Nan LI, Xun-min ZHU, Wen-qiang LI, Zhen-hai FU, Meng-zhu HU, Hui-zhu HU, 2019. Review of optical tweezers in vacuum. *Frontiers of Information Technology* & *Electronic Engineering*, 20(5):655-673.

https://doi.org/10.1631/FITEE.1900095

Review of optical tweezers in vacuum

Key words: Optical tweezers, Optical trapping in vacuum, Optical cooling

Corresponding author: Hui-zhu HU E-mail: huhuizhu2000@zju.edu.cn

DORCID: https://orcid.org/0000-0003-1690-9414

Motivation

- Optical tweezers in vacuum, eliminating the primary source of dissipation present for most inertial sensors, attracted much attention in both fundamental and applied physics.
- Remarkable progress in trapping micro-scale and nanoscale spheres at high vacuum pressures has been achieved in recent years, but no specific review with an intensive survey was published yet.
- A review of the history and the basic concepts of optical tweezers in vacuum would provide an overall understanding of the field.

Main idea

- 1. Basic theory and experimental scheme of optical tweezers in vacuum
- Principle of optical trapping --- build a physical picture including radiation force and optical cooling theory
- Fundamental techniques in building optical tweezers in vacuum

- 2. State-of-the-art progress in vacuum optical tweezers field
- Force sensor, accelerometer, micro-gyroscope, and frontier research like macroscopic quantum state

Illustrative demonstration

- 1. Simulation of the PSD of particle displacement with differential cooling and air pressure reducing conditions
- The PSD of particle displacement in the low frequency range decreases only when air pressure drops
- Particles under green line conditions are more likely to escape unless there exists efficient cooling

Illustrative demonstration

2. A survey of reported diverse optical configurations for trapping particles in vacuum is listed

Optical configuration	Particle material & diameter	Numerical aperture	Laser & power	Cooling method	Equivalent temperature	Vacuum pressure (mbar*)	Reference
Counter- propagating in- coherent beams	Silica, 3 µm	0.680	~50 mW per beam	Differential feedback	150, 1.5, and 68 mK for the x, y, and z modes, respectively	5.2E-5	Li et al. (2011)
Counter- propagating in- coherent beams	Silica, 3 μm	~0.075	~120 mW per beam	Differential feedback	10, 55, and 12 K for the x, y, and z modes, respectively	6.7E-6	Ranjit et al. (2015)
Counter- propagating co- herent beams	Silica, 300 nm	~0.075	~120 mW per beam	Differential feedback	400 mK for the one mode	5.0E-6	Ranjit et al. (2016)
Upward single beam	Silica, 14 μm	0.03	~200 mW	Differential feedback	\sim 7/5 mK for the <i>x</i> mode	1.0E-6	Monteiro et al. (2017)
Single beam	Silica, 140 nm	Not mentioned	Not mentioned	Parametric feedback	150, 400, and 50 mK for the x, y, and z modes, respectively	1.0E-6	Gieseler et al. (2012)
Single beam	Silica, 100 nm	0.9	Not mentioned	Parametric feedback	145 μ K for the y mode	6.9E - 9	Jain et al. (2016a)
Single beam	Silica, 75 nm	0.8	1064 nm ~100 mW	Parametric feedback	Not mentioned	5.0E-7	Gieseler et al. (2012)
Single beam	Silica, 177 nm	0.77	1565 nm 540 mW	No cooling	Not mentioned	~1.0E-6	Torki (2016)
Single beam	Silica, 170 nm nanodumbbell	0.85	1550 nm 500 mW	No cooling	Not mentioned	~1.0E-4	Ahn et al. (2018)
Single beam with parabolic mirror	Silica, 64 nm	0.995	385 mW	Parametric feedback	13, 6, and 3 mK for the <i>x</i> , <i>y</i> , and <i>z</i> modes, respectively	6.0E-6	Vovrosh et al. (2017)

¹ mbar=100 Pa

Illustrative demonstration

3. Reported applications including force measurement (a), acceleration measurement (b), gyroscope effect study (c), and macroscopic quantum state (d) are demonstrated.

Summary

- Fundamental concepts of optical trapping, cooling, and detection were discussed.
- An intensive survey of progress in vacuum optical tweezers was given.
- The development trend in this field was proposed and analyzed.