Wei-jiang HONG, Yi-jun LIU, Zhen-bang CHEN, Wei DONG, Ji WANG, 2020.
Modified condition/decision coverage (MC/DC) oriented compiler optimization
for symbolic execution. Frontiers of Information Technology & Electronic
Engineering, 21(9):1267-1284. https://doi.org/10.1631/FITEE.1900213

Modified condition/decision coverage
(MC/DC) oriented compiler optimization
for symbolic execution

Key words: Compiler optimization; Modified condition/decision
coverage (MC/DC); Optimization recommendation; Symbolic execution

Corresponding author: Zhen-bang CHEN
E-mail: zbchen@nudt.edu.cn
ORCID: http://orcid.org/0000-0003-0874-3231

https://doi.org/10.1631/FITEE.1900213
https://doi.org/10.1631/FITEE.1900213
https://doi.org/10.1631/FITEE.1900213

Motivation

O Symbolic execution is an effective way to systematically
explore the search space of a program.

OThe program to be analyzed is usually compiled into a
binary or an intermediate representation, on which symbolic
execution is carried out. During this process, compiler
optimizations influence the effectiveness and efficiency of

symbolic execution.

OWe provide a compiler optimization recommendation for
symbolic execution with respect to modified
condition/decision coverage (MC/DC).

Motivation

int get_sign (int x) {
if (x==0)
return 0;) Generate 3 test cases
if (x<0) Symbolic executor (e.g. 0, -1, 10)
return -1; (KLEE) > 100% MC/DC
else
return 1; — ——
}

/Compiler optimizations options\

Instruction combining
@ Function inlining

@ Promote memory to register
Scalar replacement of aggregates

Loop rotate
Control flow graph simplification/

An example program

Motivation

int get_sign (int x) {
if (x==0)
return O Generate 2 test cases
if (x<0) Symbolic executor (e.g. 0, 10)
return —1; (KLEE) - 50% MC/DC
else __—
return 1; T
}

/Compiler optimizations options\

Instruction combining

Function inlining

Promote memory to register
Scalar replacement of aggregates

Loop rotate
Control flow graph simplification/

An example program

980888

Method

OInvestigate compiler optimization’s influence on MC/DC.

OTrain a model to recommend compiler optimization to
improve MC/DC.

O Evaluate the model’s effectiveness and efficiency.

I. Investigation

O 83 programs from Coreutils!]

O We take the MC/DC of not using any compiler optimization as the baseline and

count the number of influenced programs (decrease/increase MC/DC by more than

10%) after enabling certain compiler optimization.

40 T T T T T T T T T T T T T T T T T T

30 +

25

Number of programs

PSS

]

L £ £ e
% /%,;'9 Ofx\o;@ ARSI S (’::;;0 G /"oﬁs\o@@ X,
: Q

AR Decrease
HE Increase

S &, L G G S
BN OC?A OC)OC%//‘S‘ el/ 0"
&

A

O IC (instruction combining) is the dominant one that

influences MC/DC.

[1] https://www.gnu.org/software/Coreutils/Coreutils.html

P #c | P #c || P #c
base64 108 id 53 setuidgid 21
basename 11 join 259 shred 207
cat 136 link 6 shuf 130
chcon 134 logname 4 sleep 11
chgrp 22 Is 876 sort 668
chown 21 mdisum 220 split 91
chroot 8 mkdir 13 stat 58
cksum 90 mkfifo 10 stty 927
comm 61 mknod 24 sum 75
cp 165 mktemp 29 sync 3
csplit 171 mv 52 tac 130
cut 209 nice 23 tail 377
date 70 nl 163 || tee 76
dd 230 nohup 30 touch 84
df 368 || od 32 tr 256
dircolors 177 || paste 118 TRUE 47
dirname 11 pathchk 56 tsort 219
echo 50 pinky 92 tty 6
env 59 pr 379 uname 24
expand 101 printenv 14 unexpand 128
expr 178 printf 121 uniq 131
factor 22 ptx 339 unlink 5
FALSE 47 pwd 28 uptime 27
fmt 145 readlink 8 users 32
fold 126 rm 23 wc 225
ginstall 93 rmdir 25 whoami 4
head 259 runcon 34 yes 7
hostid 3 seq 128

P: program; #¢c: MC/DC condition

https://www.gnu.org/software/Coreutils/Coreutils.html

I. Training

e e e e e R e e R e R e e e e e e

{Ofﬂine training

~
!
[Feature 'ﬁ I
2 | extractor |= | IC feature [[Icp| LIBSVM |':_'> SVM model
I - e

/

Training C
programs

_________________________ =
Optimization recommendation

1 IC feature i — :

C program | ot Feature |::>_____.._.-—=> Classifier and :::> Optimized IR = Symb(;hc = Test
1 :> optimizer | representation executor cases
! I
! [
\ /

—

——— extractor |:> IR
representation

O Extract the features of the program w.r.t. IC to obtain a vector of 43 dimensions.
O Label each program’s features according to whether applying IC improves MC/DC
during the investigation process.

O Use SVM to train a model that recommends two different compiler configurations:
using all compiler optimization / using all compiler optimization except for IC.

1. Evaluation

100 } -
80 p
o 60
—
Q
= 40
----NO
20 — ALL T
—e— Auto
0 ; : .
0 5 10 15 20 25

Ascending ordinal number of programs w.r.t. NO

O The recommendation method’s line (auto) is above those of ALL and NO on most
(78.26%) programs, which implies the effectiveness of this method on the NECLA
benchmarkll,

[1] https://lwww.neclabs.com/research/system/systems_SAV-website/benchmarks.php

https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php
https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php
https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php

Conclusions

OWe provide a general framework for the empirical influence
study of compiler optimization on symbolic execution w.r.t.
MC/DC. Empirical studies indicate that instruction combining
(IC) optimization is the dominant component influencing the
effectiveness and efficiency of symbolic execution.

OWe propose a method to extract the program features w.r.t.
|C optimization, based on which an optimization
recommendation method for symbolic execution is proposed
to improve the coverage. Experimental results indicate that
the recommendation method is effective.

