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Introduction

« The mechanical behavior of methane hydrate bearing sediment (MHBS) changes
during the process of hydrate dissociation, which may induce catastrophic
failures including layer collapse, sliding and damage to infrastructure.

e Most models are based on the finite differential method (FDM) or finite volume
method (FVM). Few models for MHBS are based on the finite element method (FEM)
GV?H 1thpugh FEM is very vrobust for nonlinear deformation and stress
calculations.

e The coupling system of the problem examined in this study consists of governing
equations and auxiliary equations. The governing equations include the
conservation of energy, mass, and momentum. All these equations are derived
from the local balance conditions.

e In thermodynamics—based critical state model, dilatant part can be asymmetric
with contraction part. The model can predict the stress softening and dilatancy
during the drained shearing process for specimens with different hydrate
saturations and different hydrate accumulation habits.



Model description

Mass conservation for
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Auxiliary equation
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Variation in Density
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Model Verification

The hydrate dissociation experiment data produced by Masuda et al. (1999) were

used to verify the performance of the coupled THMC code.
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Comparison of simulations with different codes
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Performance of the mechanical model

We used the data published by Masui et al. (2006; 2007), Hyodo et al. (2013a; 2013b) to
examine the performance of the proposed constitutive model.
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Simulation of hydrate production by depressurization

We used the data published by Masui et al. (2006; 2007), Hyodo et al. (2013a; 2013b) to
examine the performance of the proposed constitutive model.
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Conclusions

The accuracy of the model was verified by carefully comparing the simulated results to some triaxial test data
available 1n the literature. The accuracy of the fully coupled THMC model without the mechanical part was validated
by the gas production test data provided by Masuda et al. (1999). The performance of the code was similar to that of
other simulators reported in the past.

The effect of full coupling compared with semi-coupling was investigated by simulating methane gas extraction by
the depressurization method. Results showed that the changes in pressure, temperature, and hydrate saturation in the
semi-coupled model were faster than those in the fully coupled model. The main reason for the difference was due to
the volume change deformation, which influences the water and gas permeability and prolongs the pore pressure
equalization diffusion process.

A case study of gas extraction from a heterogeneous hydrate layer system by depressurization was analyzed using the
fully coupled model. Compared with a homogeneous model, a continuous heat supply from the layer without hydrate
prohibited the temperature drop in the hydrate-dissociated layer due to hydrate dissociation, guaranteeing continuous
gas production. Different mechanical properties of the different layers resulted in local shear stress and strain found at
the interface between the hydrate layer and the layer without hydrates.
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