Li WANG, Xianglong KONG, Jiahui WANG, Bixin LI, 2022. An incremental software architecture recovery technique driven by code changes. *Frontiers of Information Technology & Electronic Engineering*, 23(5):664-677. <u>https://doi.org/10.1631/FITEE.2100461</u>

An incremental software architecture recovery technique driven by code changes

Key words: Architecture recovery; Software evolution; Code change

Corresponding author: Bixin LI E-mail: bx.li@seu.edu.cn ORCID: https://orcid.org/0000-0001-9916-4790

Motivation

1. It is difficult to keep software architecture up to date with code changes during software evolution.

2. The inconsistency is caused by the limitation of standard development specification and human-power resource, which may impact software maintenance and evolution.

3. In practice, most large-scale projects have one or more high-quality architecture documents which are generated at the beginning of development or are revised through the maintenance.

Main idea

1. Well-documented architecture usually presents the initial structure of specific versions.

2. We can track code changes during software evolution, and we aim to build a mapping mechanism between code-level changes and architecture-level updates.

ontinfc

Method

1. The changed code files and file-level dependency graph are obtained by analyzing code before and after software evolution.

2. The changed code files and file-level dependency graph are preprocessed to determine the changed elements.

3. These incremental entities are processed using double classifiers to achieve the top-down incremental update of the software architecture.

Method (Cont'd)

Fig. 1 Incremental software architecture recovery (ISAR) framework

Major results

Project	LOC	Number of files	Description
Okhttp	$53\ 114$	325	An Android lightweight framework for network requests
Mabatis	$51 \ 044$	918	A persistence layer framework to support customized SQL
Mockito	40 411	863	A simulation test framework for simple verification error production
Junit	3512	47	A regression testing framework for Java
Retrofit	19 193	235	A restful HTTP network request framework
Jadx	45 619	574	An open source tool to decompile APK files
Terrier	$55 \ 485$	1122	A program for rapid development of web and desktop search engines
Clone	10 198	91	Game written in Java
Freecol	$118 \ 428$	773	A turn-based strategy game; the open source version of colonization
Fastjson	117 300	1972	An open source tool for parsing and packaging JSON formatted data

Table 4 Subject system statistics

Major results (Cont'd)

Table 5 MoJo	Sim scores	of the studie		Table 6 Turbo MQ scores on the projects of						
Project	MoJoSim score				Project	Turbo MQ score				
	ISAR	Bunch	DBDP			Version 2	Version 3	Version 4	Version 5	
Okhttp	0.92	0.71	0.88		Okhttp	12.78	10.89	8.47	8.32	
Mabatis	0.95	0.73	0.89		Mabatis	13.01	11.66	9.65	8.88	
Mockito	0.92	0.72	0.88	5	Mockito	11.89	10.08	8.23	7.95	
Junit	0.95	0.65	0.75	C/	Junit	2.55	2.51	2.41	2.12	
Retrofit	0.85	0.57	0.85	,	Retrofit	6.89	6.88	5.64	5.44	
Jadx	0.76	0.55	0.64		Jadx	7.11	6.84	5.78	4.78	
Terrier	0.90	0.68	0.88		Terrier	14.55	12.66	10.44	10.32	
Clone	0.91	0.77	0.90		Clone	13.24	13.04	10.47	9.19	
Freecol	0.91	0.61	0.75		Freecol	20.64	16.55	14.34	12.08	
Fastjson	0.92	0.62	0.82		Fastjson	19.87	14.52	13.94	12.99	
Average	0.90	0.66	0.82		Average	12.25	10.56	8.94	8.21	

Table 5	MoJoSim	scores	of the	studied	techniques
---------	---------	--------	--------	---------	------------

Project	()	IQ score		
	Version 2	Version 3	Version 4	Version 5
Okhttp	12.78	10.89	8.47	8.32
Mabatis	13.01	11.66	9.65	8.88
Mockito	11.89	10.08	8.23	7.95
Junit	2.55	2.51	2.41	2.12
Retrofit	6.89	6.88	5.64	5.44
Jadx	7.11	6.84	5.78	4.78
Terrier	14.55	12.66	10.44	10.32
Clone	13.24	13.04	10.47	9.19
Freecol	20.64	16.55	14.34	12.08
Fastjson	19.87	14.52	13.94	12.99
Average	12.25	10.56	8.94	8.21

Major results (Cont'd)

Table 7 Time consumption of studied techniques												
	Time (s)											
Project	Version 2			Version 3		Version 4			Version 5			
	ISAR	DBDP	Bunch	ISAR	DBDP	Bunch	ISAR	DBDP	Bunch	ISAR	DBDP	Bunch
Okhttp	8378	$32\ 175$	22 547	8641	30 445	25 963	9655	30 927	21 874	7931	29 488	22 554
Mabatis	12 456	72 866	$57 \ 412$	$11 \ 456$	68 543	55 478	7645	$39 \ 012$	36 885	6468	58 238	$54 \ 365$
Mackito	14 748	57 915	$38 \ 452$	12 658	59 611	36-462	18 984	$65 \ 025$	60 742	12 750	60 924	58 168
Junit	1988	3139	2151	1964	3830	2485	1648	3295	2185	2277	3934	2987
Retrofit	2834	7032	5647	2904	7397	5784	3545	8290	5620	2733	7128	5583
Jadx	$12 \ 445$	51 904	41 875	14 489	55 391	39 845	15 794	$55 \ 031$	41 321	$10 \ 494$	$50 \ 415$	40 871
Terrier	9897	63 008	52 965	8478	57 687	$51 \ 492$	$10 \ 021$	$59 \ 422$	50 774	10 487	61 140	49 863
Clone	6291	11 008	8456	4445	9313	7458	5156	$10 \ 420$	6985	5265	9772	7059
Freecol	16 854	121 856	98 635	15 687	$119\ 743$	88 919	18 900	131 695	108 990	15 805	$118 \ 097$	106 983
Fastjson	19 124	$149\ 658$	99 873	18 871	139 198	97 668	18 844	$133 \ 109$	90 869	19 657	121 886	$110 \ 493$

Conclusions

1. We proposed an incremental software architecture recovery technique.

2. We built a mapping between code-level changes and architecture-level updates.

3. Our approach can generally improve the effectiveness and efficiency.

Li WANG received her MA degree from Tongji University, Shanghai, China, in 2009. She is currently a PhD candidate in School of Computer Science and Engineering, Southeast University, Nanjing, China. Her research interests include architecture recovery and software testing.

Xianglong KONG is a lecturer at School of Computer Science and Engineering, Southeast University, Nanjing, China. He received his BE and PhD degrees (under the supervision of Prof. Bixin LI) from Southeast University, in 2009 and 2018, respectively. His research interests include API recommendation, program repair, and architecture recovery.

Jiahui WANG received her BE degree from Nanjing Audit University in 2016, and her MA degree from Southeast University in 2019. She is currently a senior engineer at Huawei Digital Technology Lab, Suzhou, China. Her research interests include architecture recovery and software testing.

Bixin LI is a professor at Southeast University. He is director of Institute of Software Engineering, Southeast University. His research interests include intelligent software development, software testing and defect detection, and software security.