Li WANG, Xianglong KONG, Jiahui WANG, Bixin LI, 2022. An incremental
software architecture recovery technique driven by code changes. Frontiers of
Information Technology & Electronic Engineering, 23(5):664-677.
https://doi.org/10.1631/FITEE.2100461

An incremental software architecture
recovery technique driven by code changes

Key words: Architecture recovery; Software evolution; Code change

Corresponding author: Bixin LI
E-mail: bx.li@seu.edu.cn
ORCID: https://orcid.org/0000-0001-9916-4790

https://doi.org/10.1631/FITEE.2100461

Motivation

1. It is difficult to keep software architecture up to date with
code changes during software evolution.

2. The inconsistency is caused by the limitation of standard
development specification and human-power resource,
which may impact software maintenance and evolution.

3. In practice, most large-scale projects have one or more
high-quality architecture documents which are generated at
the beginning of development or are revised through the
maintenance.

Main idea

1. Well-documented architecture usually presents the initial
structure of specific versions.

2. We can track code changes during software evolution, and
we aim to build a mapping mechanism between code-level
changes and architecture-level updates.

Method

1. The changed code files and file-level dependency graph
are obtained by analyzing code before and after software
evolution.

2. The changed code files and file-level dependency graph
are preprocessed to determine the changed elements.

3. These incremental entities are processed using double
classifiers to achieve the top-down incremental update of the
software architecture.

r—
Original
code Tile

"

Updated
code file

Method (Cont’d)

Code
information
extraction

T Preprocessing
| Changed file | Dbtain
| e incremental
. I.p files
| Updated file || Cluster
dependency | incremental
| graph | files

Incremental
entity set

Incremental
architecture update

Bayesian
classifier

Orphan adoption
algonthm classifier

Fig. 1 Incremental software architecture recovery (ISAR) framework

Updated
software
architecture

Major results

Table 4 Subject system statistics

Project LOC Number of files Description

Okhttp 53 114 325 An Android lightweight framework for network requests

Mabatis 51 044 018 A persistence layer framework to support customized SQL

Mockito 40 411 263 A simulation test framework for simple verification error production
Junit 3512 47 A regression testing framework for Java

Retrofit 19 193 235 A restful HTTP network request framework

Jadx 45 619 574 An open source tool to decompile APK files

Terrier 55 485 1122 A program for rapid development of web and desktop search engines
Clone 10 198 91 Game written in Java

Freecol 118 428 773 A turn-based strategy game; the open source version of colonization

Fastjson 117 300 1972 An open source tool for parsing and packaging JSON formatted data

Major results (Cont’d)

Table 5 MoJoSim scores of the studied techniques Table 6 Turbo MCQ) scores on the projects of ISAR
Project MolJoSim score Project Turbo MQ score
ISAR Bunch DBDP Version 2 Version 3 Version 4 Version 5
Okhttp 0.92 0.71 0.88 Okhttp 12.78 10.89 8.47 3.32
Mabatis 0,95 0.73 0.89 Mabatis 13.01 11.66 9.65 8.88
Mockito 0.92 0.72 088 Mockito 11.89 10.03 8.23 7.95
Junit 0,95 0.65 0.75 Junit 2.55 2.51 2.41 2.12
Retrofit 0.85 0.57 0.85 Retrofit 6.89 6.88 5.64 5.44
Jadx 0.76 0.55 0.64 Jadx 7.11 6.54 5.78 4.7T8
Terrier 0.90 0.68 0.88 Terrier 14.55 12.66 10.44 10.32
Clone 0.91 0.77 0.90 Clone 13.24 13.04 10.47 9.19
Freecol 0.91 0.61 0.75 Freecol 20.64 16.55 14.34 12.08
Fastjson 0.92 0.62 0.82 Fastjson 19.87 14.52 13.94 12.99

Average 0.90 0.66 0.82 Average 12.25 10.56 8.94 2.21

Major results (Cont’d)

Table 7 Time consumption of studied techniques

Time (s)

Project Version 2 Version 3 Version 4 Version 5

ISAR DBDP Bunch ISAR DBDFP Bunch ISAR DBDP Bunch ISAR DBDFP Bunch
Okhttp B37T8 32 175 22 547 2641 30 445 25 963 Q655 30 927 21 874 7931 29 488 22 554
Mabatis 12 456 72 866 57 412 11 456 68 543 55 478 T645 30012 36 B85 G465 HE 238 54 365
Mackito 14 748 57 915 38 452 12 658 59 611 36 462 18 984 65 025 60 T42 12 750 60 924 58 168
Junit 19588 3139 2151 1964 3830 2485 1648 3205 2185 2277 3034 2987
Retrofit 2834 T032 5647 2904 7397 HTR4 3545 2290 5620 2733 T128 5583
Jadx 12 445 51 904 41 875 14 489 55 391 39 245 15 794 55 031 41 321 10 494 50 415 40 871
Terrier g=07 63 008 52 965 H4TH 5T 68T 51 492 10 021 59 422 50 77« 10 487 61 140 49 263
Clone 6291 11 0038 5456 4445 9313 T458 5156 10 420 6985 H265 9772 7059
Freecol 16 254 121 B56 0OF 635 15 687 119 743 &8 019 18 900 131 695 102 990 15 805 1182 097 106 983
Fastjson 19 124 149 658 99 873 18 871 139 198 97 668 18 844 133 109 90 8269 19 657 121 &86 110 493

Conclusions

1. We proposed an incremental software architecture
recovery technique.

2. We built a mapping between code-level changes and
architecture-level updates.

3. Our approach can generally improve the effectiveness
and efficiency.

Li WANG received her MA degree from Tongji University,
Shanghai, China, in 2009. She is currently a PhD candidate
in School of Computer Science and Engineering, Southeast
University, Nanjing, China. Her research interests include
architecture recovery and software testing.

Xianglong KONG is a lecturer at School of Computer
Science and Engineering, Southeast University, Nanjing,
China. He received his BE and PhD degrees (under the
supervision of Prof. Bixin LI) from Southeast University, in
2009 and 2018, respectively. His research interests include
API recommendation, program repair, and architecture
recovery.

Jiahui WANG received her BE degree from Nanjing Audit
University in 2016, and her MA degree from Southeast
University in 2019. She is currently a senior engineer at
Huawei Digital Technology Lab, Suzhou, China. Her
research interests include architecture recovery and
software testing.

Bixin LI is a professor at Southeast University. He is
director of Institute of Software Engineering, Southeast
University. His research interests include intelligent
software development, software testing and defect
detection, and software security.

ARES
lllll
4

	An incremental software architecture recovery technique driven by code changes
	Motivation
	Main idea
	Method
	Method (Cont’d)
	Major results
	Major results (Cont’d)
	Major results (Cont’d)
	Conclusions
	幻灯片编号 10
	幻灯片编号 11

