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Symbolic execution is an effective way to systematically 

explore the search space of a program.  

 

The program to be analyzed is usually compiled into a 

binary or an intermediate representation, on which symbolic 

execution is carried out. During this process, compiler 

optimizations influence the effectiveness and efficiency of 

symbolic execution. 

 

We provide a compiler optimization recommendation for 

symbolic execution with respect to modified 

condition/decision coverage (MC/DC). 

Motivation 
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Compiler optimizations options 

Instruction combining 

Function inlining 

Promote memory to register 

Scalar replacement of aggregates 

Loop rotate 

Control flow graph simplification 

Symbolic executor 

(KLEE) 

Motivation 

Generate 3 test cases 

(e.g. 0, -1, 10)  

 100% MC/DC 

Off 

Off 

Off 

Off 

Off 

Off 

An example program 
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Compiler optimizations options 

Instruction combining 

Function inlining 

Promote memory to register 

Scalar replacement of aggregates 

Loop rotate 

Control flow graph simplification 

Off On 

On 

On 

On 

On 

On 

Symbolic executor 

(KLEE) 

Generate 2 test cases 

(e.g. 0, 10)  

 50% MC/DC 

Motivation 

An example program 
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Method 

Investigate compiler optimization’s influence on MC/DC. 

 

Train a model to recommend compiler optimization to  

improve MC/DC. 

 

Evaluate the model’s effectiveness and efficiency. 
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 83 programs from Coreutils[1] 

 We take the MC/DC of not using any compiler optimization as the baseline and  

count the number of influenced programs (decrease/increase MC/DC by more than 

10%) after enabling certain compiler optimization.  

[1] https://www.gnu.org/software/Coreutils/Coreutils.html 

i. Investigation 

   
 IC (instruction combining) is the dominant one that 

influences MC/DC.  
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ii. Training 

 Extract the features of the program w.r.t. IC to obtain a vector of 43 dimensions. 

 Label each program’s features according to whether applying IC improves MC/DC 

during the investigation process. 

 Use SVM to train a model that recommends two different compiler configurations: 

using all compiler optimization / using all compiler optimization except for IC. 
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iii. Evaluation 

   
 The recommendation method’s line (auto) is above those of ALL and NO on most 

(78.26%) programs, which implies the effectiveness of this method on the NECLA 

benchmark[1]. 

[1] https://www.neclabs.com/research/system/systems_SAV-website/benchmarks.php 
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Conclusions 

We provide a general framework for the empirical influence 

study of compiler optimization on symbolic execution w.r.t. 

MC/DC. Empirical studies indicate that instruction combining 

(IC) optimization is the dominant component influencing the 

effectiveness and efficiency of symbolic execution. 

 

We propose a method to extract the program features w.r.t. 

IC optimization, based on which an optimization 

recommendation method for symbolic execution is proposed 

to improve the coverage. Experimental results indicate that 

the recommendation method is effective. 
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