Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

<u>Cite this as:</u> Qiang-feng Lü, Mao-lin Deng, Wei-qiu Zhu, 2017. Stochastic averaging of quasi partially integrable Hamiltonian systems under fractional Gaussian noise. *Journal of Zhejiang University* SCIENCE A (Applied Physics & Engineering), 18(9):704-717.

http://dx.doi.org/10.1631/jzus.A1600541

Stochastic averaging of quasi partially integrable Hamiltonian systems under fractional Gaussian noise

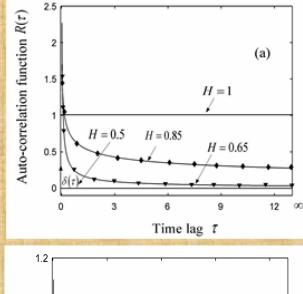
Qiang-feng LÜ, Mao-lin DENG, Wei-qiu ZHU

Key words: Fractional Brownian motion (fBm); Fractional Gaussian noise (fGn); Quasi partially integrable Hamiltonian system; Stochastic averaging method; Stationary response

Fractional Guassian noise (fGn)

- Many real excitations in nature have property of long-range spatial and/or temporal correlations (long memory). These excitations can be modeled as fGn.
- FGn has already been applied as excitation model in physics, finance, and biology, etc.

characteristics


\$\left\$ self-similarity
\$\left\$ long range dependence (see Fig.1: Auto-correlation function *R*(τ) of fGn)

1/2 < H < 1

The response of dynamical system to fGn is not Markov process.

Hurst index of fGn

 The power spectral density(PSD) of fGn is meaningful physically only when 1/2<H<1. Thus, only 1/2<H<1 is considered in this paper. (see Fig.1: PSD S(ω) of fGn)

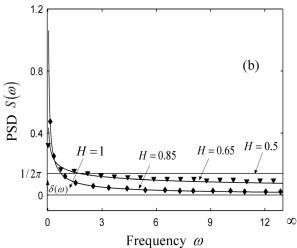


Fig. 1 Auto-correlation function $R(\tau)$ (a) and PSD $S(\omega)$ (b) of fGn $W^{H}(t)$ with the simulated results (\checkmark indicate simulated results)

Stochastic averaging method

Original system(MODF strongly nonlinear system excited by fGn)

Based on fractional stochastic integral for fBm Modeled as

FGn excited Quasi-partially integrable Hamiltonian system

Numerical simulation

Stationary response

Agree well

Consider the non-resonant case

Associated Hamiltonian \mathcal{H}

Apply fractional differential rule for fBm

Stochastic averaging

Fractional averaged SDEs(the dimension is much less than original system)

Numerical simulation

Approximated Stationary response

Original system is approximated by fractional averaged SDEs

Results and conclusion

• Two examples are worked out to illustrate the proposed stochastic averaging method.

Advantages

- Effectiveness: The probability density and statistics of first integrals calculated from averaged SDEs and those from the original system agree well while the error is acceptable.
- Efficiency: The dimension of the original system is greatly reduced. Thus, the computation time for simulating averaged fractional SDEs is much less than that for original system.

• Thus, in the future, it is promising to apply the proposed averaging method to do more study work.