

Cite as: Qian ZHU, Xiao XU, Chao GAO, Qi-hua RAN, Yue-ping XU, 2015. Qualitative and quantitative uncertainty in regional rainfall frequency analysis. *Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)*, 16(3):194-203. [doi:10.1631/jzusa.A1400123]

Qualitative and quantitative uncertainty in regional rainfall frequency analysis

Key words: qualitative uncertainty, uncertainty analysis, NUSAP method, regional rainfall frequency analysis, Pedigree matrix, diagnostic diagram

Methodology

1. Uncertainty sources in regional frequency analysis are firstly identified.

2. Pedigree Matrix, particularly designed for regional frequency analysis, is used to quantify the qualitative uncertainties

3. The impact of measurement errors in precipitations (quantitative uncertainty) is analyzed by using Latin Hypercube simulation.

 Qualitative and quantitative uncertainties are then assessed integrally by diagnostic diagram.

Results

ZheJiang University

Table 1 Uncertainty sources of regional rainfall frequency analysis (RFA)

RFA process	Uncertainty from hypothesis	Uncertainty from method	Uncertainty from data	
Precipitation	Strictly controlled process of	Differences in measurement errors	Insufficient precipitation stations	
data	measurement; calibrated	from different measurement	and precipitation data series;	
	measuring instruments	methods	unavoidable factors, e.g. climate	
			change	
Identification of	Independent precipitation	Prediction errors from different	Measurement error from	
homogeneous	stations; unrelated precipitation	methods to define homogeneous	precipitation data; different	
regions	series	regions; different methods to test	methods to select precipitation	
		homogeneity of the grouped	data series	
		regions.		
Choice of a	Robust models; samples	Different frequency distributions,	Measurement errors from	
frequency	excellently fitted to the selected	such as GEV, PE3 and GLO	precipitation data; different	
distribution	distributions		methods to select precipitation	
			data series	
Parameter	Precipitation data series fit to the	Different parameter estimation	Measurement errors from	
estimation	distribution defined by the	methods, such as L-moment and	precipitation data; different	
	parameters	maximum likelihood method	methods to select precipitation	
			data series	
Index-variable	Design rainfall calculated with the	Methods to calculate regional	Uncertainty from selecting annual	
method	annual maximum precipitation	design rainfall other than index	maximum precipitation; methods	
	series	flood method	to deal with outliers	
Error	Completely randomly sampling	Different sampling methods, e.g.	Errors of precipitation (the	
propagation		MCMC and LHS	propagation of quantity errors);	
			uncertainty in defining values of	
			Pedigree Matrix (the propagation	
			of quality errors)	

ZheJiang University

Table 2 Pedigree Matrix for regional frequency analysis

Score	Statistical quality	Empirical quality	Methodological quality
4	Excellent fit to a well- known statistical model (GEV, GLO, PE3 and so on)	Uniformly and reasonably distributed precipitation stations; strictly controlled measurement and calculation; enough direct measurements (N≥50)	RFA methods (e.g. methods to delineate homogeneous regions and methods to calculate design rainfall) in well- established discipline
3	Good fit to a reliable statistical model by most fitting tests, but not all	Well distributed precipitation stations; uncontrolled measurement and calculation; small sample direct measurements (N<50)	Reliable and common method within established discipline or best available in immature discipline
2	Fitting tests not significant, model not clearly related to data, or model inferred from similar data	Sparsely and unreasonably distributed precipitation stations; uncontrolled measurement and calculation; indirect measurements	Acceptable methods but limited consensus on reliability
1	Distributions are chosen subjectively without using test fitting experiments	Educated guesses indirect approx; rule of thumb estimates	Preliminary methods with unknown reliability
0	Unknown models	Crude speculation	No discernible rigor

Number	Unit	Spread	Pedigree score	Strength
Precipitation data	mm	13.05%	(3.8, 3.5, 3.6)	0.91
GEV(Down Sub-region)	mm	7.02%	(3.5, 3, 3.5)	0.83
GLO (Down Sub-region)	mm	8.26%	(3, 3, 3.5)	0.79
P3 (South Sub-region)	mm	4.25%	(3.8, 3, 3.5)	0.86
LN3 (South Sub-region)	mm	15.49%	(3, 3, 3.5)	0.79
GEV (North Sub-region)	mm	3.21%	(3.8, 3, 3.5)	0.86
LN3 (North Sub-region)	mm	6.36%	(3.6, 3, 3.5)	0.84
Geographic grouping method	mm	19.05%	(3.8, 3, 2.8)	0.8
Cluster analysis	mm	21.23%	(3.8, 3, 3.0)	0.82

Table 3 Integrated uncertainty assessment

Fig. 1 Integrated diagnostic diagram of uncertainty (PD indicates Precipitation Data; DS, SS, and NS indicates Downstream, South, North Sub-regions respectively; GGM indicates Geographic Grouping Method; CA indicates Cluster Analysis.

Conclusions and discussion

Conclusions:

- 1. The proposed NUSAP method was proved to be effective in evaluating both the qualitative and quantitative uncertainty of regional frequency analysis.
- 2. The diagnostic diagram is a helpful tool for decision-makers to have an overview of the quality and quantity of data source, methods or models employed within the regional frequency analysis.

Discussion

- 1. Although the pedigree matrix is used to code qualitative expert judgments for minimizing the arbitrariness and subjectivity in measuring strength, much more efforts should be done (e. g. formal questionnaires).
- 2. Limited data, methods and models were used in this case study for illustration of the NUSAP method, which resulted in an underestimation of uncertainty in regional frequency analysis.