
Modified condition/decision coverage

(MC/DC) oriented compiler optimization

 for symbolic execution

Key words: Compiler optimization; Modified condition/decision

coverage (MC/DC); Optimization recommendation; Symbolic execution

Corresponding author: Zhen-bang CHEN

E-mail: zbchen@nudt.edu.cn

 ORCID: http://orcid.org/0000-0003-0874-3231

Wei-jiang HONG, Yi-jun LIU, Zhen-bang CHEN, Wei DONG, Ji WANG, 2020.

Modified condition/decision coverage (MC/DC) oriented compiler optimization

for symbolic execution. Frontiers of Information Technology & Electronic

Engineering, 21(9):1267-1284. https://doi.org/10.1631/FITEE.1900213

Front In
form

 Technol E
lectro

n Eng

https://doi.org/10.1631/FITEE.1900213
https://doi.org/10.1631/FITEE.1900213
https://doi.org/10.1631/FITEE.1900213

Symbolic execution is an effective way to systematically

explore the search space of a program.

The program to be analyzed is usually compiled into a

binary or an intermediate representation, on which symbolic

execution is carried out. During this process, compiler

optimizations influence the effectiveness and efficiency of

symbolic execution.

We provide a compiler optimization recommendation for

symbolic execution with respect to modified

condition/decision coverage (MC/DC).

Motivation

Front In
form

 Technol E
lectro

n Eng

Compiler optimizations options

Instruction combining

Function inlining

Promote memory to register

Scalar replacement of aggregates

Loop rotate

Control flow graph simplification

Symbolic executor

(KLEE)

Motivation

Generate 3 test cases

(e.g. 0, -1, 10)

 100% MC/DC

Off

Off

Off

Off

Off

Off

An example program

Front In
form

 Technol E
lectro

n Eng

Compiler optimizations options

Instruction combining

Function inlining

Promote memory to register

Scalar replacement of aggregates

Loop rotate

Control flow graph simplification

Off On

On

On

On

On

On

Symbolic executor

(KLEE)

Generate 2 test cases

(e.g. 0, 10)

 50% MC/DC

Motivation

An example program

Front In
form

 Technol E
lectro

n Eng

Method

Investigate compiler optimization’s influence on MC/DC.

Train a model to recommend compiler optimization to

improve MC/DC.

Evaluate the model’s effectiveness and efficiency.

Front In
form

 Technol E
lectro

n Eng

 83 programs from Coreutils[1]

 We take the MC/DC of not using any compiler optimization as the baseline and

count the number of influenced programs (decrease/increase MC/DC by more than

10%) after enabling certain compiler optimization.

[1] https://www.gnu.org/software/Coreutils/Coreutils.html

i. Investigation

 IC (instruction combining) is the dominant one that

influences MC/DC.

Front In
form

 Technol E
lectro

n Eng

https://www.gnu.org/software/Coreutils/Coreutils.html

ii. Training

 Extract the features of the program w.r.t. IC to obtain a vector of 43 dimensions.

 Label each program’s features according to whether applying IC improves MC/DC

during the investigation process.

 Use SVM to train a model that recommends two different compiler configurations:

using all compiler optimization / using all compiler optimization except for IC.

Front In
form

 Technol E
lectro

n Eng

iii. Evaluation

 The recommendation method’s line (auto) is above those of ALL and NO on most

(78.26%) programs, which implies the effectiveness of this method on the NECLA

benchmark[1].

[1] https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php

Front In
form

 Technol E
lectro

n Eng

https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php
https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php
https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php

Conclusions

We provide a general framework for the empirical influence

study of compiler optimization on symbolic execution w.r.t.

MC/DC. Empirical studies indicate that instruction combining

(IC) optimization is the dominant component influencing the

effectiveness and efficiency of symbolic execution.

We propose a method to extract the program features w.r.t.

IC optimization, based on which an optimization

recommendation method for symbolic execution is proposed

to improve the coverage. Experimental results indicate that

the recommendation method is effective.

Front In
form

 Technol E
lectro

n Eng

