration
rule.



Background

» NMF

Given an LXM non-negative matrix R and a positive
integer p<L, the task of non-negative matrix fraction is
to find two non-negative matrices E, ., and C ., such

that
R~ EC.
The learning process for the multiplicative NMF is:

C=C.x(E'R)./(E'EC),

E=E.x(RC")./(ECC").



Method

» Explore the impact of PCA to NMF

» Impact of rotation

Letus denote R=V'R and E=VTE to be the
rotated data and endmember matrix respectively,
where V is an orthogonal matrix. Then we have

C=C.+«((V'E)'(V'R))./ ((V“I”E)rlﬁvr‘ﬁEc) L
_ L N E=E.x(RCh)./(ECcC™h)
=C.* (E'VV'R)./(E'"VV'EC) ~ T o Ty /7 Eme T
. - S =E.«(V'RC")./(ECC").
—=C.«(E'R)./(ETEC). t

Unchanged Changed



Method (Cont’d)

» Explore the impact of PCA to NMF
» Impact of translation

Suppose the data and endmembers contain
negatives, we can select a vector r,, such that

(R—-r01};) > 0 and (E -r1}) =0, Then the
corresponding multiplicative updating rules
becomes:

C=0C.« ([E — ’DI;}I{R - TDIF}L})) E=(FE—mr ]_;) = (LR — Tnlz-ll‘f)cfrr)
/(B =roly) (E —701,)C), J (B —=7ol))CCT) +rol).

Changed Changed



Method (Cont’d)

» PCNMF

Interestingly, based on our observation the maximum
spectral angle between pixels in real hyperspectral
data is mostly small (generally less than 45 degrees).
In addition, the rotation operation will not change the
spectral angles between data points. Both facts
motivate us to apply the orthogonal procrustes (OP)
technique to solve the non-negative problem of R and
E in the PC space. That is to forcibly rotate all the data
points into the first quadrant of the PC space, so that
the multiplicitive update rule still works for E.




Method (Cont’d)

» PCNMF

Mathematically, the OP problem s - owuw
can be stated as follows:
min /(Q) = A~ BQ|r g
subject to Q'Q =QQT =1. 1
And the optimal solution is: S R R
Q — UW T? f,‘:-ic issllifigjz]?)nsi,g :t:];e orthogonal procrustes (OP)

where the matrices U and W satisfy the
singular value decomposition (SVD)
equation BTA=UDW'.



Method (Cont’d)

» The pseudo-code
of PCNMF is

Algorithm 1 Principal component non-negative

madtrix factorization

Input: data matrix, Rj . p; number of endmembers, p;

maximum iteration number, maxiter; ASC weight,

d.

Output: endmember matrix, Ey, . ,; abundance matrix,

1:

N

a:

. R =

CpxM.
[ PC-0OP transformation

Calculate the antocorrelation matrix, Xp«p =

RRY /M

Calculate the eigenvector matrix for X' which satis-
fies ¥ = VDV, with the PC rotation matrix being

1"; = [L?]:.‘l:-:p-—ll
# = V' mean(R)

the OF matrix €} based on Eq (15)

Calculate the PC-0OFP transformed data,

(VQ)'R
ff NMF initialization

indexp = F'GDﬁ[ﬁ._p}._ Eu = ﬁ:_inr.lm-cn
R , Eq
515, } o= 51t

Cp = lsgqnonneg( R, Eq)

/{ NMF based endmember extraction

E, C] = NMF(R, E;, Cy, maxiter)

. Calculate the mean vector of the PC rotated data.

4: Let Ajp_1y1 = [1,1,--- _.I]T~ B = 7, and calculate

—

H:




Major results

» Simulated data:
The spectra of three minerals (Alunite, Calcite, and Kaolinite) from U.S.

Geological Survey (USGS) digital spectral library are selected as
endmember signatures. Then 2000 mixture vectors are generated with
abundance fractions following a Dirichlet distribution. In order to ensure that
no pure pixel exist, all fractions are not allowed to be larger than 0.9.
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Fig. 4 The rmsSAD (a), rmsSID (b), and RAE (c) as functions of SNR for different
methods with noise data



Major results (Cont’d)

> Real data:

We evaluate the performance
Table 3 The SAD between USGS reference spectra

Of PCNMF USIng the We”' and extracted endmembers by FGDA and PCNMF
known AVIRIS Cuprite data set _ _ SAD (degree)
(191X 250X 187). The number o Substance T
Of endmembers Is set to 14 1 Muzcovite 1L107 5.3472 5.9231
2 Desert Vanish GDS141 04020 8. 1041
3 Alunite G584 Na03 4 6300 3.9203
! Kaolin/Smect KLF508 5.2682 5. B354
o Montmorillonite SWy-1 6. 0208 8.60T8
i Kaolinite CM7T 4.8221 4 8635
T Buddingtonite NHE2301 54664 5.2410
3 Alunite GDS82 Nag2 12.4593 11.3928
9 Montmorillonite+111i Chi42 6. 2363 5.6179
] Chalcedony CU31-GA 5. 5653 5.1812
11 Alunite ALTOG T.T288 T.6880
12 Montmorillonite+111i CM37 4.8154 4.T6E1T
13 Kaolin/Smect KLF511 3.8BRTT 43025
14 Kaolin/Smect H80-FR-5 4 2887 5.2605
Averago 6. 2034 6.055T

Bold text indicates the better SAD

Alunite Kaolinite
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