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Introduction 
• Propose PASS, an optimized I/O scheduler at the Linux block layer, 

to accommodate the changing trend of underlying storage devices 
toward flash-based SSDs. 

• Take the rich internal parallelism in SSDs into account when 
dispatching requests to the device driver in order to achieve high 
performance.   

• Partition the logical storage space into fixed-size regions (preferably 
the component package sizes) as scheduling units.   

• The experimental results have shown that PASS outperforms the 
Linux four off-the-shelf I/O schedulers by a degree of 3% up to 41%, 
while at the same time it improves the lifetime significantly. 
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PASS design and implementation 

1. Space partition 

    Divide the entire logical space into different regions of 
continuous logical space and dispatch requests to those 
individual regions in a parallel and interleaved manner. 
     Each region is associated with a dispatch sub-queue 
and each sub-queue has its own data structures to track 
requests that visit locations within the same region. 
Incoming requests are forwarded to respective sub-
queues according to their visiting addresses. Sub-
queues are serviced in a round-robin manner.  
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PASS design and implementation 
2. Request management 

Application
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PASS services the 
sub-queues in a 
round-robin manner. 
For each sub-queue’s 
turn, it consecutively 
dispatches a batch of 
read or write requests 
and a batch of the 
other type requests in 
its next turn. 
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PASS design and implementation 

3. Parallel dispatching requests 
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Major results 
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Conclusions 

• PASS groups requests targeting the same disk area 
together in dedicated queues and dispatches those 
queues in a round-robin manner.  

• Within each queue, it sorts requests to create 
sequentiality and separately dispatches read and write 
requests to reduce interference.  

• Experiments with a wide variety of workloads and SSDs 
have shown that PASS can not only improve the 
performance but also extend SSD’s lifetime. 
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