Md Nishat Anwar, Somnath Pan, 2014. A frequency domain design of PID controller for an AVR system. *Journal of Zhejiang University-SCIENCE C (Computers & Electronics)*, **15**(4):293-299. [doi:<u>10.1631/jzus.C1300218</u>]

A frequency domain design of PID controller for an AVR system

Key words: Automatic voltage regulation (AVR), PID controller, Frequency response matching

Corresponding author: Md Nishat Anwar E-mail: nishatnith@gmail.com

Introduction

- The proportional-integral-derivative (PID) controller with its variants is the most widely accepted controller for industrial applications.
- The automatic voltage regulation (AVR) systems continuously adjust the field excitation to maintain the generator terminal voltage at a specified level.
- Numerous PID controllers for the AVR system are available in the literature.
- A new PID controller design method based on approximate frequency response matching has been presented in this paper.

Design method (I)

For frequency response matching between the designed and the desired systems,

$$G_{r,y}(s)\Big|_{s=j\omega} = \frac{C(s)G_{\mathbf{P}}(s)}{1+C(s)G_{\mathbf{P}}(s)F(s)}\Big|_{s=j\omega} \cong M_{r,y}(s)\Big|_{s=j\omega}$$

Design method (II)

The controller comes out:

$$C(s)|_{s=j\omega} \approx \frac{M_{r,y}(s)}{G_{p}(s)[1-M_{r,y}(s)F(s)]}\Big|_{s=j\omega}$$
$$= \frac{P(s)(1+\tau_{A}s)(1+\tau_{E}s)(1+\tau_{G}s)(1+\tau_{s}s)}{K_{A}K_{E}K_{G}[Q(s)(1+\tau_{s}s)-P(s)K_{S}]}\Big|_{s=j\omega} = H(s)\Big|_{s=j\omega}$$

H(s) is approximated by the PID controller C(s) through frequency response matching at two low frequency points ω_0 and ω_1 as given by

$$A\overline{x} = \overline{b} \qquad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1/\omega_0 & \omega_0 \\ 1 & 0 & 0 \\ 0 & -1/\omega_1 & \omega_1 \end{bmatrix}, \qquad \overline{x} = \begin{bmatrix} B \\ B \end{bmatrix}$$

$$\overline{\boldsymbol{x}} = \begin{bmatrix} K_{\mathrm{P}} & K_{\mathrm{I}} & K_{\mathrm{D}} \end{bmatrix}^{\mathrm{T}}$$
$$\overline{\boldsymbol{b}} = \begin{bmatrix} H_{\mathrm{R}}(\omega_{0}) & H_{\mathrm{I}}(\omega_{0}) & H_{\mathrm{R}}(\omega_{1}) & H_{\mathrm{I}}(\omega_{1}) \end{bmatrix}^{\mathrm{T}}$$

where $H_{\rm R}(\omega) + jH_{\rm I}(\omega) = H(s)|_{s=j\omega}$

Conclusions

- A new frequency domain model matching method has been described for the design of a PID controller for an AVR system.
- The method does not require any elaborate frequency response analysis or mathematically involved optimization technique.
- The method is mathematically simple and its computational burden is very small.