Lang MA, Qiaoyong ZHONG, Yingying ZHANG, Di XIE, Shiliang PU, 2021. Associative affinity network learning for multi-object tracking. *Frontiers of Information Technology & Electronic Engineering*, 22(9):1194-1206. <u>https://doi.org/10.1631/FITEE.2000272</u>

Associative affinity network learning for multi-object tracking

Key words: Multi-object tracking; Deep neural network; Affinity learning

Corresponding author: Liang MA E-mail: maliang6@hikvision.com ORCID: <u>https://orcid.org/0000-0003-4228-258X</u>

Motivation

Detector+ReID

- Less efficiency
- Not end-to-end trainable
- Not suitable for flawed detection or targets under occlusion

actron Eng

CNN

non-CNN

Method

□Associative affinity network

- End-to-end trainable
- Directly estimate the associative affinity of a trackdetection
- Perform single-object tracking
- Alleviate flawed detection and targets under occlusion

Method: feature network

Appearance feature network

Method: metric network

MOT results

Dataset	Tracker	МОТА↑ (%)	IDF1↑ (%)	MT↑	ML↓	FP↓	FN↓	IDS↓	Hz↑
MOT16	UMA (Yin et al., 2020)	50.5	52.8	17.8%	33.7%	7587	81924	685	5.0
	CRF TRACK (Xiang J et al., 2021)	50.3	54.4	18.3%	35.7%	7148	82746	702	1.5
	Tracktor++ (Bergmann et al., 2019a)	54.4	52.5	19.0%	36.9%	3280	79149	682	1.5
	LMP (Tang et al., 2017)	48.8	51.3	18.2%	40.1%	6654	86 245	595	0.5
	GCRA (Ma et al., 2018)	48.2	48.6	12.9%	41.1%	5104	88 586	821	2.8
	MOTDT (Chen L et al., 2018)	47.6	50.9	15.2%	38.3%	9253	85 431	792	20.6
	NOMT (Choi, 2015)	46.4	53.3	18.3%	41.4%	9753	87 565	359	2.6
	STAM (Chu Q et al., 2017)	46.0	50.0	14.6%	43.6%	6895	91117	473	0.2
	MHT_DAM (Kim et al., 2015)	45.8	46.1	16.2%	43.2%	6412	91758	590	0.8
	LINF1 (Fagot-Bouquet et al., 2016)	41.0	45.7	11.6%	51.3%	7896	99224	430	4.2
	Ours	53.8	53.4	21.9%	32.0%	6535	76880	756	6.6
	Tracktor++ v2 (Bergmann et al., 2019b)	56.2	54.9	20.7%	35.8%	2394	76844	617	1.6
	Ours (private)	59.9	60.3	28.9%	22.3%	11018	61217	939	5.8
MOT17	UMA (Yin et al., 2020)	53.1	54.4	21.5%	31.8%	22893	239534	2251	5.0
	CRF TRACK (Xiang J et al., 2021)	53.1	53.7	24.2%	30.7%	27194	234991	2518	1.4
	FAMNet (Chu P and Ling, 2019)	52.0	48.7	19.1%	33.4%	14138	253616	3072	_
	Tracktor++ (Bergmann et al., 2019a)	53.5	52.3	19.5%	36.6%	12 201	248047	2072	1.5
	DAN (Sun et al., 2021)	52.4	48.7	21.4%	30.7%	25423	234592	6431	6.3
	TAT (Shen et al., 2018)	51.5	_	20.6%	35.5%	_	_	2593	_
	FWT (Henschel et al., 2018)	51.3	47.6	21.4%	35.2%	24101	247921	2648	0.2
	jCC (Keuper et al., 2016)	51.2	54.5	20.9%	37.0%	25937	247822	1802	1.8
	MOTDT (Chen L et al., 2018)	50.9	52.7	17.5%	35.7%	24069	250768	2474	18.3
	MHT_DAM (Kim et al., 2015)	50.7	47.2	20.8%	36.9%	22875	252889	2865	0.9
	Ours	53.9	54.3	23.7%	32.0%	27656	230042	2386	5.4
	Tracktor++_v2 (Bergmann et al., 2019b)	56.3	55.1	21.1%	35.3%	8866	235449	1987	1.5
	Ours (private)	58.8	59.5	27.8%	24.5%	30888	198864	2880	5.8
	Ours (private) w/o optical flow	58.6	59.2	27.8%	24.5%	31467	199275	3024	9.8

Table 5 Results on the MOT16 and MOT17 test datasets (trainval, App.+IoU)

 \uparrow : a higher score means a better result; \downarrow : a lower score means a better result. The best results are in bold

Summary

- An associative affinity network (AAN) for the task of multiobject tracking has been proposed. Appearance and position features and their affinity metrics have been learned jointly in an end-to-end manner.
- AAN can perform single-object tracking to maintain trajectory consistency in the presence of missed detections.
- A simple multi-object tracker with AAN achieved competitive performance on the MOT16 and MOT17 datasets.