Tian-bao DU, Guo-hua SHEN, Zhi-qiu HUANG, Yao-shen YU, De-xiang WU, 2020. Automatic traceability link recovery via active learning. *Frontiers of Information Technology & Electronic Engineering*, 21(8):1217-1225. <u>https://doi.org/10.1631/FITEE.1900222</u>

Automatic traceability link recovery via active learning

Key words: Automatic; Traceability link recovery; Manpower; Active learning

Corresponding author: Guo-hua SHEN E-mail: <u>ghshen@nuaa.edu.cn</u> DRCID: https://orcid.org/0000-0003-2182-0019

Motivation

1. Traceability link recovery (TLR) is an important and costly software task that requires humans establish relationships between source and target artifact sets within the same project. Previous research has proposed to establish traceability links by machine learning approaches.

2. Current machine learning approaches cannot be well applied to projects without traceability information (links), because training an effective predictive model requires humans label too many traceability links.

3. To save manpower, we propose a new TLR approach based on active learning (AL), which is called the AL-based approach.

Main idea

1. In recent years, some research teams have begun to apply machine learning to TLR. They used existing traceability information to train a classifier and then used this classifier to classify possible traceability links as valid or invalid (i.e., two artifacts are unrelated). Although the accuracy of these approaches is high, creating traceability information can require a lot of manpower, especially for projects without traceability information.

2. To save manpower, we propose a new TLR approach based on active learning. The main difference between TSL- and AL-based approaches is that the TSL-based approach randomly selects traceability links for labeling, while the AL-based approach selects traceability links for labeling based on a sample selection strategy.

To save manpower, we use the AL-based approach to select a small number of representative samples for labeling. The AL-based approach includes mainly the following steps:

- It generates a training set.
- It establishes a set of features for traceability links.
- The training data is balanced by rebalancing.
- The learning engine trains a classifier, which is used to classify unlabeled links.

Fig. 1 Overview of the active learning based approach

0

2. Datasets for the experiments

Table 2 Dat	asets used i	in the eval	uation	
Dataset	Number of	Artifact type		
	invalid links	valid links	Source	Target
eAnci	7091	554	UC	CC
SMOS	5656	1044	UC	$\mathbf{C}\mathbf{C}$
MODIS	890	41	HighR	LowR
EasyClinic (TC-UC)	1827	63	TC	UC
EasyClinic (TC-CC)	2757	204	TC	$\mathbf{C}\mathbf{C}$
EasyClinic (ID-TC)	1177	83	ID	TC
eTour	6363	365	UC	CC
Total	25 761	2354	_	_

HighR: high-level requirements; LowR: low-level requirements; UC: use cases; CC: code classes; ID: interaction diagrams; TC: test cases

3. Active learning process

Algorithm 1 Active learning process

Input: A sample set $D = \{x_1, x_2, ..., x_n\}$, a labeled sample set D_1 , where D_1 is initially empty, and an unlabeled sample set D_u , where $D_u = D \setminus D_1$

Output: D_l

1: $D_1 \leftarrow D_{l_0}$ // Randomly label a small number of // samples to initialize D_1

2: Train a classifier on D_1

- 3: while Termination condition is not met
- 4: Select a sample x_i from D_u
- 5: Experts label the sample x_i
- 6: Add the labeled sample x_i to D_1
- 7: Train the classifier on D_1
- 8: end while
- 9: Return D_1

- 4. Two types of features for representing the links
- IR-based features
- Query quality (QQ) features
- 5. Data rebalancing
- To avoid sample imbalance, a synthetic minority oversampling technique (SMOTE, an oversampling method) is used to add minority class samples.

Table 3Classification algorithms and rebalancingtechniques

Category	Variable	Note				
,n,	RF	Classifier that uses a multitude of RF				
Classification	Naive Bayes	Naive Bayes classifier using estimator classes				
algorithms	Logistic	Regression model with a ridge estimator				
	SVM	Support vector machine classifier				
	SMOTE	Adding minority class samples				
Rebalancing techniques	Undersampling	Reducing majority class samples				
	None	No rebalancing technique is applied				

Major results

1. Determining the best configuration of the AL-based approach

Table 4Average F-score achieved by the implemen-tation of the AL-based approach across all datasets

Rebalancing		Average F-score $(\%)$							
technique	RF	Naive Bayes	Logistic	SVM					
None	76.02	37.66^{*}	46.00^{*}	40.52^{*}					
SMOTE	79.41	35.02^{*}	51.78^{*}	49.25^{*}					
Undersampling	53.66*	32.46^{*}	37.64^{*}	36.63^{*}					

The bold font represents the best configuration. * performs statistically significantly worse than the best configuration (at the 0.05 significance level)

The combination of RF and SMOTE is the best one.

Major results

2. Determining a suitable training set size for the AL-based approach

Table 5	Average	F-score	achieved	by th	e imple	mentation	of t	he A	L-based	approach	using	training	\mathbf{sets}	of
different	sizes								×(O,					

	Average F-score (%)								
Dataset		IR*							
	2%	4%	6%	8%	10%				
eAnci (CC-UC)	24.24	50.07	55.05 (+30.50)	60.02	64.24	24.55			
SMOS (CC-UC)	39.75	32.88	39.13 (+12.17)	40.47	42.62	26.96			
MODIS (HighR-LowR)	26.77	29.13	38.18 (+11.31)	39.78	40.51	26.87			
EasyClinic (TC-UC)	25.57	33.96	$59.81 \ (+16.06)$	62.89	75.65	43.75			
EasyClinic (TC-CC)	51.97	66.01	$76.56 \ (+29.82)$	83.53	90.41	45.74			
EasyClinic (ID-TC)	50.42	55.64	$64.50 \ (+16.53)$	74.39	81.45	47.97			
eTour (CC-UC)	38.98	42.09	46.09(-6.60)	47.48	47.83	52.69			
Average	36.96	44.25	54.19 (+15.83)	58.37	63.24	38.36			

* Baseline (IR: information retrieval). The number in the parentheses represents the difference of F-score between the AL- and IR-based approaches

The 6% dataset size is a suitable training set size for the AL-based approach.

Major results

3. Comparing the AL-based approach with the TSL-based approach

Dataset	Precisi	on (%)	Recal	1 (%)	F-score (%)		
Dataset	AL	TSL	AL	TSL	AL	TSL	
eAnci (CC-UC)	73.37	50.95	44.05	37.27	$55.05 \ (+12.00)$	43.05	
SMOS (CC-UC)	57.78	52.39	29.58	24.92	39.13 (+5.35)	33.78	
MODIS (HighR-LowR)	72.41	32.04	25.93	30.69	$38.18 \ (+6.83)$	31.35	
EasyClinic (TC-UC)	95.05	75.44	43.64	28.76	$59.81 \ (+18.16)$	41.65	
EasyClinic (TC-CC)	89.97	71.45	66.63	40.29	$76.56 \ (+25.03)$	51.53	
EasyClinic (ID-TC)	87.56	67.79	51.06	25.83	$64.50 \ (+27.09)$	37.41	
eTour (CC-UC)	68.98	59.40	34.60	18.56	$46.09\ (+17.81)$	28.28	
Average	77.87	58.50	41.59	29.48	54.19 (+16.04)	38.15	

Table 6 Precision, recall, and F-score of the AL- and TSL-based approaches

The number in the parentheses represents the difference of F-score between the AL- and TSL-based approaches

When we use 6% of the dataset as the training set, the AL-based approach outperforms the TSL-based approach in terms of precision, recall, and F-score for each of the seven datasets.

Conclusions

1. An AL-based approach has been proposed to save manpower.

2. We empirically derive the best configuration of the AL-based approach on seven datasets.

3. We choose a suitable training set size (6%) for the AL-based approach.

4. The AL-based approach outperforms the IR-based approach by more than 11% in terms of F-score.