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Motivation

1. The existing academic literature retrieval systems, such as
Google Scholar, Scopus, and Web of Science, can return
articles that are most likely to match users’ queries. However,
the returned articles are displayed in a listed and isolated way.
In other words, the underlying relationships between the
retrieved articles remain unknown to users.

2. We present the retrieved results in a way by which the
evolutionary relationship between the papers is explicitly
shown.



Main idea

1. We propose a concept of paper evolution graph and
formalize the criteria to evaluate evolution graphs.

2. Three types of queries are supported and efficient
methods are provided to construct evolution graphs given
different types of queries.

3. We integrate user preferences into the framework to
generate graphs describing the multi-view relationships
among articles.



Method

1. To fully cover the topics of a query paper, the topic
distribution of papers in the dataset is obtained by multi-
relational factorization of the metagraph, and then articles in
the dataset are soft-clustered into communities based on
their topic distribution.

2. From each community that relates to the query, the most
cohesive chain is extracted based on topic coherence. The
topic coherence between two papers is calculated by the
word influence propagating algorithm.

3. The extracted chains are combined to form a paper
evolution graph. Each chain focuses on one aspect of the
query. Combining the chains gives us comprehensive and
holistic retrieval results.



Major results
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Fig. 9 Paper evolution graph of the query paper
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data using SVMs and morphological profiles”



Major results (Cont’d)
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Fig. 11 Paper evolution graph of two-paper retrieval
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Major results (Cont’d)
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Fig. 14 Paper evolution graph for “SAR denoising”
retrieval



Major results (Cont’d)

Compared with Google Scholar, IEEE Xplore, and
Web of Science in terms of topic coherence

o
n

[E)) Paper evolution graph
3.0 Google Scholar
ér.; IEEE Xplore
T 25 It) Web of Sde
8 2.0
D
215
o
Q
o 1.0
o
=05 . M
0.0

Single-paper Two-paper Keyword

Fig. 17 Comparison of topic coherence



Conclusions

1. The paper evolution graph (PEG) method has been
proposed to create structured paper retrieval results. The
PEG explicitly shows the multi-view relationships between the
retrieved papers by a combination of a set of evolution chains.

2. Three types of information, i.e., content, author, and
citation, are used in our system, to which users are allowed to
attribute different weights to generate an evolution graph
emphasizing different aspects.

3. Our system supports keyword search, single-paper search,
and two-paper search to meet different user requirements.
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