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Motivation (1/2)

1. Unmanned aerial vehicle or drone is a typical safety-critical

system. As the drone comes to our daily life, failures of a drone
may result in severe damage to the environment and serious injury

to the pubilic.

Test of injury risk from a drone by
Virginia Tech

A drone crash



Motivation (2/2)

2. Most efforts to improve reliability of the UAV systems have
focused on algorithms.

Algorithm level Source code level
Performance Improvements: Potential software bugs:
(1) Improve modeling accuracy; (1) Loss synchronization with

an external sensor;

(2) Enhance the robustness of control (2) High approximation errors;
algorithms;

(3) Reduce sensor errors. (3) Infinite loops.

3. Potential software bugs in the source code are subtle but might
degrade the performance or even cause the drone to crash.

4. Few people so far have addressed bugs in the implementation of
algorithms at the source code level.



Main idea

Improve safety and reliability of a drone system:

1. Design a new hierarchical software architecture of the
drone system;

2. Verify serial peripheral interface (SPI) and inter-
integrated circuit (12C) bus drivers at the source code
level by formal verification methods;

3. Evaluate improvements in reliability in case of device
anomalies.
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Method (1/6)

Driver verification
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Fig. 2 Driver verification structure



Method (2/6)

Firstly, we build a bus model which abstracts machine registers
and the physical memory into a state transition system.

Definition 2 (I2C bus abstract state) Definition 6 (12C bus read semantics)
Record I2CState := 1 < —
mkI2CState { ff’u gjm— next (175¢,1:)
I2C_0A: 7 s = ﬂxz.:(s,tﬂ:)
I12C_SA: Z res = k(n,s’)

I2C_RX_DATA: 7 s = 680 (s’, (input n)),

Z
I2C_TX_DATA: Z
}'.' ' Definition 7 (12C bus write semantics)
(e,1}) = next (I$3%,1;)
s’ = 0558 (s,e)
s” = 650 (s, (output nv))
write(n,v,1;,1558)=(s",1]).




Method (3/6)

Secondly, we divide the C code of the device driver into multiple
layers according to their functionalities and dependencies and
abstract each C function into a Coq function.
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Fig. 3 Layering structure of the SPI bus driver

References to color refer to the online version of this figure



Method (4/6)

Lastly, we verify the C code based on the bus model and abstract
bus driver layers. The verification method contains two steps:
functional correctness of the C code and linking all layers together.

Functional correctness of the C code

Using Clightgen (provided by Compcert) to translate the C code of
the SPI driver into a Clight abstract syntax tree.

void mcspi_enable_channel (void)

{

write_register(ENABLE_CHANNEL, CHOCTRL);
}

Definition mcspi_enable channel :=

(Scall None

(Evar MCSPI_write_register ( Tfunction

( Tcons tuint ( Tcons tuint Tnil)) tvoid cc_default))
((Econst_int (ENABLE_CHANNEL) tint) ::
(Econst_int (CHOCTRL) tint) :: nil}))).

Fig. 4 C source code and its Clight representation (in
Coq) of function mcspi enable channel



Method (5/6)

Functional correctness of the C code

Then, we need to prove two refinements

in the verification: the refinement v

between highspec and lowspec and the P20 | c=e
refinement between lowspec and actual T meee |
C code. )
Highspec describes the desired S ot
functionality of the module. The lowspec
also abstracts the behavior of each <.
function, but is specified in a way that is

closer to the concrete hardware.

Rafinemant:
Lowspec = Module

Pass

Cumrent layer
stop

Fig. 5 Contextual refinement verification for a C
function



Method (6/6)

Linking all layers together

The framework enables us to link layer together and prove the
following contextual refinement between layers:

P@DSpiSelChannel C
P &5 CHOSELECTWDSpiEnChannel.

Once this refinement is proved, the actual implementation of the
function CHOSELECT is hidden under layer DSpiSelChannel.

Following this method, we can link all layers together.
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Fig. T Refinement betweeon abstract layvers



Experiments

1. Two drone systems were tested in the real field and the results were
further compared. The first system is the drone system with a verified
SPI bus driver, and the second one is a system with an unverified SPI

bus driver.

2. Ten trials have been carried out with different bugs randomly
occurring in the SPI bus driver. We recorded and compared attitudes of

the drone.

Table 1 Configurations of three sensors of the drone”

Sensor Chip name Measurement range Sensitivity Sampling rate
Accelerometer MPTU9250 1&g 4096 LSB /g 200 Hz
Gyroscope MPU9250 +1000 dps 32.8 LSB/dps 200 Hz
Magnetometer HMC5883 +1.3 Gs 1090 LSB/Gs 75 Hz

* Taken from datasheets of MPU9250 and HMCSE883. g0 standard gravity; dps: degree per second; Gs: gauss; LSB: least

significant bit



Major results (1/5)
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Fig. 9 Roll angle response of drone with an unverified
SPI bus driver: (a) roll angle: (b) roll angle error; (c)
SPI bus bug

Three peaks of errors are observed in the timeline 8.6 s, 16.8 s, and
28.5 s. At these time intervals, software bugs in the device drivers
cause delayed process and response of sensor data, which further
block the controller’s execution for the next multiple control periods.



Major results (2/5)
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Fig. 9 Roll angle response of drone with an unverified
SPI bus driver: (a) roll angle: (b) roll angle error; (c)
SPI bus bug

Software bugs are detected at 1.8 s and 23.2 s. However, these bugs
have no obvious impact on the roll angle, due to the relatively steady
attitude of the drone. When these bugs occur, the input of each
motor will be the same as in the previous period. If the current
attitude of the drone does not change a lot compared with the
previous one, the drone will stay stable using the same motor input.



Major results (3/5)
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Fig. 11 Yaw angle response of drone with an unver-
ified SPI bus driver: (a) yaw angle; (b) yaw angle
error; (c) SPI bus bug

Fig. 11 shows the value of the yaw angle, which does not experience the
same variation upon software faults caused by bugs. It is attributed to the
sensor fusion algorithm, which uses data from both the IMU (connected
with the SPI bus) and the magnetometer (connected to the 12C bus) to
improve the accuracy of the estimated yaw angle.



Major results (4/5)
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Fig. 12 Comparison of attitude errors in two drone
systems: (a) roll angle error; (b) corresponding SPI
bus bug; (c) pitch angle error; (d) corresponding SPI
bus bug

The existence of software bugs leads to significant differences
between desired and actual pitch and roll angles.



Major results (5/5)
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Fig. 13 Empirical comparison between systems with ((a) and (b)) or without (c) a verified SPI bus driver

Drones in Figs. 13a and 13b have installed verified device drivers. They
could hover, and are able to change their attitudes and fly forward. Fig. 13c
shows the situation where there are bugs in the drone’s SPI bus driver, and
shows greater variations of the drone’s attitude compared to Figs. 13a and
13b, even if they are operated in the same manner.



Conclusions

A new software architecture and development method
targeting at safety and reliability for a drone system has
been proposed in this study. With the help of formal
verification, several bus drivers which play critical roles
in flight control were verified. Experiments in the filed
tests showed that the proposed system enjoys improved
reliability by eliminating the subtle bugs that can be

introduced in software development.
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