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Motivation (1/2)

1. Anomaly detection refers to the problem of finding patterns in
data that do not conform to the expected normal behavior. It is
widely applied to many areas.

Card fraud detection

Internal intrusion detection



Motivation (2/2)

2. Detecting the anomalies in the sequential data over data
stream, such as a four-dimensional (4D) sequence with five
states.

Table 1 Multi-dimensional sequence data

User’s Access Call Return
operation path time value
Open \root 598 768 333 True
Read ‘\home'\ dataset H98 768 462 True
Cat \ home\name 598 T68 987 True
Open \ home'\svd 598 T69 678 False

Close \root 598 773 543 True




Challenges of anomaly detection for a multi-
dimensional sequence over the data stream

1. State space can be explosive in growth as the dimension
Increases.

2. Data stream is continuous and arrives at an unprecedented
speed, which requires the anomaly detection method be
processed in a timely manner.

3. Compared with the static dataset, concept drift may occur in
the data stream, which could affect the performance of anomaly
detection.
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Fig. 1 Owverview of an unsupervised fast and accurate anomaly detection method (FAAD)



Main idea (2/2)

1. IMC

An information calculation and minimum spanning tree cluster
(IMC) method can reduce the complexity of the space, while fully
preserving the information of the multi-dimensional sequence.

2. RSIPST

A random sampling and subsequence partitioning based on the
index probabilistic suffix tree (RSIPST) method is proposed to
adapt to the dynamic nature of the data stream.

3. ABMDA

An anomaly buffer based on the model dynamic adjustment
(ABMDA) method can reduce the effects of concept drift without
adding complexity.



Methods (1/10)—IMC

1. Mutual information and symmetric uncertainty information

I(X,)Y)=) > plz.y)log p‘fj 3{;} (1) where I(X,Y) is the mutual informgtion
zeX yeY of X and Y, SU(X,Y) the symmetric
? , uncertainty information of X and Y,
SUX.Y) = 2(H(X) - H(X|Y ”~ H(X) the entropy of random variable
H(X|Y) S;Y in?y 1), X, and H(X]Y) the entropy of X
= conditioned on Y.
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Fig. 2 Flow chart of the information calculation and minimum spanning tree cluster (IMC)



Methods (2/10)—IMC

2. MST construction and partition

Algorithm 1 MST cluster

Input: Complete graph &, the number of clusters k
Output: k clusters

1: Use the Prim algorithm to generate the minimum span-

ning tree MST = Prim(G)

2: Forest F' = MST

3: for each edge E(i,j) in forest do

4: if SU(F,, F;) < SU(F,,C) ASU(F,,F;) < SU(F,,C)

then

5 G.weight(i, j) = I(F,, F;)3Y ¥ F)

6: else G.weight(i, j) = I(F}, F})

7 endif

8. endfor

9: Sort .weight

Fig. 3 A complete graph of seven-dimensional feature (4. o1 the & minimum weight edges do

correlation 11: Delete this edge from F such that
F =F — G.weight(i, j)
12: endfor
13: Return Forest F




Methods (3/10)—IMC

3. Feature selection

For any feature F; € C, there must exist a representative feature F,€ C
satisfying

F; = arg max t;,

2]
§
]

tj = Z e.weight - SU(F}, C), (3)

ecF; . edge

where tj is the feature information of Fj

A representative feature has the strongest correlation with other features
in the same cluster, and knowledge mining on this feature can take the
place of mining on other features in the same cluster, which greatly
reduces the time on calculation and data spareness.
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Methods (5/10)—RSIPST

4. Model t ti . Algorithm 2 IPST
. odel construction. Input: Preprocessed sequence Dpre, tree depth h, the em-

(1 ) random Sample pirical probability threshold Pmin
’

Output: P5ST model pst

(2) Su bsequence partltlonlng, l: Create an empty PST pst

2: Create a hashmap IMp containing the index of root

(3) constructing index PST (IPST). 3: for cach layer i do

4 Create three hash maps HMprefix, HMaumix, and HMcp
A for each sequence D' in Dpre do
i for each subsequence s(j, 5 4+14) in IV
T if =(7,7 + i) in IM; then
8: Add {s(7, 7 +1—1)—=s(j + 1)} to HMpreny
o Add {s(j+i—1,5)—=s=(j + 1)} to HM s
L0 endif
11: endfor
12: endfor
13: Calculate conditional probability with HM, .5, and
calculate empirical probability with HManmx
14: Store conditional probability in hash map HM.,
L5: Prune HM, 4, with Pmin
16 for each prefix p in HM,, do
17: Obtain the node from IM; by prefix p
1&: Update the node of p by conditional probability
iI] H?‘Jr_p
19: endfor
20: for each suffix s in HM;ym, do
21: Obtain node n from IM; by suffix =
22 Put suffix s as the child node of n
23 endfor
24: Create IM; 1 with HMzumx

25: endfor
26: Return pst




Methods (6/10)—RSIPST

5. Anomaly score measuring

P(TDS')

_ % (1@, (81 —|—Zl}gP sjlsisa .. ﬁj_l}) (F)

[;(TDS) Z P,,(TDS’) (6)

zn .M;(TDS")

A(TDS') = (7)
T W, |
=1
normal, A(TDS’) > T, _
f= , (8)
anomaly, otherwise.
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Due to concept drift, the model built with historical data cannot
characterize the current data well, which makes predictions less
accurate as time passes and leads to a higher false negative rate.



Methods (8/10)—ABMDA

6. Score based on statistics and anomaly rate

First, the proportion of current anomalies P,, the average m, and the variance s of the
proportion of historical anomalies P are calculated. Then we obtain the difference value pd
between the proportion of current anomalies P, and historical anomalies P. The larger the pd is,
the more likely the current anomalies are caused by concept drift, and the more likely these
anomalies are false anomalies.

Second, word frequency statistics in the current data are adopted to construct the frequency
matrix DM. The difference sd between matrixes DM and HM is calculated, where HM is the
frequency matrix of historical data. The larger the sd is, the more likely the concept drift occurs.

Last, a and b provided by users are adopted to compute the probability of concept drift as
follows:

cpd(D) =a-pd +b-sd. (9)

If cpd is larger than a threshold j, these anomalies are added to the anomaly buffer AB to
construct new models; otherwise, they are determined as true anomalies. P,and DM are
adopted to update P and HM, respectively.



Methods (9/10)—ABMDA

7. Model dynamic adjustment

Algorithm 3 Model dynamic adjustment based on

time decay function

Input: Anomalous sequences in anomaly buffer OB, thresh-

old ¢, model set A4

Output: Anomaly dataset OD

1:
2
3:
1
o

19:
20z

: endfor

21

pe

A

Use OB to construct mew model AL’

: Let the weight of Af;' be 1 (that iz, M; " weight = 1)

Add model A" to the model set A

. for each model M;" in the model set M do

Usze time decay function to update the weight of each
model
endfor
for each sequence OB in OB do
Use the model et M to detect sequence OB’
if OB’ iz an anomaly then
Add OB’ in anomaly dataset QD
endif

: endfor
: for each model M; in model set A now do

if Af;.result == M .mesult then
Reset A weight = 1
alse if M, weight < ¢ then
Delete model A; from M
elso
Update the weight of Af; by time decay function
endif

Return anomaly dataset OD




Major results (1/6)

1. Dataset description:
(1) Arcene and Dorothea datasets
Each of these two datasets includes 10 000 features. The Arcene dataset consists of 900
samples, including 398 positive samples and 502 negative samples. The Dorothea dataset
consists of 1950 samples, including 190 positive samples and 1760 negative samples.
(2) Unix user behavior dataset
We adopted the synthetic data of the Unix user behavior as the experiment data to test the
complexity of detection models. The lengths of sequences are between 150 and 200.

(3) Darpa 99 dataset
Seven arguments were extracted from Darpa 99 as features. To simplify the expression,

numbers 0—6 were adopted to represent the above seven features. The dataset consists
of 200 000 logs and the anomaly logs take up 10%.

version="2" event="close{2)” modifier="32768" time="Thu Apr 8 17:23:48 19
99" msee=" + 413B86641T maec”

path=fusr/share/libfzoneinfo/US/Eastern Table 2 A sample record of the extracted features

arg-num="1" value="0x1" desc="fd" Return Call Run
o e e . Call Desc Path ] . .. Arg
audit-uid="2051" uid="2051" gid="_lpoperator” ruid="2051" rgid="_|poperator value tirme time (ms) -
pid="461" sid="457" tid="0 172.16.112.50"
errval="failure : Bad file descriptor” retval="4294967295" Open fd  Success /root/ S:01:11 41 392 013 2

Fig. 8 A sample system call record from the Darpa Arg: argument number

99 dataset
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Major results (2/6)

2. Performance of feature selection
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Fig. 9 Correction classification rate (CCR) on dif-
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SVM

IMC: information calculation and minimum spanning tree
cluster; FCBF: fast correlation based filter; CFS: correlation
based feature selection

"

5 10 15 20 25
Proportion of selected features (%)




Major results (3/6)

3. Performance of model construction
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Fig. 10 Effects of forest scales and traditional proba-
bilistic suffix tree (PST) on the number of nodes (a),
running time (b), and detection rate (c) based on the
Unix user behavior dataset



Major results (4/6)

Table 3 Effects of different arguments on running time, detection rate, and false positive rate based on the
Unix user behavior dataset

Sample rate  Subsequence length  Detection rate (%) False positive rate (% Running time (s) State number
0.1 10 85.88 1.227 7.429 20
0.2 10 B5.7¢ 0.48 0.128 20
0.2 20 99.15 0.74 18.119 20
0.4 10 97.86 1.30 13.172 20
0.4 20 99.23 4.48 27.557 20
0.2 20 98.30 1.38 24.00 40
0.4 10 01.84 1.64 16.248 40
0.2 20 96.46 1.98 34.724 60

0.4 10 90.513 2.40 24.68 60




Major results (5/6)

4. Anomaly detection
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Major results (6/6)

5. Concept drift

90 . . . . Table 4 Effects of different proportions of weights on
— 80 detection rate based on the Darpa 99 dataset
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Fig. 14 Effects of buffer size on detection rate based -
on the Darpa 99 dataset
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Fig. 15 Numbers of models in FAAD and FAAI-

Fig. 16 Effects of ABMDA on false negative rate
WDF based on the Darpa 99 dataset
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Conclusions

We have provided an unsupervised fast and accurate anomaly detection
(FAAD) method for a multi-dimensional sequence over the data stream.
FAAD focuses on the multidimensional sequence over the data stream and
addresses new challenges. It uses IMC, RSIPST, and ABMDA to reduce
redundant dimensionality, speed up model construction, and reduce the
effects of concept drift in the data stream. Compared with existing methods,
our analytical and experimental results demonstrated that FAAD can adapt
to a multidimensional sequence over the data stream and perform
effectively in anomaly detection. Moreover, FAAD can reduce the false
negative rate caused by concept drift without adding complexity of our

models.
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