Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake zone

<u>Cite this as:</u> Qi-hua RAN, Qun QIAN, Wei LI, *et al.*, 2015. Impact of earthquake-induced-landslides on hydrologic response of a steep mountainous catchment: a case study of the Wenchuan earthquake. *Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)*, 16(2):131-142. [doi:10.1631/jzus.A1400039]

- The damage of Wenchuan earthquake (2008, China) on underlying surface conditions
 - a large number of landslides

Remote sensing image of Jianpinggou catchment before and after the earthquake

Method

- Numerical simulation
 - The Integrated Hydrology Model (InHM)

Aims

- Does the influence exist?
- The degree of influence

Results

after-earthquake

flow depth

425E+06

0.444 0.389

0.333

pefore-earthquake

Impact of landslides on hydrologic response does exist

nonuniform in space

425E+06

The simulated discharge (Q) at the outlet of the (a) catchment, and (b) southern tributary

Results

related with rainfall conditions

the larger the rainfall is, the more visible the impact is

increase rapidly at a threshold of runoff, but there is a limit with the further enlarged rainfall

