Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

Cite this as: Ying-qing Deng, Jason C. White, Bao-shan Xing, 2014. Interactions between engineered nanomaterials and agricultural crops: implications for food safety. *Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)*, 15(8):652-672. [doi:10.1631/jzus.A1400165]

Interactions between engineered nanomaterials and agricultural crops: implications for food safety

Key words:

Engineered nanomaterials, Uptake, Trophic transfer, Food safety, Toxicity and impact

Application of Nanomaterials

Transk FUEL CELL

The annual increase of ENMs in sludge amended EU or US soil was predicted to range from 1 ng/kg for fullerenes to 89 μ g/kg for nano-TiO₂ (Gottschalk *et al.*, 2009).

Hydrogen

Exposure scenarios

Intentional Application

- Agrichemicals for crop protection: nano-silver in pesticide
- Agents for soil remediation, e.g., nanozero-valent iron (nZVI).

Accidental Release

- Soil amendment, biosolids application
- Atmospheric deposition and ENMs persistence through water treatment plant

Uptake of ENMs into agricultural crops

Details in uptake and translocation are discussed under following sections:

- Surface contamination
- Size-based selection by plant cell wall
- Apoplastic route
- Symplastic route
- Foliar uptake
- Transportation in vasculature

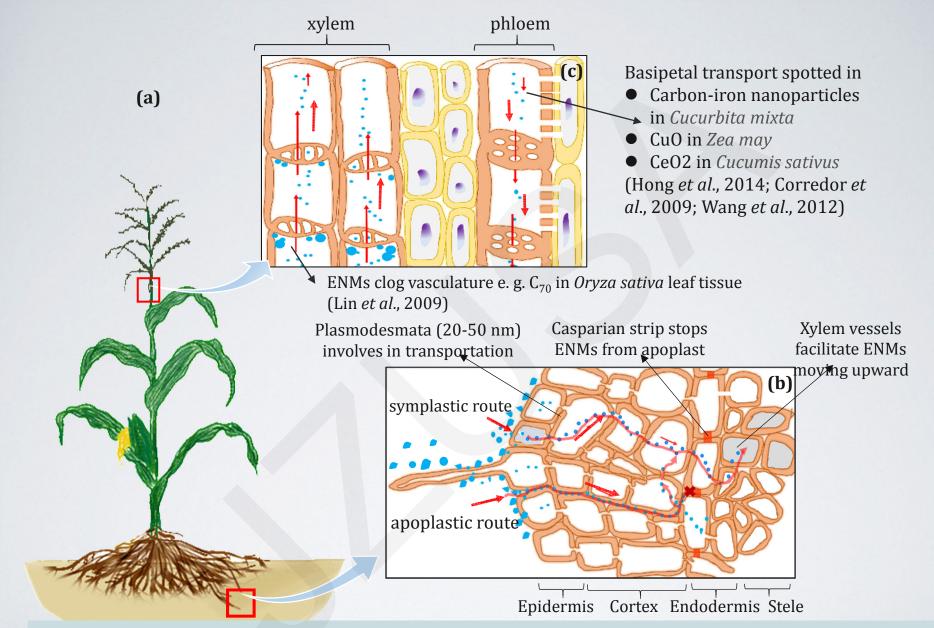


Figure 1. Schematic diagram of uptake process and routes, a) a model crop plant, b) root uptake processes and translocation into vasculature starting from root surface accumulation, symplastic/apoplastic flows into cortex and then traverses endodermis into xylem vessels; c) upward movement in xylem and downward transportation in phloem in both root and foliar uptake scenarios.

Trophic transfer and potential risks to food safety

Possible effects: alter root hydraulic conductivity soil microbial community (activity, diversity)	Parameters: Generational transmission of ENMs Flower/fruit development Nutrition content phytomedicine contents Nitrogen fixation potential through endophytic bacteria-plants symbosis	Possible effects: Crop concurrent uptake of ENMs soil contaminants (organochlorine pesticides, pharmaceuticals)
Indirect Changes in Growth Environment	Agronomic Characteristics	Co-contamination
Seedling Growth <	> Plant Physiology <	> Plant Genetics
Parameters: germination index root elongation shoot/root biomass root tip morphology	 Parameters in ROS imbalance ROS level (e.g., H₂O₂) Enzyme and non-enzyme antioxidant activity (SOD-CAT-APX, GSH-GSSG) Membrane lipid peroxidation, fatty acid profiles and lignin content Gas exchange parameters photosynthetic rates Pigments content (chlorophyll, anthocyanin) Rubisco activity Transpiration rate Stomatal conductance 	Genotoxocity tests (comet assay, micronucleus test, determination of DNA lesions) ROS related: expression of genes controlling the biosynthesis pathway of antioxidant Growth related: expression of genes controlling cell division, cell wall extension or production of membrane transport protein

Figure 2. An overview of ENMs impact on agricultural crops, including toxicity, growth performance and physiological changes observed from seeds/seedlings stage to mature crop plants.

Perspectives and Research Priorities

Research Priorities:

- Further study on transmission of ENMs through the food chain
- Elucidation of underlying molecular mechanisms of interaction
- Illustration of various environmental factors that affecting ENMs-crop interactions under realistic conditions.

Many details of ENMs-crop interactions remain poorly understood, including the possibility of ENMs transmission from crops to human beings, co-contamination effects of ENMs with other soil pollutants, the mechanisms in plant uptake and stress response, and environmental factors mediating these interaction processes. With such a limited knowledge in ENMs-crop interactions, the quality, quantity and safety of food products from ENMs-containing environments are impossible to assess. An awareness of potential risks from growing crops in ENMs-containinated soils and with the development of novel measurement techniques will help to overcome these knowledge gaps.