Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe

Dong-fang HU

Cite this as: Dong-fang HU, Zheng-liang HUANG, Jing-yuan SUN, Jing-dai WANG, Zu-wei LIAO, Bin-bo JIANG, Jian YANG, Yong-rong YANG, 2017. Numerical simulation of gas-liquid flow through a 90° duct bend with a gradual contraction pipe. Journal of Zhejiang University-SCIENCE A (Applied Physics \& Engineering), 18(3):212-224.
http://dx.doi.org/10.1631/jzus.A1600016

Bends Used in the Industry

$>$ Bends are frequently used to change the direction of a pipe.
$>$ The centrifugal effect arising from a bend leads to separation of a multiphase fluid.

Experiment and Simulation Method

Fig. 1 Schematic diagram of the experimental facility
> A three-dimensional steady Eulerian-Eulerian approach was adopted.
> The simulation method was validated by the static pressure obtained by experiment.

Mechanism of Redistributing Fluid

Fig. 7 Liquid distribution near the wall of the vertical section on the circular section at different elevations, $v_{\mathrm{g}}=14.4 \mathrm{~m} / \mathrm{s}, x_{\mathrm{l}}=7.71 \%$: (a) NOC pipe; (b) C pipe

Fig. 8 Variation coefficient of liquid volume fraction at the exits of the two pipes: (a) $v_{g}=14.4$ m / s; (b) $x_{1}=7.71 \%$

Zhejiang University, China

Mechanism of Redistributing Fluid

Fig. 10 Liquid velocity in the vertical direction, $v_{g}=14.4 \mathrm{~m} / \mathrm{s}, x_{\mathrm{l}}=7.71 \%$: (a) NOC pipe; (b) C pipe

Fig. 13 Distribution of k along the X axis on the cross section at different elevations, $v_{g}=14.4$ $\mathrm{m} / \mathrm{s}, x_{\mathrm{I}}=7.71 \%$: (a) NOC pipe; (b) C pipe

Zhejiang University, China

Conclusions

$>$ The applied numerical method was a three-dimensional steady Eulerian-Eulerian approach with a standard $k-\varepsilon$ turbulent model and a Schiller-Naumann gas-liquid drag model. The simulation results showed good agreement with the experimental data.
$>$ Liquid was uniformly distributed at the exit of the C pipe.
$>$ The pressure in the C pipe was greatly altered by the GCP as well as the trajectories of the fluid and secondary flow.
$>$ This study was a preliminary attempt to investigate the effect of a GCP on fluid redistribution downstream of a bend.
$>$ Further work should be done to determine the relation between the structure of a GCP and its effectiveness, including the contraction ratio, length and location of a GCP in the vertical segment.

