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Motivation

1. Adaptive optics (AO) has been applied to improve the
imaging performance of fluorescence microscopes, which
enables the observation of specimen structure and function
In biomedical research.

2. Some aberrations induced by the thick tissue have
complex distributions, which cannot be reconstructed by
traditional algorithms accurately.

3. Deep learning methods have been applied to improve the
performance of AO.



Main idea

1. The proposed method combines the point spread
function (PSF) image based Zernike coefficient prediction
with wavefront stitching.

2. The strategy of connecting two models enables the use
of global and local information at the same time.

3. The proposed model is compared with several
algorithms and shows good performance.



Method

1. A novel direct wavefront detection algorithm is proposed
which consists of two convolutional networks for local
wavefronts prediction and global wavefront stitching.
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Fig. 1 Iustration of the two-step wavefront detection
S sample; G5S: guide star; L1 and L2: lenses; BSP: beam splitter plate; OBJ: objective lens. The dofted line indicates the pupil
plane of the micro-lens array. Prediction 1 indicates the prelinunary detected wavefront, and prediction 2 mndicates the final
wavefront with continuous distribution



Method

Two-step wavefront detection framework
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Fig. 2 Illustration of convolutional neural network architectures
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Simulation results

1. Test results of our model and related methods
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Analytic results

2. Analytic results of our model and related methods with
wavefront sensors
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Fig. 5 Detection results with different wavefront PV values
(a) RMS wavefront error vs. input wavefront PV value; (b) Residual wavefront PV value vs. mput wavefront PV value. Each

group contamns mine datasets. Bars indicate the standard dewviations



Analytic results

3. Analytic results of our model and related methods with
or without wavefront sensors
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Fig. 7 Comparison of peak-to-background ratios with
different methods (81 datasets)



Analytic results

4. Analytic results of our model and modified U-net for
different distribution types of wavefronts
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Fig. 8 Comparison of different types of wavefronts between TSWD and modified U-net; (d) RMS
wavefront error vs. input wavefront PV value; (e) RMS wavefront error vs. standard deviation



Conclusions

1. We combined the PSF image based Zernike coefficient
estimation for local wavefronts and the wavefront stitching
method for accurate wavefront reconstruction.

2. Global information and local information were combined
In prediction.

3. Compared to the conventional SHWS wavefront
reconstruction approaches, the indirect wavefront detection
method COAT, and the modified U-net, our method can offer
higher wavefront detection accuracy and better
generalization abillity.
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