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Abstract
We present a method for computed tomography (CT) image processing and modeling for tibia microstructure, achieved 
by using computer graphics and fractal theory. Given the large-scale image data of tibia species with DICOM standard for 
clinical applications, we take advantage of algorithms such as image binarization, hot pixel removing and close operation to 
obtain visually clear image for tibia microstructure. All of these images are based on 20 CT scanning images with 30 μm slice 
thickness and 30 μm interval and continuous changes in pores. For each pore, we determine its profile by using an improved 
algorithm for edge detection. Then, to calculate its three-dimensional fractal dimension, we measure the circumference 
perimeter and area of the pores of bone microstructure using a line fitting method based on the least squares. Subsequently, 
we put forward an algorithm for the pore profiles through ellipse fitting. The results show that the pores have significant 
fractal characteristics because of the good linear correlation between the perimeter and the area parameters in log–log scale 
coordinates system, and the ratio of the elliptical short axis to the long axis through ellipse fitting tends to 0.6501. Based on 
support vector machine and structural risk minimization principle, we put forward a mapping database theory of structure 
parameters among the pores of CT images and fractal dimension, Poisson’s ratios, porosity and equivalent aperture. On 
this basis, we put forward a new concept for 3D modeling called precision-measuring digital expressing to reconstruct tibia 
microstructure for human hard tissue.
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Introduction

In tibial tissue engineering, an ideal tibial tissue scaffold 
needs to be able to guide cells to form the bone tissues with 
mechanical, biological, and chemical functions. This tibial 
tissue scaffold provides the cellular environment for cell 
attachment, proliferation, and differentiation [1]. In addi-
tion, the behavior of cells is also affected by the molecular 
compositions of these contact positions and their spatial dis-
tributions [2]. Thus, creating porous scaffolds that mimic the 
complex structure of the natural tibia is one of the critical 
strategies in tibial tissue engineering [3]. Various methods 
have been used to successfully construct scaffolds with high 

porosity, including gas foaming [4], freeze-drying [5], and 
electrospinning [6]. However, these methods are difficult to 
precisely control the pore size, porosity, pore shape, and 
pore interconnectivity [7]. CT scanning is a continuous mul-
tilayer lossless image technology in micron scale. In recent 
years, along with the development of additive manufacture 
techniques, it has been successfully applied to qualitative 
and quantitative analysis and 3D modeling of medical 
images [8, 9]. Based on the method of threshold value divi-
sion and region growth for CT image, the 3D models of tibia 
microstructure are reconstructed by using software Mimics. 
The main disadvantages of the CT-based modeling method 
are difficult reconstruction, a few hot pixels and impossi-
ble model in real time [10, 11]. Note that the usual recon-
structed prosthesis does not match the anatomical features 
of patient’s pathological parts.

In order to overcome the above challenges, it is feasible 
to construct the porous structure by the parameters derived 
from the microstructure of nature tibia tissues. We mainly 
focus on how to reconstruct individualized 3D models for 
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tibia microstructure with respect to its internal structure, 
permeability, porosity, and connectivity in this work.

Research works on the modeling of black box for CT 
image about support vector machine are too few. Mandelbrot 
[12] defined the fractal dimension as a set of wireless hier-
archical and self-similarity structures. In this paper, we got 
CT images with high resolution through digital image pro-
cessing, the methods of island and machine vision technol-
ogy. For each image, we put forward an algorithm of image 
preprocessing, an improved algorithm for edge detection and 
an algorithm of ellipse fitting the pores, through spatial and 
frequency domain methods. All algorithms were based on 
the method of minimal threshold. By calculating its frac-
tal dimension, we put forward a 3D identification modeling 
structure of the CT image with support vector machine. The 
research results are of great theoretical and practical value in 
clinical application for bone microstructures.

Overall parameter measurement method 
and design framework

Tibial microstructure incorporates elliptical cross section. 
The overall framework is proposed in this article. It instructs 
the parameter measurement and modeling of tibia with bio-
imitability and adaptability (Fig. 1). It consists of several 
steps in the following paragraphs and is further described 
in the next section. The so-generated cross sections of the 
microstructure are adapted to meet the individualized needs 
of different patients. By adopting this process, researchers 
can get individualized bone microstructure parameters. In 
this paper, more details are given by the measurement and 
modeling methods of structural parameters, such as image 

processing and ellipse fitting algorithm, and modeling based 
on support vector machine.

Design edge detection algorithm According to the fault 
graphic sequence from tibia sample, hot pixels of the images 
must be reduced to improve the definition and extract the 
edge of pore profiles. Thus, based on sample, quantization 
and the definition and resolution of CT images, we carried 
out image format conversion, image enhancement, gray and 
morphological transformation in sequence through spatial 
and frequency domain algorithms. On the bases, based on 
Sobel operator for edge detection, an improved algorithm is 
proposed to obtain clear outline shapes of edge of the holes.

Design elliptic curve-fitting algorithm According to the 
graphics after image processing, the accurate fitting structure 
must be obtained for parametric modeling. Therefore, we 
propose an elliptic curve-fitting algorithm to fit the pores, 
with the central point, long- and short-axis parameters being 
considered.

Modeling method To reconstruct bone microstructure, the 
proportion of ellipse corresponding to the area interval of 
adjacent regions is obtained by edge detection and elliptic 
curve-fitting algorithm. Based on the parameters of circum-
ference and area of the pores, we get fractal dimension of the 
case of tibia microstructures. And we calculate the structural 
parameters, such as fractal dimension. Then, we propose a 
modeling method based on support vector machine. Subse-
quently, we show a modeling experiment as an example to 
support conclusion and confirm the reliability of the method.

Algorithm design

Preprocessing algorithm

For each image, its gray value is from 0 to 65,536. It is 
known that the DICOM format data from CT scanning con-
tain information of patients, the level and width of current 
window. Based on the window level and width, we skipped 
the above information features and transformed DICOM into 
Bmp format by reducing the gray value to the range from 
256 to 512. That is the general gray value of images dis-
played on screen through grayscale linear transformation. 
The linear gray transformation function is as follows:

where DB is the gray scale of BMP image; DA is the gray 
scale of input image; C is the window level; W is the window 
width; Dmax is the maximum gray value of display screen; 
and Dmin is the minimum gray value of display screen.

(1)DB =

⎧⎪⎨⎪⎩

Dmax DA ≥ C − 0.5 +
W−1

2
(DA−C+0.5)

W−1

�
Dmax − Dmin

�
the rest

Dmin DA ≤ C − 0.5 −
W−1

2

Fig. 1   Road map of computer-aided modeling
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We got the CT images in black and white. It is known 
that the discernability for the change in gray scale of pore 
is lower than color image [13]. Therefore, we converted 
the black and white images into color images to easily 
distinguish the edge of pore contours. Then, we selected 
the pore structures with gradient. Based on color transfor-
mation of gray scale in space domain, we mixed the RGB 
three-element color into different colors by using MAT-
LAB. Figure 2a presents the original image before con-
version. Figure 2b presents the color compensation effect 
when the gray value between 60 and 105 is set as blue 
compensation, between 105 and 150 is set as green com-
pensation and greater than 150 is set as red compensation.

The two-dimensional gray scale of tibia microstructure 
is distinguished by the relative size of the gray value and 
the threshold value of pixel for CT images. The grayscale 
transformation is as follows:

where g(x, y) is the output image; f(x, y) is the input image; 
and T is the threshold.

(2)g(x, y) =

{
1 f (x, y) ≥ T

0 f (x, y) < T

To count the number of gray values corresponding to 
pixel, Fig. 3a presents the gray histogram consisting of 64 
grayscale intervals. The results exhibit two obvious peaks, 
but the accurate value of the valley area is difficult to be 
obtained. In this experiment, the histogram is fitted in a 
curve, and the threshold is preliminarily determined based 
on minimum threshold method. The equation of minimum 
point is as follows:

where p′(z) is the first derivative of curvilinear equation and 
p″(z) is the second derivative of curvilinear equation.

Figure 3b presents the normalized histogram of 32 gray-
scale intervals. The final segmentation threshold is deter-
mined to be 60 by counting and optimizing the ratio of the 
number of pixels falling into each interval to the total num-
ber of pixels.

We preliminarily eliminated the hot pixels of images 
by median filtering and smoothed the images by Gaussian 
low-pass filtering. K1 is the 1442 × 1840 grayscale matrix 
image before median filtering. K2 is the 1442 × 1840 gray-
scale matrix image after median filtering with 7 × 7 window. 

(3)

{
p�(z) = 0

p��(z) > 0

Fig. 2   Illustration of the effect 
of color enhancement for CT 
images. a The original image 
before conversion; b the effect 
of color image enhancement 
after conversion

Fig. 3   Determining the segmen-
tation threshold of CT images. 
a The gray histogram; b the 
normalized histogram
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Figure 4 intuitively represents the filtering effects. The 
experimental results show that the noises are obviously 
reduced in K2.

Figure 5 presents the filter effect of the image filtered by a 
Gaussian low-pass filtering with Sigma parameter set to 300. 
In order to further verify the filtering effect with the above 
methods, the spectrum diagram of the image is obtained 
by fast Fourier transform. Figure 6a presents the spectrum 
diagram of the original image distributed uniformly with 
many high-frequency sections. And Fig. 6b presents the 

spectrum diagram of Fig. 5 around the center with many 
low-frequency sections. The distribution of the spectrum of 
processing image after median and Gaussian high-pass filter 
is more uniform. So we could say some details in the image 
are eliminated by the filtering and the edge parts of pore 
profile of the original image are preserved.

Based on the above extracted images, the image pixels 
with threshold greater than T are set to 1 and others are set 
to 0. We set the boundary contours of pores of the image part 
to white and background part to black. Figure 7 presents the 
binary image after binary processing from original image. 
In Fig. 7, all structures are different such as the unclosed 
pore boundaries and incoherent edges. Closed operation is 
defined as expansion followed by corrosion. After the bina-
rized image was processed by using the operation, we cre-
ated a disk-shaped structural element with a radius of three, 
then filled the edge and closed the fracture to get the closed 
pore boundary contour.

An improved algorithm for edge detection

Bhargav et al. [14] introduced many operators for edge 
detection. In this section, we discuss some algorithms for 
edge detection for tibia microstructure. Figure 8 presents the 
edge-detected image after preprocessing by using Roberts 
operator, Prewitt operator, LOG operator, Canny operator, 
Sobel operator, respectively.

The experimental results are shown as follows: The image 
edges extracted by using Roberts operator lack the detailed 
contour; many details and low-contrast image edges are 
extracted by using LOG operator; oversmoothness images 
extracted by using Canny operator are oversmoothing and 
relatively weak for the detection of low-contrast edges; 
relying on larger templates, the Sobel and Prewitt operators 
are capable of smoothing, removing hot pixels, and false 
edges, while smoothing the useful edges as well. The images 
extracted after edge detection by using Sobel operator are 
clearer and more accurate than those extracted by using Pre-
witt operator, but some hot pixels remain.

Therefore, we proposed an improved algorithm based on 
Sobel operator for edge detection. We processed the bina-
rized image by morphological closed operation based on the 
disk structural elements with a radius of 4. Then, we per-
formed median filtering with a 3 × 3 matrix template. And 
finally, we extracted edges by using Sobel operator. Figure 8 
presents the compared image with Sobel operator and its 
improved operator. By comparing the image processed by 
the improved Sobel operator with this processed by origi-
nal Sobel operator, we can find that the image processed by 
the improved Sobel operator is better. A lot of noise points 
and false edges are removed, and the effect of background 
purification is particularly obvious. As shown in Fig. 8f, the 
outline shape of edges of the holes is clearer, with more 

Fig. 4   Filtering effect before and after median filtering

Fig. 5   Illustration of the effect of Gaussian high-pass filter while 
Sigma is set to 300
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surface-to-surface contacts, less voids, and clearer mosaic 
contours and free holes. The pore structure is easy to be 
modeled by parameterizing, so it has good constructability. 
In addition, only contour information of the pores including 
hot pixels, false edges and minimal aperture is neglected and 
porosity still meets the design requirement. What’s more, 
higher pore size improves bone ingrowth within a certain 
range [15]. So it has no significant impact on the reliabil-
ity of modeling. The experimental results show that the 
improved Sobel algorithm is better than the original algo-
rithm in detecting the pore edge profile of tibial microstruc-
tures. Based on the above planar structure, we reconstructed 
a three-dimensional bionic model that satisfies mechanical 
intensity.

We obtained 659 simply connected regions by filling the 
holes edge detection and deleting the elements connected to 
the boundary of the image. Then, we accurately measured 
the attribute parameters of area, centroid, long axis and short 
axis of ellipse and the angle between the major axis and the 
X-axis of each elliptical object under pixel units.

It is observed that the proportion in the area of apart 
elliptical objects is smaller than other ellipses after filling 
holes, and the area of each part is different. So, it is difficult 
to build its microstructural database. Higher porosity and 
pore size result in lower mechanical properties, but improve 

bone ingrowth [15]. The suitable porosity and pore size are 
the key elements for the normal physiological function of 
the constructed transplantable tibial substitute in the design 
of 3D bone tissue scaffolds. In this paper, the porosity of 
microstructure is ensured to meet the physiological require-
ments. We ignored the ellipses of area value less than the 
average area value of all the ellipses and obtained 184 sim-
ply connected regions. The distribution of each ellipse in the 
corresponding space was counted by using hierarchical clas-
sification method. Figure 9 presents the number of ellipses 
in the corresponding interval at 1400 × magnification. It is 
observed that the number of ellipses decreases as the ellipti-
cal area increases, and the proportion of its total number is 
68% in the range from 200 to 600. So the number of ellipses 
has large quantities.

An algorithm for ellipse curve fitting

The internal microstructures of the scaffold may have 
an important effect on the cellular microenvironment. 
Microenvironment, including three-dimensional structure 
of bone scaffold, biochemical compound and mechani-
cal stimulation, plays a critical role in guiding osteocyte 
proliferation and differentiation [16, 17]. Thus, mim-
icking structures of the native bone may contribute to 

Fig. 6   Illustration of the effect 
of spatial and frequency domain 
filtering. a The spectrum of 
original image; b the spectrum 
of processing image after 
median and Gaussian high-pass 
filter

Fig. 7   Illustration of close 
operation defined as expansion 
followed by corrosion. a Before 
close operation; b after close 
operation
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constructing the porous scaffold with biocompatibility. 
In order to analyze the distribution characteristics of the 
native tibia, we got the image of proximal tibial intersect-
ing surface by micro-CT scanning, image binarization, and 
removing noises above. Silva et al. [9] introduced that the 
point on the cross section of bone trabecular can be repre-
sented accurately by ellipse interpolation. We fit the pores 
through ellipse and take the center coordinates of the scat-
ter obtained from circle fitting as the elliptical centroid 
coordinates. Based on the elliptic center satisfying the 

point equation of curve, the relation of the scatter satisfy-
ing elliptic standard equation is as follows:

The elliptic equation above is transformed as follows:

(4)

{
Ax2 + By2 − AB = 0

x2 + ax + y2 + by + c = 0

(5)axi + byi + c = −
(
x2 + y2

)

Fig. 8   Comparison of the effect of several algorithms. a Roberts operator; b Prewitt operator; c LOG operator; d Canny operator. e Sobel opera-
tor, and f an improved Sobel algorithm

Fig. 9   Proportion statistics of 
the ellipse corresponding to area 
interval of simply connected 
regions at × 1400 magnification
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Based on the three unknowns and far more than three 
scatter points in the equation, we transformed the above 
equation into a matrix form of multiple scatter as follows:

where C =

⎡
⎢⎢⎢⎣

x1 y1 1

x2 y2 1

… … …

xn yn 1

⎤
⎥⎥⎥⎦
 ; X1 =

⎡
⎢⎢⎢⎣

a

b

c

⎤
⎥⎥⎥⎦
 ; D = −

⎡
⎢⎢⎢⎣

x2
1
y2
1

x2
2
y2
2

… …

x2
n
y2
n

⎤
⎥⎥⎥⎦
.

In the same way, Eq. (5) is transformed as follows:

where E =

⎡
⎢⎢⎢⎣

x2
1
y2
1

x2
2
y2
2

… …

x2
n
y2
n

⎤
⎥⎥⎥⎦
. ; X2 =

[
A

B

]
 ; F =

⎡
⎢⎢⎢⎢⎣

AB

AB

…

AB

⎤
⎥⎥⎥⎥⎦
.

Based on least-square curve fitting, both Eqs. (6) and (7) 
are transformed as follows:

where A and B present the long and the short axes of ellipse. 
The elliptical fitting curve of the edges of pore contour that 
determines the position of equivalent aperture is as follows:

where a and b are the parameters related to the coordinate 
of center.

Based on the algorithm for ellipse curve fitting above, 
the holes in CT images are fitted by elliptic curve. Fig-
ure 10 presents the effect of the cross section for tibia 
microstructures. Figure 10a presents the scatter point of 
the holes in the CT images through ellipse fitting where 
y represents the elliptical short axis and x represents the 

(6)CX1 = D

(7)EX2 = F

(8)

{
X1 =

(
CTC

)−1
CTD

X2 =
(
ETE

)−1
ETF

(9)

�
x +

a

2

�
�√

B
�

2

+

�
x +

b

2

�
�√

A
�

2

= 1

elliptical long axis. Based on the method of the maximum 
simply connected region and proportionate scaling with 
the real ratio of the area to the pixel value 0.0029 that 
we obtained, the real cross-section model of structure is 
represented in Fig. 10b.

Experimentations and results

Ellipse fitting

Figure 11 presents the scatter points of the holes in the CT 
images through ellipse fitting where y represents the ellip-
tical short axis and x represents the elliptical long axis. 
However, the distribution of points is relatively discrete, 
and the ratio of the minor axis to the major axis ranges 
from 0.11 to 0.82. Considering the influence of all points 
on the structure, we determine the ratio by minimizing the 
sum of the squares of the errors between these determined 
ratios and the actual ratios.

The numerical relation between the elliptical length and 
short axis through least squares straight line fitting is as 
follows: y = 0.6501x+4.2645 where the ratio of the ellipti-
cal short axis to long equal is its slope 0.6501. Based on 
the obtained parameters of area, centroid, ratio of short 
axis of the ellipse to long and the angle between the major 
axis and the X-axis of each elliptical object under pixel 
units, we take the average value of the pixels in each inter-
val as each ellipse area in the corresponding region to fit 
the scatter points and reconstruct the pore structure char-
acteristics. The elliptic fitting equation based on conical 
curve is as follows:

Fig. 10   Illustration of cross section of microstructure for tibia. a 
Before mean value processing; b after mean value processing

Fig. 11   Illustration of the relationship between short axis and long 
axis
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where f (a, (x, y)) represents elliptic function; L(a) repre-
sents Lagrange function; � represents Lagrange multiplier; 
� represents a positive number; C represents one 6 * 6 scatter 
matrix and C1,3 = C3,1 = 2 and C1,1 = −1.

Calculation of structural parameters

The patella of patients was upward and both knees were in a 
straight position. Combined with micro-CT scanning tech-
nology and medical orthopedic surgery, corresponding tibia 
was scanned when patients were in supine position [18]. 
Cases of tibia tissue were selected to meet the requirement 
of no disease history of articular surface change caused by 
arthritis or trauma, no obvious developmental deformity, 
no obvious degeneration of tibia, and no varus deformity 
[19]. We scanned tibia from the vertical direction of cross 
section, with 70 kV voltage, 450 μA current during 500 ms 
of exposure time. Based on the distance between the longi-
tudinal axis of the tibia and the slide rails of micro-CT set 
to 30 μm and slice thickness set to 30 μm, we obtained 754 
consecutive image sequences. Figure 12 presents 20 image 
sequences of the representative changing holes.

C represents the circumference of image; ε represents per 
unit of measurement; and S represents the area. C is propor-
tional to the first power of ε, while S is proportional to the 
second power of ε on the image. Mandelbrot [12] introduced 
the method of island replacing the smooth perimeter with 
fractal circumference. The relation of island above is defined 
as follows:

where a0 is a constant related to the shape of island.
The relation of island extended to 3D graphics is as 

follows:

Based on the logarithm taking on both sides of the above 
equality when ε is 1, the obtaining equation is as follows:

(10)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (a, (x, y)) = D ∗ a = 0

Δ(a, x) =
n∑
i=1

aTDT
i
Dia

L(a) = Δ(a, x) − �(aTCa − �)
�L(a)

�a
= 0

D =
�
x2, xy, y2, x, y, 1

�
a = (axx, ayy, axy, ax, ay, 1)

(11)[C(�)]
1

D = a0�
1−D

D [S(�)]
1

2 = a0�
1

D �−1[S(�)]
1

2

(12)
[
C(�)

�

] 1

D

= a0�
2−D

D [V(�)]
1

3

(13)log [V] = log [S]
3

D
− log

(
a3
0

)

The fractal dimension D is as D = 3/K where the slope of 
log–log plot generated by Eq. (13) is K.

Table 1 gives the sampled data of pore circumference 
and area in Fig. 12. Figure 13a presents the plot of log–log 
scatter of the data of perimeter and area by linear fitting in 
MATLAB. α represents confidence level. Figure 13b pre-
sents the residuals in data when α is set to 0.01. Obviously, 
the width of the short axis is small, the long axis is larger 
and only one scatter point in 20 scatters is outlier. Further-
more, the scattered point is located near the straight line 
with the slope equal to 1. There is a good linear correlation 
between the perimeter and the area parameters in log–log 
scale coordinates system. So the adjacent pixel points are 
linear correlation, basically unchanged with the change in 
gray scale. Pores have significant fractal characteristics. We 
noted that fractal dimension represents the irregular degree 
of the edges of pore contour in general, and the fractal 
dimension of irregular contour curve is between 1 and 3. 
According to the calculation results, the fractal dimension 
is 1.741, so the contour is irregular.  

Modeling based on support vector machine

The input space is the input vector of the CT image after 
image processing and its scan slice thickness. By mapping 
the input space into a high-dimensional feature space with a 
nonlinear kernel function and the nonlinear transformation 
system of black box form, we obtained the output vector of 
the parameters of fractal dimension, porosity and Poisson’s 
ratio. In particular, the equivalent ellipse in the CT images 
not only includes geometric parameters, but also the num-
ber of the equivalent holes and the corresponding interval 
percentage that is shown in Fig. 9.

Figure 14a presents an identification structure of the 
black-box model of 3D modeling for CT image. The struc-
ture is based on support vector machine corresponding to 
intermediate nodes. Wang et al. [20] introduced a method of 
calculating porosity for the holes of the CT images by seg-
menting and slicing. Hong et al. [21] introduced an experi-
mental measurement method of Poisson’s ratio for tibia. 
Based on support vector machine and a lot of sample tests, 
we constructed the database of black-box model through 
imputing the datasets of fractal dimension, equivalent aper-
ture and other parameters. Based on machine learning and 
the intended target, we find out the function as follows:

where Mercer kernel  function is  as follows: 
K
(
xi, xj

)
= �

(
xi
)
⋅ �

(
xj
)
 ; �i represents Lagrange multiplier; 

and �∗
i
 represents the optimal solution of maximum objective 

function of the formula as follows:

(14)f (x) =

n∑
i=1

(
�i − �∗

i

)
K
(
x, xi

)
+ b
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where �(i) =
[
y(i),… , y(i − m), u(i),… u(i − n)

]
 ; � presents 

parameter vector.
Figure 14b presents a mathematic model of the identi-

fication structure of 3D modeling.

(15)L(�) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

�i�jyiyj
(
�
(
xi
))
⋅

(
�
(
xj
))

(16)
{

f
(
xi
)
= yi

f ∶ Rd
→ Rn, d = 2

(17)y(i + 1) = f (�(i), �)

Discussion

The evaluation criteria of biomimetic scaffold are recon-
structed from tissue engineering. In order to satisfy the 
mechanical, biological and chemical functions and provide 
a good growth environment for cell attachment, proliferation 
and differentiation, the criteria need to meet the require-
ments of bone anatomy such as pore size, porosity, pore 
shape and pore connectivity. Proper pore parameters ensure 
the exchange between cells and nutrient solution [15]. Poros-
ity determines the implantation efficiency of cells, molecu-
lar diffusion and structural strength of scaffolds. Generally, 
the structure with high porosity has a high specific surface 

Fig. 12   Gradient microstructure 
pores of CT image for tibia
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area, which is conducive to cell adhesion and distribution 
[22]. However, scaffolds with higher porosity usually have 
lower mechanical properties, which is not conducive to the 
application of tibia implant in surgery [23]. It is reported that 
when the porosity of the scaffolds is in the range of 50–75%, 
the mechanical properties and biocompatibility of the scaf-
folds meet physiological requirements [24]. We reconstruct 
the tibial microstructure according to pore size and shape, so 
the corresponding aperture meets anatomical requirements. 
In order to reconstruct a personalized three-dimensional 
model of tibia microstructures, we calculate the output vec-
tor of fractal dimension, porosity and Poisson’s ratio accord-
ing to formula (14) by inputting CT image. We find the most 
matching image sequence with ellipse fitting through match-
ing database above. Li [25] introduced an idea of surface 
rendering of CT image sequence. The methods of judging 
the connectivity of ellipse are related to the method of corre-
sponding pixels. We reconstruct 3D models by using VC++ 
environment, surface fitting and linear interpolation between 
adjacent sequence and judging its connectivity.

Figure 15 presents a bionic model of the microstructure 
for tibia. In particular, the distance between the sum of 
radius of the long axis and the short axis of ellipsoid is equal 
to the distance of its corresponding center points. To obtain 
the similar three-dimensional structure of natural bone, we 
keep anisotropy and generate the ellipsoid randomly. The 

Table 1   Software measures the 
value of perimeter and area of 
pores on the CT images

Numbers Perimeter Area

W1 3.772 0.982
W2 3.772 0.95
W3 3.746 0.979
W4 3.722 0.982
W5 3.85 1.004
W6 3.786 0.993
W7 3.637 0.964
W8 3.619 0.929
W9 3.743 0.971
W10 3.617 0.886
W11 3.568 0.914
W12 3.443 0.855
W13 3.518 0.893
W14 3.652 0.904
W15 3.608 0.906
W16 3.687 0.889
W17 3.524 0.856
W18 3.378 0.786
W19 3.533 0.864
W20 3.568 0.864

Fig. 13   Log–log graph of 
perimeters and areas of holes. a 
Illustration of log–log relation; 
b illustration of residuals

Fig. 14   Illustration of structure 
identification. a Support vector 
machine; b the identification 
structure
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experimental results show that the three-dimensional struc-
ture is well fitted to human tibia, and the porosity is about 
70%. The results meet the requirements of porosity and con-
nectivity and provide a good environment for cell adhesion, 
proliferation, and tissue formation. In addition, the applica-
tion domain about our proposed method is not limited to 
tibia. Similar methods can also be used in the construction of 
bone structure or similar products such as femur and patella.

Conclusions and future work

We have presented a method for digital image preprocess-
ing and edge detection of pore profile for the CT images of 
tibia. This work carries out two groups of experiments: First, 
we verify the fractal characteristics of different sequences 
corresponding to the pore structure; second, we calculate 
the ratio of the short axis of ellipse fitting to long axis in the 
pore structure. The above two groups of experiments are 
designed from the aspect of circumference and area. Based 
on a large number of CT image sequences, we obtain the 
relevant parameters. The results of the experiments are given 
as follows: First, the circumference and area of the corre-
sponding pores have good linear correlation in log–log scale 
coordinates system, so the pores of the CT images of tibia 
have fractal characteristics; second, the ratio of the ellipti-
cal short axis to the long axis through ellipse fitting tends to 
be 0.6501, while we obtain a large number of the CT image 
sequence data.

On the basis, we put forward an individualized CT image 
modeling method for tibia based on support vector machine. 
For the three-dimensional reconstruction of bone structure 
such as femur and patella, or similar products, we provide 
new methods to reconstruct three-dimensional porous struc-
ture during tibia modeling as follows: First, we preprocess 
the image sequence of pore profiles; second, we detect 

the contour edges of the images and fit ellipse, followed 
by calculating the related geometric parameters of ellipse. 
In the future work, we intend to collect a large number of 
human bone microstructure imaging samples and build a 
more complete mapping database among ellipse vector and 
fractal dimension, porosity, Poisson’s ratio and other vectors 
in order to reconstruct a more satisfying three-dimensional 
model of bone microstructure for clinical applications.
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