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Research Background 
• The operation of complex dynamical systems is often accompanied by 

abrupt changes in their configurations caused by component or 
interconnection failure, or by the onset of environmental disturbance.  

• When these sudden changes in the operating rules occur in accordance 
with a Markov process, the associated stochastic system is referred to as a 
continuous-time Markov jump system (MJS).  

• MJSs have many applications in a variety of fields, including air vehicles, 
economics, power systems, satellite dynamics, communication, etc. 

• Since Krasovskii et al first introduced MJSs in 1960s, considerable 
attention has been devoted to the analysis and synthesis of MJSs.  

• Previous study on MJSs mainly focused on the stability and optimal control. 
Little effort has been given to studying the response of MJSs, especially for 
stochastically excited nonlinear MJSs. Development of the methodology 
for analyzing nonlinear MJS is thus much deserving. JZ

USA



Formulation of Problem 
• Consider a single-degree-of-freedom (SDOF) stochastically excited 

nonlinear system with continuous-time Markov jump 
 

•                                                                                             (1) 
 

•       is a continuous-time Markov jump process which takes discrete values 
in a given finite set                   . Each         denotes the mode in which the 
system operates.  

• Eq.(1) can be used, for instance, to model a class of linear or nonlinear 
systems whose random changes in their structures may be a consequence 
of abrupt phenomena such as component and/or interconnection failure. 
Our primary concern here is the stationary response of this system.   JZ
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Stationary Response 

• By using the stochastic  averaging method, the original jump 
system can be approximately substituted by an averaged Itô 
equation of the total energy H with the Markov jump process 
as parameter 

•                                                                                    (2) 
• Where            and           denote the drift and diffusion 

coefficients, respectively.  
• Based on the averaged equation, the following FPK equation 

can be deduced 
•                                                                                                        (3) 
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• Note that the FPK equation does not admit an easy solution, 
analytically or numerically. In this case, FPK equation (3) is 
simplified by letting              . Then, the stationary probability 
density p(H,s) is obtained readily from solving Eq.(3) using the 
finite difference method.  

• Consider a stochastically excited Duffing oscillator with 
independent Markov jump process as parameter and 
governed by the equation 

•                                                                                  (4) 
• Where          is the Markov jump coefficient of linear damping; 

and         is the Markov jump amplitude of external random 
excitation;       is Gaussian white noise with zero mean and 
intensity 2D.       is a continuous-time Markov jump process.  
takes discrete values in a given finite set                 .   

Numerical Example 

JZ
USA



Numerical Example 

Fig. 1 Fig. 2 

• Fig. 1 The sample of jump process of 2-mode jump system.  
• Fig. 2 Stationary probability density p(q) of displacement of 2-mode 

jump system, with s(t)=1 and s(t)=2. The lines are obtained from 
numerical solution while the dots are obtained from direct simulation 
of original system. JZ
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Numerical Example 

Fig. 3 Fig. 4 

• Fig. 3 The sample of jump process of 3-mode jump system.  
• Fig. 4 Stationary probability density p(q) of displacement of 3-mode 

jump system, with s(t)=1, s(t)=2 and s(t)=3. The lines are obtained from 
numerical solution while the dots are obtained from direct simulation 
of original system. JZ
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Conclusions 
• In this paper, an approximate method for predicting the stationary 

response of stochastically excited nonlinear systems with 
continuous-time Markov jump has been proposed.  

• In the case of a small transition rate, the original system was 
reduced to one governed by a one-dimensional averaged Itô 
equation with the Markov jump process as parameter using the 
stochastic averaging method. The FPK equation governing the 
probability density of the total energy has been derived.  

• The comparison of the analytical results obtained by using the 
proposed method with those from digital simulation of the original 
system indicates that the proposed method is feasible and effective 
for solving the random vibration problem of a nonlinear Markov 
jump system.  JZ
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