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Background: Financing needs exploration (FNE)

O With the outbreak of crises such as COVID-19 pandemic and
geopolitical wars, more and more small- and medium-sized
enterprises (SMEs) are facing financial stress and are in need of
financing.

O Financing needs exploration (FNE): A task that financial
Institutions exploit those financially constrained SMEs, which is
significant for facilitating the development of those struggling
SMEs.

O Financing needs will transfer among SMEs within the enterprise
social network. Therefore, it is of utmost necessity to formulate
FNE as a graph representation learning based classification task,
which first learns SME representations in the SME graph and
then leverages such representations for classification.



Motivation: Challenges for FNE
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O Transfer heterogeneity: the financing needs transfer differently
under different relation types.

O Behavior heterogeneity: each SME behaves differently; i.e., plays
different roles, under different relation types.



Method: MRIGHT's architecture
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Given an SME graph with initial SME representations h,, relation
features r,, a true triplet A, and a fake triplet A’, M-RIGHT first
leverages the transfer heterogeneity learning module to obtain
the corresponding SME representations, and then leverages the
behavior heterogeneity learning module to obtain the triplets’
scores and the corresponding loss for the model’s update.



Method: Transfer heterogeneity learning
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Obtain representations of SMEs based on
the entity—relation composition operator,
which distinguishes heterogeneous
transferred messages under different
relation types.

Algorithm 1 M-RIGHT's representation learning
process

Input: SME graph G = (V. £, A, H, R); depth L; num-
ber of attention heads K; neighborhood function
N:h—2Y

Output: Final representations of SMEs {=z; ¥i € V}
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Method: Behavior heterogeneity learning

Algorithm 1 M-RIGHT's representation learning
process
Input: SME graph G = (V. £, A, H, R); depth L; num-
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Scoring function in behavior heterogeneity
learning to obtain triplets’ scores, which
enable heterogeneous representations of
SMEs under different relations
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ber of attention heads K; neighborhood function
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Output: Final representations of SMEs {z;,¥i € V}
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7: end while

#  Embedding of each layer

forl=0.1,.. L do

# Attention under each head
for k=1,2,...,K do
# Representation of each SME
for u € V do
# Attention of each neighbor

for v € N(u) do
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Major results

Table 2 Performance of all methods on CA, micro-F1, and AUC waloes (meantrange, computed across
10 runs)
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O M-RIGHT outperforms
the state-of-the-art
methods in FNE.

O Transfer heterogeneity
learning module and
behavior heterogeneity
learning module
contribute to M-RIGHT's
performance
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Major results (Cont’d)

Table 3 Phenomenon with respect to sparisity
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Conclusions

O We have conducted exploratory analysis on the financing
needs exploration task, which indicates the importance of
modeling SMESs’ relations.

O We have proposed a novel method named M-RIGHT,
whose main novelty is that it simultaneously addresses two
kinds of challenging heterogeneity, i.e., transfer
heterogeneity and behavior heterogeneity, in modeling SME
graphs with multiple relations.

O Comprehensive experiments on two real-world datasets
have demonstrated the superiority of M-RIGHT to the state-
of-the-art methods in exploring financially constrained SMEs.
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