
Key words: Safety-critical; Drone; Software architecture; Formal
verification

Corresponding author: Xiao-rui ZHU
E-mail: xiaoruizhu@hit.edu.cn
 ORCID: Xiao-rui ZHU, http://orcid.org/0000-0003-1400 059X;
 Zhong SHAO, http://orcid.org/0000-0001-8184-7649

A new hierarchical software architecture towards
safety-critical aspects of a drone system

Xiao-rui ZHU, Chen LIANG, Zhen-guo YIN, Zhong SHAO, Meng-qi LIU, Hao CHEN,
2019. A new hierarchical software architecture towards safety-critical aspects of a
drone system. Frontiers of Information Technology & Electronic Engineering, 20(3):
353-362. https://doi.org/10.1631/FITEE.1800636

Front In
form

 Technol E
lectro

n Eng

Motivation (1/2)
1. Unmanned aerial vehicle or drone is a typical safety-critical
system. As the drone comes to our daily life, failures of a drone
may result in severe damage to the environment and serious injury
to the public.

Test of injury risk from a drone by
Virginia Tech

A drone crash

Front In
form

 Technol E
lectro

n Eng

Motivation (2/2)

Algorithm level Source code level
Performance Improvements: Potential software bugs:

(1) Improve modeling accuracy; (1) Loss synchronization with
an external sensor;

(2) Enhance the robustness of control
algorithms;

(2) High approximation errors;

(3) Reduce sensor errors. (3) Infinite loops.

2. Most efforts to improve reliability of the UAV systems have
focused on algorithms.

3. Potential software bugs in the source code are subtle but might
degrade the performance or even cause the drone to crash.
4. Few people so far have addressed bugs in the implementation of
algorithms at the source code level.

Front In
form

 Technol E
lectro

n Eng

Main idea

Improve safety and reliability of a drone system:

1. Design a new hierarchical software architecture of the
drone system;

2. Verify serial peripheral interface (SPI) and inter-
integrated circuit (I2C) bus drivers at the source code
level by formal verification methods;

3. Evaluate improvements in reliability in case of device
anomalies.

Front In
form

 Technol E
lectro

n Eng

Software architecture

Front In
form

 Technol E
lectro

n Eng

Driver verification

Method (1/6)

Front In
form

 Technol E
lectro

n Eng

Firstly, we build a bus model which abstracts machine registers
and the physical memory into a state transition system.

Method (2/6)

Front In
form

 Technol E
lectro

n Eng

Secondly, we divide the C code of the device driver into multiple
layers according to their functionalities and dependencies and
abstract each C function into a Coq function.

Method (3/6)

Front In
form

 Technol E
lectro

n Eng

Lastly, we verify the C code based on the bus model and abstract
bus driver layers. The verification method contains two steps:
functional correctness of the C code and linking all layers together.

Method (4/6)

Functional correctness of the C code
Using Clightgen (provided by Compcert) to translate the C code of
the SPI driver into a Clight abstract syntax tree.

Front In
form

 Technol E
lectro

n Eng

Method (5/6)
Functional correctness of the C code

Then, we need to prove two refinements
in the verification: the refinement
between highspec and lowspec and the
refinement between lowspec and actual
C code.

Highspec describes the desired
functionality of the module. The lowspec
also abstracts the behavior of each
function, but is specified in a way that is
closer to the concrete hardware. Front In

form
 Technol E

lectro
n Eng

Method (6/6)
Linking all layers together

The framework enables us to link layer together and prove the
following contextual refinement between layers:

Once this refinement is proved, the actual implementation of the
function CH0SELECT is hidden under layer DSpiSelChannel.
Following this method, we can link all layers together.

Front In
form

 Technol E
lectro

n Eng

Experiments
1. Two drone systems were tested in the real field and the results were
further compared. The first system is the drone system with a verified
SPI bus driver, and the second one is a system with an unverified SPI
bus driver.

2. Ten trials have been carried out with different bugs randomly
occurring in the SPI bus driver. We recorded and compared attitudes of
the drone.

Front In
form

 Technol E
lectro

n Eng

Major results (1/5)

Three peaks of errors are observed in the timeline 8.6 s, 16.8 s, and
28.5 s. At these time intervals, software bugs in the device drivers
cause delayed process and response of sensor data, which further
block the controller’s execution for the next multiple control periods.

Front In
form

 Technol E
lectro

n Eng

Major results (2/5)

Software bugs are detected at 1.8 s and 23.2 s. However, these bugs
have no obvious impact on the roll angle, due to the relatively steady
attitude of the drone. When these bugs occur, the input of each
motor will be the same as in the previous period. If the current
attitude of the drone does not change a lot compared with the
previous one, the drone will stay stable using the same motor input.

Front In
form

 Technol E
lectro

n Eng

Major results (3/5)

Fig. 11 shows the value of the yaw angle, which does not experience the
same variation upon software faults caused by bugs. It is attributed to the
sensor fusion algorithm, which uses data from both the IMU (connected
with the SPI bus) and the magnetometer (connected to the I2C bus) to
improve the accuracy of the estimated yaw angle.

Front In
form

 Technol E
lectro

n Eng

Major results (4/5)

The existence of software bugs leads to significant differences
between desired and actual pitch and roll angles.

Front In
form

 Technol E
lectro

n Eng

Major results (5/5)

Drones in Figs. 13a and 13b have installed verified device drivers. They
could hover, and are able to change their attitudes and fly forward. Fig. 13c
shows the situation where there are bugs in the drone’s SPI bus driver, and
shows greater variations of the drone’s attitude compared to Figs. 13a and
13b, even if they are operated in the same manner.

Front In
form

 Technol E
lectro

n Eng

Conclusions

A new software architecture and development method

targeting at safety and reliability for a drone system has

been proposed in this study. With the help of formal

verification, several bus drivers which play critical roles

in flight control were verified. Experiments in the filed

tests showed that the proposed system enjoys improved

reliability by eliminating the subtle bugs that can be

introduced in software development.

Front In
form

 Technol E
lectro

n Eng

	Slide Number 1
	Motivation (1/2)
	Motivation (2/2)
	Main idea
	Slide Number 5
	Driver verification
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Conclusions

