
PASS: a simple, efficient
parallelism-aware solid state drive

I/O scheduler
Key words: Solid state drives (SSD), I/O scheduler, Parallelism

Hong-yan Li, Nai-xue Xiong, Ping Huang, Chao Gui, 2014. PASS: a simple,
efficient parallelism-aware solid state drive I/O scheduler. Journal of Zhejiang
University-SCIENCE C (Computers & Electronics), 15(5):321-336.
[doi:10.1631/jzus.C1300258]

Corresponding author: Hongyan Li
E-mail: hongyanli78@aliyun.com

JZUS C (Comput & Electron)

http://www.zju.edu.cn/jzus/article.php?doi=10.1631/jzus.C1300258

Introduction
• Propose PASS, an optimized I/O scheduler at the Linux block layer,

to accommodate the changing trend of underlying storage devices
toward flash-based SSDs.

• Take the rich internal parallelism in SSDs into account when
dispatching requests to the device driver in order to achieve high
performance.

• Partition the logical storage space into fixed-size regions (preferably
the component package sizes) as scheduling units.

• The experimental results have shown that PASS outperforms the
Linux four off-the-shelf I/O schedulers by a degree of 3% up to 41%,
while at the same time it improves the lifetime significantly.

JZUS C (Comput & Electron)

PASS design and implementation

1. Space partition

 Divide the entire logical space into different regions of
continuous logical space and dispatch requests to those
individual regions in a parallel and interleaved manner.
 Each region is associated with a dispatch sub-queue
and each sub-queue has its own data structures to track
requests that visit locations within the same region.
Incoming requests are forwarded to respective sub-
queues according to their visiting addresses. Sub-
queues are serviced in a round-robin manner.

JZUS C (Comput & Electron)

PASS design and implementation
2. Request management

Application

FS

Block layer

R 1 R 2 R n...

I/O scheduler

R1 R2 ... Rn

Logical space of SSD

Read red-black tree

Write red-black treeSorting by
arriving time

Region subqueue structure
PASS services the
sub-queues in a
round-robin manner.
For each sub-queue’s
turn, it consecutively
dispatches a batch of
read or write requests
and a batch of the
other type requests in
its next turn.

R
ea

d
FI

FO

W
rit

e
FI

FO

S
or

tin
g

by
 a

dd
re

ss

JZUS C (Comput & Electron)

PASS design and implementation

3. Parallel dispatching requests

R1 R2 R3 R4

Q1 Q2 Q3 Q4
Region R2

R1 R2 R3 R4

Q1 Q2 Q3 Q4

Starting region R1

T1 T3

The amount of saving time
T0 T2

R1 completion

Time

Region R1

Starting region R2

Time

Starting region R2

Starting region R1

Region R2

Region R1

R1 completion

Arriving requests: R1, R2, R3, R4, Q1, Q2, Q3, Q4

JZUS C (Comput & Electron)

Major results

0.0

0.5

1.0

1.5

2.0

2.5

Er
as

e
nu

m
be

r
(K

) Noop

Deadline

CFQ

AS

PASS

File I/O

Simple OLTP

Complex OLTP

The number of erase operations of the workloads under different schedulers

JZUS C (Comput & Electron)

Conclusions

• PASS groups requests targeting the same disk area
together in dedicated queues and dispatches those
queues in a round-robin manner.

• Within each queue, it sorts requests to create
sequentiality and separately dispatches read and write
requests to reduce interference.

• Experiments with a wide variety of workloads and SSDs
have shown that PASS can not only improve the
performance but also extend SSD’s lifetime.

JZUS C (Comput & Electron)

	PASS: a simple, efficient parallelism-aware solid state drive �I/O scheduler
	Introduction
	PASS design and implementation
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Conclusions

