
Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 553

Analyzing the service availability of mobile cloud computing

systems by fluid-flow approximation*

Hong-wu LV†, Jun-yu LIN, Hui-qiang WANG, Guang-sheng FENG, Mo ZHOU
(College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China)

†E-mail: lvhongwu@hrbeu.edu.cn

Received Nov. 28, 2014; Revision accepted June 7, 2015; Crosschecked June 12, 2015

Abstract: Mobile cloud computing (MCC) has become a promising technique to deal with computation- or data-intensive
tasks. It overcomes the limited processing power, poor storage capacity, and short battery life of mobile devices. Providing con-
tinuous and on-demand services, MCC argues that the service must be available for users at anytime and anywhere. However, at
present, the service availability of MCC is usually measured by some certain metrics of a real-world system, and the results do
not have broad representation since different systems have different load levels, different deployments, and many other random
factors. Meanwhile, for large-scale and complex types of services in MCC systems, simulation-based methods (such as Monte-
Carlo simulation) may be costly and the traditional state-based methods always suffer from the problem of state-space explosion.
In this paper, to overcome these shortcomings, fluid-flow approximation, a breakthrough to avoid state-space explosion, is
adopted to analyze the service availability of MCC. Four critical metrics, including response time of service, minimum sensing
time of devices, minimum number of nodes chosen, and action throughput, are defined to estimate the availability by solving a
group of ordinary differential equations even before the MCC system is fully deployed. Experimental results show that our
method costs less time in analyzing the service availability of MCC than the Markov- or simulation-based methods.

Key words: Service availability, Mobile cloud computing, Fluid-flow approximation, Ordinary differential equations
doi:10.1631/FITEE.1400410 Document code: A CLC number: TP393

1 Introduction

With excellent performance, low cost, and high

degree of usability, cloud computing has become a
promising way to manage information for users. It is
thought that cloud computing is changing the way
that network services are provided. The client typi-
cally pays on a per-use basis, rather than maintaining
expensive computing hardware. Meanwhile, with the
advancement of mobile technology, mobile Internet
users have accounted for 70% of the entire Internet
users, as an absolute majority. A lot of media appli-
cations have migrated to mobile platforms, such as
entertainment, health, business, social networking,

which bring natural language processing, speech
recognition, computer vision, image processing, and
other computation- or data-intensive tasks. However,
mobile devices have limited computing power, poor
storage capacity, and a short battery life, hindering
the advancement of this emerging business. Thus,
mobile cloud computing (MCC) has been proposed
by combining the advantages of mobile computing
and cloud computing to overcome these shortcom-
ings (Dinh et al., 2013).

The aim of MCC is to ensure users always ob-
tain continuous, uninterrupted, personalized, and on-
demand services; thus, user experience is very im-
portant and even determines whether the service can
be used continuously. For example, if Bob has stored
his data in an MCC system and is often unable to get
it, he will change the MCC provider without a doubt.
The phenomenon stated above has been approved
by a market report from the International Data

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (Nos. 61402127 and 61370212) and the Natural Science Foun-
dation of Heilongjiang Province, China (No. F2015029)

 ORCID: Hong-wu LV, http://orcid.org/0000-0002-1917-3978
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

Guo Yunlong
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1400410&domain=pdf

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 554

Corporation (IDC) (Gens et al., 2013). Thus, service
availability is usually thought to be very essential for
MCC.

However, at present, research on MCC service
availability is still in its early stage, and there are
some shortcomings:

1. In practice, the availability of MCC is usually
guaranteed by service level agreements (SLA), a
document defining the relationship between the pro-
vider and the recipient. It usually lists many issues,
including identifying and defining the customer’s
needs, providing a framework for understanding
complex issues, and reducing areas of conflict (Qi
and Gani, 2012). Among these items, the most im-
portant is describing the availability of the service to
be delivered, which ensures that users obtain good
experience. However, the metrics of availability
defined by SLA documents are just some fixed
boundary conditions, which cannot measure the
exact values of the availability of the target system at
any given time. At the same time, due to the intrinsic
complexity of MCC systems, it is hard to predict the
service availability when signing an SLA, especially
before the target system is deployed.

2. Currently, some other availability analysis
methods for MCC are based on measuring concrete
metrics of real-world systems, but the results are not
representative since different load levels, different
deployment, and other random factors cause a large
impact on the measured metrics. So, it is expected to
study service availability from a theoretical perspec-
tive to reduce random interference.

3. To analyze service availability from a theo-
retical viewpoint, we usually model MCC by means
of state-based methods, for example, the Markov
chain or Petri net. However, as the different types of
services and the cooperation relationships between
components are growing rapidly, traditional model-
ing methods based on the state space all suffer from
the problem of state-space explosion. Many methods
have been proposed in recent years to deal with
state-space explosion, such as state-space decompo-
sition, state-space aggregation, and fixed-point itera-
tion. Since these methods have to scan the whole
state space, the computing time is always an expo-
nential function of the number of all components in
the system.

In this paper, instead of measuring the specific

metrics of some instances, we model MCC systems
using the performance evaluation process algebra
(PEPA) (Hillston, 2005) in a formal manner. Based
on the model, some critical metrics are defined to
estimate and evaluate the service availability of
MCC. Furthermore, to overcome the problem of
state-space explosion, fluid-flow approximation, a
method proposed in recent years (Hillston, 2005), is
adopted to convert the PEPA model into a group of
ordinary differential equations (ODEs). Unlike tradi-
tional state-based analytical techniques, the fluid-
flow approximation method involves approximating
the underlying discrete state space with continuous
real-valued variables and describing the time-
evolution of those variables with ODEs (Hayden and
Bradley, 2008). In other words, it needs only to
know the population of each species of components,
rather than the states of all the components. So, the
number of states that it supports is over 10 100. In
addition, the proposed model can be used even be-
fore the target system is deployed.

2 Modeling mobile cloud computing based
on PEPA

2.1 PEPA and fluid-flow approximation

PEPA, a classical process algebra, is known for
its easy use (Hillston, 2005). Besides model check-
ing, it can be used for quantitative analysis. Tradi-
tionally, PEPA is mapped to an underlying Markov
chain for the analysis of performance, but analyzers
usually encounter state-space explosion problems, as
the number of states is too large. In this study, a new
definition of PEPA is introduced using fluid-flow
approximation proposed by Hillston (2005).

The state of the PEPA model at time t can
be represented by P(t), which has the following
characteristics:

() :: () () | (),
L

P t P t P t Y t  (1)

() :: (,). | | / | ,P t r P P P P L A  (2)

() :: () || () || (),Y t P t P t P t  (3)

where () ()
L

P t P t and Y(t) represent interaction

and parallel actions, respectively. The choice +, co-
operation

L
 , hiding /, and constant definition A are

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 555

the basic syntaxes. In the prefix (α, r), r means the
apparent rate of action α. For details of the operation,
one can refer to Hillston (2005) and Bradley et al.
(2008).

Based on the new definition of PEPA, fluid-
flow approximation can be used to convert PEPA
into ODEs. According to Castiglione et al. (2014),
the nature of fluid-flow approximation is that the
large number of discrete states is considered to be of
continuous change. Then some ODEs can be built to
describe the trend of state changes.

Given n classes of components, the ith class of
components is denoted as Ci. Each class of compo-
nents has a series of derivations, and the jth deriva-
tion of Ci is called Cij. Let N(Cij, t) denote the number
of components at time t. Exit(Cij) and Enter(Cij) rep-
resent the sets of exit and entry activities of a local
derivation, respectively. In a short time Δt, the
changes of an arbitrary derivation Cij can be de-
scribed as follows:

Exit () Enter()

Exit activities Enter activities

(,) (,)

(, ()) (, ()) ,
ij ij

ij ij

ij ik
C C

N C t t N C t

C P t t C P t t 
 

 
 

  

    
 

(4)

where the component rate ρα(Cij, P(t)) captures the
local effect of P(t) on component Cij, and k≠j. Then a
real-valued variable vij(t) is used to approximate the
discrete variable N(Cij, t), denoted as vij(t)=E[N(Cij,
t)]. Furthermore, according to Hayden et al. (2012),
the error between vij(t) and N(Cij, t) will tend to 0

while
,

(,) .iji j
N C t 

Let Δt be close to 0. We obtain

Exit () Enter()

d ()
(, ()) (, ()),

d

1,2, ,| |, 1,2, , . (5)
ij ij

ij
ij ik

C C

i

v t
C P t C P t

t

j C i n

 
 

 
 

 

 

 
 

For details, one can refer to Tribastone et al. (2012a).
Therefore, the complexity of solving the model is
related only to the number of the types of compo-
nents, rather than the population of all types of
components.

2.2 MCC model based on PEPA

Currently, there are many types of MCC appli-

cations in our daily lives, and the most famous ex-
amples include ‘searching the lost child’ (Satyana-
rayanan, 2011), ‘the translation in museum’ (Huerta-
Canepa and Lee, 2010), ‘disaster relief’ (Fernando et
al., 2013), and ‘the traffic congestion map’ (Rishabh
et al., 2013). These scenes basically have the same
mode, and in this study, the traffic congestion map is
chosen as an example to analyze the service availa-
bility of MCC.
Example 1 (Traffic congestion map) While a
driver is on his/her way to the airport, he/she sends a
request to a cloud system by phone to get a traffic
congestion map and avoid encountering a traffic jam.
Then the cloud gathers the urban traffic status in real
time through a lot of taxis distributed in the city, and
forms a near real-time traffic congestion map after
processing the data collected. Then the map is re-
turned to the driver for choosing the best road.

To establish a model of universal significance,
it is necessary to ignore the details not directly asso-
ciated with the service availability of MCC. Taking
the traffic congestion map as an example, it is easy
to find that an MCC system has the following typical
characteristics:

1. An MCC system can be divided into two
parts, the cloud and a set of mobile devices. The
former is either a traditional cloud computing system
or a set of computing nodes closely related.

2. While the cloud receives a service request
from a user, every mobile device is awakened to col-
lect information.

3. The data collected is submitted to the cloud
through a wireless link and computed by means of
classic cloud computing.

4. The final results will be returned to the users.
As stated above, computation- or data-intensive

tasks in an MCC system are submitted to the cloud
instead of being handled in local devices. This is
usually called ‘offloading computing’ (Ou et al.,
2007). Different from traditional interactive compu-
ting, after submitting a request, a user will not inter-
act with the cloud again until a final result is returned.
So, we primarily describe the MCC system from the
cloud and the mobile device, ignoring user behaviors.

2.2.1 Modeling the cloud

Without loss of generality, we assume that the
cloud part is based on a map-reduce structure whose
main steps include requesting & waiting, splitting,
mapping, shuffling, and reducing (Fig. 1).

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 556

Assuming the sojourn time of each action fol-

lows an exponential distribution in the process of
cloud computing (Chilwan et al., 2011; Longo et al.,
2011), PEPA can be used to model this process
(Fig. 2). Certainly, every step may have a more com-
plex process and contains many details, but PEPA
supports a hierarchical structure and can be easily
described by combining some simple sentences
(Fourneau et al., 2002). Therefore, we ignore the
details, making the model as simple as possible.

Assume that the cloud has the ability to process
M tasks in parallel, which means the tasks can be
divided into M pieces at most. That is, the number of
Mappings is M at most. Thereafter, the component
Master as a derivation of Mapping also has a maxi-
mum amount M. Then the cloud part is described as

Master[M].

2.2.2 Modeling the devices

For the mobile devices, a certain port is always
monitored to wait for the command of collecting
information. As soon as it receives a request from the
cloud, the device turns to the state of Awake, and
begins to gather data with some sensors. Afterwards,
the mobile device changes to the Sensing state until
the information collected is submitted. While finish-

ing a circle as stated above, the mobile device goes
back to the state of Device and gets ready for the
next service request. The devices are modeled as
shown in Fig. 3.

Given that there are N mobile devices in the
target system, the Device part can be described as

Device[N].

Therefore, a simple MCC model can be de-

scribed by the interaction between the cloud part and
the device part. If the parallel computing capability
of the cloud is M and the number of mobile devices
is N, then the MCC model is built as follows:

Master[] Device[],
L

M N (6)

where L is a set of cooperation actions, L=
{broadcast_requesting, return}. Furthermore, con-
sidering a more complex scene where there are many
types of devices, it can be rewritten as

1 1 2 2Master[] (Device [] || Device [] || ...

|| Device []),
L

k k

M N N

N



where
1

,
k

ii
N N


 and Ni represents the number of

the ith kind of device.

3 Metrics of availability

Just like Software-as-a-Service (SaaS), the ser-

vice availability of MCC is characterized by some
key metrics. In this section, we will discuss four of
the most important metrics of service availability,
including response time of service, minimum sensing
time of devices, minimum number of nodes chosen,
and action throughput.

3.1 Response time of service

Response time of service (RTS), one of the core

Input file
(information
collected)

Split 0

Split 1

Split 2

Split N

Node

Node

Node

Node

Node

Requesting &
waiting phase

Splitting
phase

Mapping
phase

Shuffling
phase

Reducing
phase

Output

Output

Fig. 1 Process of cloud computing

Fig. 3 The PEPA model of the devices

Fig. 2 The PEPA model of the cloud

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 557

metrics of service availability, directly determines
the user experience of MCC. For the characteristics
inherited from mobile computing, mobile devices
may move into an area with no signal, or suffer from
masking or channel interference. These problems
greatly increase the RTS, and even lead to a terminal
timeout.

Traditionally, for MCC, the average RTS
usually relates to the average processing time of all
types of services running on the same platform.
However, it is not very accurate in practice for a cer-
tain service as the execution time of each service
varies greatly. In this study, RTS for a single type of
service, or SRTS, is investigated.

As stated in Section 2.2, the service of MCC is
implemented primarily in the cloud part by means of
offloading computing. For a certain type of service,
SRTS refers to the shortest possible time from re-
ceiving the service request to returning the final re-
sults for the first time.

Combined with the model given in Section 2.2,
we describe this metric in a formal manner. SRTS
can be treated as the passage time to complete the
first cycle from the state of Master, that is, Master→
Reduce→Master. Then we can modify the latter
Master component and introduce a new component,
Master′. Correspondingly, the cloud part of MCC
can be rewritten as shown in Fig. 4. Based on the
model, we can define the SRTS using the passage
time which is an infimum, the shortest time used
from the source state to reach a set of target states
(Hayden et al., 2012).

Actually, a component stays in a certain state at
time t with a probability. Similarly, a component
arrives at the target collection with a probability θ(t)

at time t. As a matter of fact, what we are really con-
cerned with is which t makes θ(t) greater than θ0.
The parameter θ0 is a threshold indicating that a
component has reached the target collection. It has a
close relationship with the specific type of service.
Given the target set C′={Master′, Waiting′, Splitting′,
Mapping′, Shuffling′, Reducing′}, the number of all
components in C′ is N(C′, t). While there are M Mas-
ters in the system, to complete the task, the value of
N(C′, t) must be more than M×θ0. Thus, we can de-
fine the SRTS as follows:
Definition 1 For any t>0, N(C′, t) represents the
number of components in C′ at time t. Then,

SRTS=inf{t, N(C′, t)≥M×θ0}, (7)

where N(C′, t) can be expressed as

derivation
(,) [(derivation,)],

C
N C t E N t


  (8)

with E[N(derivation, t)] representing the fluid-flow
approximation of the number of component deriva-
tions at time t. All of the items in the right-hand side
of the above equations can be obtained by solving
the model in this subsection. A detailed description
will be given in Section 4.1.

3.2 Minimum sensing time of devices

The data collected by mobile devices is the ba-
sis of MCC. However, due to the unstable wireless
link between mobile devices and the cloud system,
terminals may stay in an area with no signal or suffer
from channel interference. This phenomenon often
leads to a device timeout; that is, the cloud part al-
ways waits for a response from the device after send-
ing some commands. To avoid meaningless waiting,
the analyzer needs to estimate the minimum sensing
time used by devices.

First we discuss the definition of the minimum
sensing time. Take the traffic congestion map as an
example. The process of sensing begins with receiv-
ing a command from the cloud, and ends with return-
ing the data collected. So, the minimum sensing time
(MST) of the device is the least time used by devices
from receiving a command to returning a final result.

Consider there is only one type of device in the
system. Therefore, MST is the time used to complete
the process of Device→Sensing→Device. Like in

Fig. 4 The revised model of the cloud part

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 558

Fig. 4, to distinguish the components, the latter De-
vice is denoted as Device′. Then the revised model of
the device part is as shown in Fig. 5.

For simplicity, we assume that all selected de-
vices are identical, and that the delay time of the ac-
tions is independent and identically distributed.
When all mobile devices are equipped with the same
MCC client, this assumption is reasonable. Then we
can give a definition of MST.
Definition 2 For any device i, 1≤i≤N, where N is
the overall number of devices, record the current
state of device i as Si. Then MST can be seen as the
shortest time from the source state of Device to the
target set of S′={Device′, Awake′, Sensoring′}:

MST=inf{t, SiS′}. (9)

According to the above definition, MST is hard

to compute in practice. We will look for a way to
quantify it.

According to the research on individual passage
time (Hayden et al., 2012), up to time t, finishing a
circle for a device means the device belongs to S′, so
the probability of finishing a circle is

P{Si(t)S′}=P{Si(t)≠Device, Si(t)≠Awake,

Si(t)≠Sensing}. (10)

According to the above statement which means all
selected devices are identical, we have

{ Device}
1

[(Device,)] 1

{ Device}.

i

N

S
i

i

E N t E

N P S




   

  

 (11)

Then we can obtain a theorem about the metric MST:
Theorem 1 For any time t>0, the probability of
MST follows





1
{MST } 1 [(Device,)]

 [(Awake,)] [(Sensing,)] .

P t E N t
N

E N t E N t

  

 
 (12)

Proof According to Eq. (10), if t>MST, all the
components have finished a circle. Thus,

P{MST≤t}=P{Si(t)≠Device, Si(t)≠Awake,
Si(t)≠Sensoring}

=1−P{Si(t)=Device}−P{Si(t)=Awake}
−P{Si(t)=Sensing}.

Owing to Eq. (11), we have





1
{MST } 1 [(Device,)]

[(Awake,)] [(Sensing,)] .

P t E N t
N

E N t E N t

  

 

3.3 Minimum number of nodes chosen

Due to the statements in Section 3.2, the infra-
structure of the MCC system is usually unreliable.
To deal with unexpected faults and random high
loads, each service is always allocated with redun-
dancy processing capabilities. Therefore, more nodes
than the minimum number of devices needed are
deployed to provide normal services. In reality, re-
quirements will be sent by the cloud to a lot of local
devices in this area. However, the fact that fewer
devices are needed means less energy consumption
and fewer links unexpectedly interrupted. Thus, it is
important to estimate the minimum number of nodes
needed and determine the range of devices chosen.

Assuming that the expected minimum number
of nodes is N0, and that the proportion of redundant
sources is γ, then the actual allocation of devices is
(1+γ)×N0. The degree of redundancy is determined
by a variety of environmental factors. According to
Section 3.2, we can analyze this metric through the
probability of a terminal timeout.

With respect to Theorem 1, it is easy to obtain
the probability of terminal timeout by removing the
proportion of no timeout.
Lemma 1 Let the expected minimum number of
nodes be N0, t>0. If a node is a timeout at a certain
time t, the probability of the terminal timeout is




0

1
() [(Device,)] [(Awake,)]

 [(Sensing,)] .

t E N t E N t
N

E N t

  


 (13)

Fig. 5 The revised model of the device part

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 559

Based on Lemma 1, we can give a definition of
the minimum number of nodes needed, given that the
proportion of a device timeout is λ(t), the minimum
number of nodes needed is N0, and the minimum
number of nodes chosen is N1. They satisfy the fol-
lowing relationship:

N0=N1×(1−λ(t)). (14)

Combining Eqs. (13) and (14), we can obtain

the following theorem:
Theorem 2 Given t>0, the minimum number of
nodes needed N0, the number of devices chosen N1
satisfies




2
1 0 0

1

([(Device,)] [(Awake,)]

[(Sensing,)]) .

N N N E N t E N t

E N t


   

 (15)

Certainly, N1 is less than the maximum number

of devices that can be reached within the area; that is,
N1≤(1+γ)×N0. This metric is closely related to energy
consumption and network interruption. It also plays
an essential role in MCC. Furthermore, the analysis
results can be treated as evidence for increase in the
number of redundant devices.

3.4 Action throughput

Throughput is a classical metric to assess the
transaction processing capability of a component. A
better processing capability also means good service
availability under the same conditions; that is, the
user has a greater probability of gaining what he/she
wants. Action throughput is a new performance met-
ric developed based on throughput, mainly assessing
the frequency of a type of action implemented
(Satyanarayanan, 2011). In an MCC system, action
throughput is also a very important metric. Taking
the case of the traffic congestion map as an example,
the throughput of broadcast_requesting denotes the
ability of MCC to send service requests per unit of
time. The greater the value is, the more transactions
are handled. Similarly, the throughput of return rep-
resents the frequency of returning service results per
unit of time. While the throughput increases, the ser-
vice processing abilities become better. In this study,
we focus on the throughput of these two actions.

First, considering one of the simplest cases, that

is, action α is not a cooperation action between com-
ponents in the PEPA model.
Lemma 2 Let k indicate the kth component, Act(k)
the action set triggered by k, r the apparent rate of
action α, and πk the steady-state probability of com-
ponent k. We have

(,) Act ()

Throughput() .k
k r k

r


 


 
  

 
  (16)

Second, for a cooperation action, there is more

than one partner deciding the action throughput. For
example, the action throughput of broadcast_
requesting is determined by both Device and Master.
According to Tribastone et al. (2012b), we can rede-
fine the action throughput in a new format:
Lemma 3 Let L={C1, C2, …, Cq}, q*, q≥2, and
all of the elements of L have a cooperation action α.
The action throughput of α in a local place L can be
described as

(,) Act ()

Throughput () min .L k
k L

r k

r


 




 
  

 
 (17)

Owing to the two statements above, we can give

a more general result of action throughput:
Theorem 3 In a PEPA model, all components con-
stitute a set ,C L L  and all of the elements of L

have a cooperation action α. The action throughput
of α can be described as

(,) Act() (,) Act()

Throughput()

min .k ll L
k L r k r l

r r
 



 


  

   
    

   
  

 (18)

While there are a large number of components, solv-
ing the solution of πk will suffer from state-space
explosion, so the fluid-flow approximation method is
used for analysis of action throughput. Correspond-
ingly, Eq. (18) becomes

(,) Act ()

(,) Act()

Throughput() [()]

min [()] ,

k
k L r k

l
l L

r l

E N C r

E N C r






 




 
  

 
 

  
 

 


 (19)

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 560

where E[N(Ck)] represents the mathematical expecta-
tion of the number of components, k, after reaching a
steady state.

4 Analyzing the metrics of service availabil-
ity by fluid-flow approximation

According to the metrics discussed above, we

analyze the service availability with a simple case of
the traffic congestion map. The parameters are cho-
sen as shown in Table 1.

It is necessary to point out that the values of the

parameters are computed using the classical method
proposed by Huang et al. (1995). Given that the av-
erage delay of action α is T, the value of α is 1/E(T),
where E(T) is the mathematical expectation of T. For
instance, the action of broadcast_requesting has a
long latency owing to terminal timeout or the mech-
anism of retransmission. Then its mathematical ex-
pectation of the average delay is 5 time units, and r2
is 1/5. Other parameters have similar semantics.

Next, we will analyze the metrics of service
availability and the impacts of the parameters. In this
study, the fluid-flow approximation method is adopt-
ed, as there are a lot of mobile devices in MCC sys-
tems and accordingly the state space of the PEPA
model is very large.

4.1 Analysis of SRTS

Before analyzing SRTS, it is necessary to solve
the PEPA model in Section 3.1. We convert the
model into ODEs by fluid-flow approximation. Due
to Hillston (2005), the activity diagram of this model
is as shown in Fig. 6.

For easy presentation, we use the following
mapping:

N(Master, t)→v11, N(Waiting, t)→v12,
N(Splitting, t)→v13, N(Mapping, t)→v14,

N(Shuffling, t)→v15, N(Reduce, t)→v16,
N(Master′, t)→v111, N(Waiting′, t)→v121,
N(Splitting′, t)→v131, N(Mapping′, t)→v141,
N(Shuffling′, t)→v151, N(Reduce′, t)→v161,
N(Device, t)→v21, N(Awake, t) →v22,
N(Sensing, t)→v23.

Using Eq. (5), the ODEs are obtained as given
in Eq. (20).

Assuming the initial population of components
is (99.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 100, 0, 0),
the state space is 12100×3100>10100 while we use a
traditional Markov chain method before simplifica-
tion. Clearly, it will bring a state-space explosion. In
contrast, it is easy to obtain the solution of the case
using Eq. (20). As shown in Fig. 7, we can find the
population of each of the components in the set C′
after the first ground of service.

Table 1 Default parameters used in the model

Parameter Value Parameter Value
r1 0.2 r6 0.1
r2 0.5 w1 0.2
r3 1 w2 2
r4 1 w3 1
r5 2

Fig. 6 Activity diagram for the revised model of the
cloud part

P
op

ul
at

io
n

Fig. 7 The number of components in set C′

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 561

11
11 1 11 111 1 21

11 111

12
12 2 12 121 3 23

12 121

11
1 11 111 1 21

11 111

12
13 3 13 2 12 121 3 23

12 121

14 4 14 3 13

15 5 15 4 14

min((),),

min((),)

min((),),

min((),),

,

,

v
v r v v w v

v v

v
v r v v w v

v v

v
r v v w v

v v

v
v r v r v v w v

v v

v r v r v

v r v r v

   


   


 


    


   
   

16 6 16 5 15

111
111 1 11 111 1 21 6 16

11 111

121
121 2 12 121 3 23

12 121

111
1 11 111 1 21

11 111

121
131 3 131 2 12 121 3 23

12 121

14

,

min((),) ,

min((),)

min((),),

min((),),

v r v r v

v
v r v v w v r v

v v

v
v r v v w v

v v

v
r v v w v

v v

v
v r v r v v w v

v v

v

   

    


   


 


    



1 4 141 3 131

151 5 151 4 141

161 6 161 5 151

21 1 11 111 1 21

2 12 121 3 23

22 2 22 1 11 111 1 21

23 2 12 121 3 23 2 22

,

,

,

min((),)

min((),),

min((),),

min((),) .

r v r v

v r v r v

v r v r v

v r v v w v

r v v w v

v w v r v v w v

v r v v w v w v


















  
   
   
   

 
    
    





























(20)

Based on the solution of the ODEs above, the
plot of SRTS is obtained (Fig. 8), where the X-axis
represents SRTS and the Y-axis denotes the propor-
tion of computing nodes that have finished their jobs.
As SRTS increases, more and more computing nodes
complete their assigned tasks. For example, if
θ0=0.9519, then SRTS=41.97. Therefore, given θ0 it
is easy to obtain any SRTS by the solution of the
ODEs.

In this case, to avoid a 0-division calculation,
we assume that initially there are a few components
of Waiting, Splitting, Mapping, Shuffling, and Re-
ducing, but in reality the number of these compo-
nents should be close to 0. In the next case, the im-
pacts of the initial conditions on SRTS will be
analyzed.

For comparison, the total number of compo-

nents remains unchanged, and the initial number of
each of the components is separately set to (99.5, 0.1,

0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 100, 0, 0), (99.95, 0.01,

0.01, 0.01, 0.01, 0.01, 0, 0, 0, 0, 0, 0, 100, 0, 0), (95, 1,

1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 100, 0, 0). Fig. 9 gives the
corresponding curves under these three different ini-
tial conditions. The results of SRTS are not very dif-
ferent. While the time is no more than 40, the curve
in the 3rd initial condition is slightly higher than the
others. The curves with the other two initial condi-
tions almost overlap with each other everywhere.
These results show that the initial condition has little
impact on SRTS.

4.2 Analysis of MST

Just like the analysis of SRTS in Section 4.1,
before computing MST, the PEPA model in Section
3.2 needs to be converted into ODEs. First, the

P
op

ul
at

io
n

Fig. 9 Impact of the initial condition on the response
time of service

Fig. 8 The number of computing nodes that have ar-
rived at the target collection (SRTS=41.97 when θ0=
0.9519)

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 562

relationships of the components of this model are
given in Fig. 10.

The corresponding mapping is then shown as

N(Master)→v11, N(Waiting)→v12,
N(Splitting)→v13, N(Mapping)→v14,
N(Shuffling)→v15, N(Reduce)→v16,
N(Device)→v21, N(Awake)→v22,
N(Sensing)→v23, N(Device′)→v211,
N(Awake′)→v221, N(Sensing′)→v231.

According to the definition of fluid-flow ap-

proximation given by Eq. (5), the corresponding
ODEs are obtained as given in Eq. (21).

Assuming the initial number of components is
(100, 0, 0, 0, 0, 0, 99.8, 0.1, 0.1, 0, 0, 0), we can ob-
tain the solution to this case using Eq. (21).
Fig. 11 shows the number of components for S′ after
the first ground of service. It is observed that these
curves will stabilize and converge to a fixed value
after the 150th time unit.

Fig. 12 gives the cumulative probability density
function (CDF) of MST as determined by Eq. (12).
For instance, setting the threshold of MST to be 100,
then the CDF of MST is 0.9399. As time goes on, the
CDF of MST gradually increases. It means that more
devices finish a circle while the threshold of MST
increases. In other words, the number of components
in S′ grows with increase of MST. Furthermore, as
the threshold increases, most of the devices have
finished sensing, the growth of the number of com-
ponents in S′ slows down, and finally all of the com-
ponents have entered S′.

11 1 11 1 21 211 6 16

12 2 12 3 23 231

1 11 1 21 211

13 3 13 2 12 3 23 231

14 4 14 3 13

15 5 15 4 14

16 6 16 5 15

21
21

21 211

min(, ()) ,

min(, ())

min(, ()),

min(, ()),

,

,

,

min

v rv w v v r v

v r v w v v

rv w v v

v r v r v w v v

v r v r v

v r v r v

v r v r v

v
v

v v

    
   

 
    
   
   
   

  
 1 11 1 21 211

21
22 2 22 1 11 1 21 211

21 211

23
23 2 12 3 23 231 2 22

23 231

211
211 1 11 1 21 211

21 211

2 12 3 23 231

211
221 2 221

(, ()),

min(, ()),

min(, ()) ,

min(, ())

min(, ()),

rv w v v

v
v w v rv w v v

v v

v
v r v w v v w v

v v

v
v rv w v v

v v

r v w v v

v
v w v



    


    


   


 

    1 11 1 21 211
21 211

231
231 2 12 3 23 231 2 221

23 231

min(, ()),

min(, ()) .

rv w v v
v v

v
v r v w v v w v

v v
































    



(21)

Fig. 10 The activity diagram for the revised model of
the device part

Fig. 11 The number of components in set S'

Fig. 12 The cumulative probability density function of
the minimum sensing time

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 563

4.3 Estimating the minimum number of nodes
chosen

According to Eq. (14), it is necessary to com-
pute the probability of terminal timeout before ana-
lyzing the minimum number of nodes chosen. Given
that the initial number of each of the components is
set to (100, 0, 0, 0, 0, 0, 99.8, 0.1, 0.1, 0, 0, 0) as in
Section 4.2, the probability of terminal timeout can
be determined (Fig. 13).

As shown in Fig. 13, the probability of a termi-

nal timeout becomes lower and lower while the
threshold of the timeout grows. Supposing that the
threshold is set to be 10 time units, the probability of
terminal timeout is 0.87 according to Eq. (13). Fur-
thermore, as the threshold is set to be 100 units, the
probability is near 0.06, which is low enough to en-
sure sufficient devices finishing the first round of
information collection. Similar to SRTS, the proba-
bility of a terminal timeout is easily obtained after
setting a certain threshold.

According to Eq. (15), we can obtain the mini-
mum number of nodes chosen as shown in Fig. 14.
As the timeout threshold of the terminal increases,
much fewer nodes need to be deployed. With the
increase of the threshold, the minimum number of
nodes needed converges to 100. It is certain that the
number of nodes needed is equal to N0 when there is
no terminal timeout. To sum up, as soon as the
threshold of timeout is given, it is easy to obtain the
minimum number of nodes chosen in the MCC
system.

4.4 Computing the action throughputs

The action throughputs can be computed ac-
cording to Eq. (19). For example, when the values of

the parameters are assigned as in Table 1, the action
throughputs of broadcast_requesting and return are
computed as follows:

Throughput(broadcast_requesting)

=min(E[N(Master, t)]×r1, E[N(Device, t)]×w1)
=4.26,

Throughput(return)
=min(E[N(Waiting, t)]×r2, E[N(Sensing, t)]×w3)
=2.13.

In the above case, both broadcast_requesting

and return are cooperation actions, whose implemen-
tation parameters are determined by both the cloud
and the devices. So, we should change the two sides
when increasing the action throughputs.

To check the impacts of broadcast_requesting
from parameters on the action throughputs, the criti-
cal parameters r1 and w1 must be studied. First, we
change r1 from 0.2 to 10. Table 2 shows the changes
of the action throughput of broadcast_requesting.

Table 2 shows that the action throughput of
broadcast_requesting increases very slowly as r1
grows. Moreover, according to the meaning of 1/r1,
the mathematical expectation of the time interval
between two sending requests, the value of r1 must
fall in a certain range; that is, the action throughput
will not become too large.

Similarly, the other parameter w1 changes from
0.03 to 0.1 when r1=0.2 (Table 3). The action
throughput of broadcast_requesting is reduced when
w1 decreases. This is because the time interval be-
tween two sending requests becomes too long for the
devices. Thus, the cloud does not have enough data
to deal with, while the value of w1 is too small, and
the action throughput of broadcast_requesting de-
creases. Meanwhile, the service availability of MCC
will be degraded to a low level.

Fig. 13 The probability of a terminal timeout

5 20 40 60 80 100 120 140
0

100
500

1000

1500

2000

2500

3000

Time

Fig. 14 The minimum number of devices chosen

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 564

According to the above analysis, the action

throughput of broadcast_requesting can be drawn as
a surface (Fig. 15).

Second, while r2 and w3 are set to a series of

different values, the action throughput of the return
slides on the surface is shown in Fig. 16. It is easy to
obtain the conclusion that the action throughput of

return increases with the growth of r2 and w3. Fur-
thermore, the growth trend will gradually slow down
while r2 and w3 become too large. The reason is that
the time interval between return sensing results can-
not be infinitely reduced and will be stopped at a
proper range.

4.5 Comparison with existing methods

To demonstrate the efficiency of our method,
we compare it with some existing methods. It needs
almost the same time to compute the metrics for dif-
ferent methods with steady-state probability distribu-
tion or approximation steady-state probability distri-
bution, but the time used to obtain steady-state prob-
abilities varies greatly. So, primary attention is paid
to comparing the time used to solve the model by
different approaches including Monte-Carlo simula-
tion, fluid-flow approximation, and the Markov
chains before and after simplification.

Taking the model shown in Fig. 4 as an exam-
ple, it is necessary to compare the computing time
with those of other methods under different initial
populations of components. In this case, the number
of derivations of Master is k1=12, the number of der-
ivations of Device is k2=3, and the initial populations
of Master and Device are shown as M and N, respec-
tively. So, the number of states of the Markov chains
method before simplification is 12M×3N. After sim-
plification, the upper bound of the state space of the

Markov chains method is 1 2

1 21 1C C .k k
N k M k    In addition,

the Markov chains method and Monte-Carlo simula-
tion method are tested using the eclipse PEPA plug-
in tool developed by the University of Edinburgh

Table 2 The action throughput of broadcast_requesting
while r1 changes

r1
Population Action

throughput Master Device

0.2 21.3 74.3 4.26

0.3 15.3 72.4 4.59

0.4 11.9 71.3 4.77

0.6 8.3 70.1 4.97

0.8 6.3 69.5 5.07

1.0 5.1 69.1 5.12

2.0 2.6 68.6 5.27

3.0 1.8 68.0 5.32

5.0 1.1 67.6 5.36

10.0 0.5 67.6 5.39

Table 3 The action throughput of broadcast_requesting
while w1 changes (r1=0.2)

w1
Population Action

throughput Master Device

0.03 53.2 84.7 2.54

0.04 40.6 80.6 3.22

0.05 29.1 76.9 3.84

0.06 21.3 74.3 4.26

0.10 21.3 74.3 4.26

A
ct

io
n

 th
ro

ug
hp

ut

Fig. 15 The action throughput of broadcast_requesting

A
ct

io
n

 th
ro

ug
h

pu
t

Fig. 16 The action throughput of return

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 565

(Tribastone, 2007). For the simulation method, the
number of transient steps is set to 10 000, the confi-
dence level is 0.99, and all other parameters use the
default settings. The experiment was executed in a
PC with a 4-core 2.4 GHz CPU, 4 GB RAM, and the
results are shown in Table 4.

In Table 4, it is apparent that while M and N in-
crease, the Markov chains method suffers from a
serious problem of state-space explosion even after
simplification. At the same time, the simulation
method takes too long a time to obtain the solution
while M and N get larger. Yet, note that there are
perhaps more than a million nodes in the MCC sys-
tems, and apparently the simulation method does not
meet the requirements. Thereafter, the fluid-flow
approximation method which costs less time is a
good choice.

We can draw the same conclusion while study-
ing the comparison by solving the model in Fig. 5.
Compared with the Markov chain or simulation-
based methods, it is easier to analyze the availability
of MCC by a fluid-flow approximation method.

5 Related works

Nowadays, there has been much research on the

availability of cloud and some results can be directly
used in the area of MCC. However, we should be
aware that the service availability of MCC is much
different from that of cloud computing, because of
the inherited characteristics of the mobile. Only a
few of the current results of service availability are
fit for MCC. With the wide application of MCC, the
requirements of service availability of MCC systems
are increasing.

Since the research on MCC is currently at an
early stage, SLA is treated as an important way to
guarantee the service availability of MCC (Undheim
et al., 2011). Qi and Gani (2012) presented a review
on the characteristics, recent research, and future
research trends of MCC, and discussed the open
problems of SLA and how it should be used for
availability. Wu et al. (2012) proposed a series of
admission control and scheduling algorithms for
SaaS providers to effectively use public cloud re-
sources to maximize profit by using a function of
SLA. In these studies, the items of SLA have been
used to estimate the availability of MCC, but the lack
of rapid analysis methods hinders their practical use.
In addition, before the target system is deployed, it is
hard to predict the availability for SLA.

Using the sampling method to assess the metric
of availability is another common approach. The
sampling method usually has advantages of being
simple, and timeliness, but we must first have a rep-
resentative test system. In Singh and Kumar (2012),
six typical cloud systems from Amazon, Microsoft,
Google, and other companies were observed to ob-
tain the metrics of availability on different aspects,
and the results were compared through a hexagonal
floor plan. Widjajarto et al. (2012) believed that the
IaaS (Infrastructure-as-a-Service) systems provide
resources including compute power, storage, net-
work bandwidth, and powers, so they treated these
resources as the metrics of availability and set up an
availability analysis model. For a real test system,
however, different load levels, different deployments,
and other random factors bring large impacts on the
measured metrics. Just like SLA, this method is una-
vailable before the target system is deployed.

Table 4 The comparison of computing time

Parameter

Number of components Computing time (ms)

Markov chains
before simplifi-

cation

Markov chains
after simplifi-

cation

Markov
chains before
simplification

Markov chains
after simplifi-

cation

Monte-Carlo
simulation

Fluid-flow
approximation

M=N=3 6104 546 10 438 328 3562 31.4
M=N=10 3.65×1015

 940 576 – – 8688 31.4
M=N=100 4.27×10155 2.43×1018 – – 51 219 31.4
M=N=200 1.82×10211 1.44×1022 – – 100 938 31.4
M=N=1000 2.01×101556 1.34×1031 – – 506 281 31.4

‘–’ means it is beyond the machine’s computing power

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 566

Apart from the above two approaches, some ex-
isting availability evaluation methods used in cloud
or MCC are usually based on the state space from a
theoretical point of view, for example, the Markov
method used in Chilwan et al. (2011) to analyze the
availability of cloud, the Petri net used in Longo et al.
(2011) to analyze the availability of IaaS. However,
these methods always suffer from the problem of
state-space explosion. Even though many methods
have been proposed in recent years to deal with
state-space explosion, such as state-space decompo-
sition, fixed-point iteration, and state-space aggrega-
tion (Ever et al., 2013), it is not easy to meet the de-
mands for computing service availability. Because
these methods have to scan the whole state space, the
computing time used is an exponential function of
the number of all components in the system.

Fluid-flow approximation, also known as
‘mean-field approximation’, proposed by Hillston
(2005), avoids the problem of state-space explosion
by converting PEPA into ODEs. The technology
arouses a great deal of interest in many fields. In
Tribastone et al. (2012a) and Castiglione et al.
(2014), it has been used to deal with state-space ex-
plosion of the Petri net and process algebra. Recently,
Hayden et al. (2012) presented a method for compu-
ting global passage time using the technology of
mean-field approximation, and our study is partly
inspired by the work of Hayden.

6 Conclusions

We propose a service availability analysis

method for MCC based on fluid-flow approximation.
Some critical metrics of service availability are ana-
lyzed, including the response time of service, the
minimum sensing time of devices, the minimum
number of nodes chosen, and the action throughput.
This provides a basis for further studies on the avail-
ability of MCC.

Compared to existing methods, the major im-
provements of our work are:

1. The proposed method is based on a formal
language, instead of SLA or measuring a real-world
system. Thus, we can analyze the service availability
of MCC even before a target system is deployed.
Meanwhile, it avoids a variety of random interfer-
ences from different real systems under testing.

2. The fluid-flow approximation approach is
used to convert the PEPA model into ODEs, avoid-
ing the problem of state-space explosion which is
widely existing in current models, such as the Mar-
kov chains or Petri net.

3. By studying the core metrics of the service
availability of MCC, the impacts of parameters and
the initial conditions are analyzed by means of the
passage time. Based on these results, the service
availability of MCC can be easily estimated.

In this study, only some representative metrics
of availability are considered. In the future, more
metrics will be studied.

References
Bradley, J.T., Gilmore, S.T., Hillston, J., 2008. Analysing

distributed Internet worm attacks using continuous state-
space approximation of process algebra models. J. Com-
put. Syst. Sci., 74(6):1013-1032. [doi:10.1016/j.jcss.2007.
07.005]

Castiglione, A., Gribaudo, M., Iacono, M., et al., 2014. Ex-
ploiting mean field analysis to model performances of
big data architectures. Fut. Gener. Comput. Syst.,
37:203-211. [doi:10.1016/j.future.2013.07.016]

Chilwan, A., Undheim, A., Heegaard, P.E., 2011. Effects of
dynamic cloud cluster load on differentiated service
availability. 21st Int. Conf. on Computer Communica-
tions and Networks, p.1-6. [doi:10.1109/ICCCN.2012.
6289310]

Dinh, H.T., Lee, C., Niyato, D., et al., 2013. A survey of mo-
bile cloud computing: architecture, applications, and ap-
proaches. Wirel. Commun. Mob. Comput., 13(18):1587-
1611. [doi:10.1002/wcm.1203]

Ever, E., Gemikonakli, O., Kocyigit, A., et al., 2013. A hy-
brid approach to minimize state space explosion problem
for the solution of two stage tandem queues. J. Netw.
Comput. Appl., 36(2):908-926. [doi:10.1016/j.jnca.2012.
10.006]

Fernando, N., Loke, S.W., Rahayu, W., 2013. Mobile cloud
computing: a survey. Fut. Gener. Comput. Syst., 29(1):
84-106. [doi:10.1016/j.future.2012.05.023]

Fourneau, J.M., Kloul, L., Valois, F., 2002. Performance
modelling of hierarchical cellular networks using PEPA.
Perform. Eval., 50(2-3):83-99. [doi:10.1016/S0166-5316
(02)00101-3]

Gens, F., Adam, M., Bradshaw, D., et al., 2013. Worldwide
and Regional Public IT Cloud Services 2013–2017 Fore-
cast. IDC Market Analysis #242464.

Hayden, R.A., Bradley, J.T., 2008. Fluid semantics for pas-
sive stochastic process algebra cooperation. Proc. 3rd Int.
ICST Conf. on Performance Evaluation Methodologies
and Tools, p.1-10. [doi:10.4108/ICST.VALUETOOLS
2008.4329]

Lv et al. / Front Inform Technol Electron Eng 2015 16(7):553-567 567

Hayden, R.A., Stefanek, A., Bradley, J.T., 2012. Fluid com-
putation of passage-time distributions in large Markov
models. Theor. Comput. Sci., 413(1):106-141. [doi:10.
1016/j.tcs.2011.07.017]

Hillston, J., 2005. Fluid flow approximation of PEPA models.
Proc. 2nd Int. Conf. on Quantitative Evaluation of Sys-
tems, p.33-42. [doi:10.1109/QEST.2005.12]

Huang, Y., Kintala, C., Kolettis, N., et al., 1995. Software
rejuvenation: analysis, module and applications. 25th Int.
Symp. on Fault-Tolerant Computing, p.381-390. [doi:10.
1109/FTCS.1995.466961]

Huerta-Canepa, G., Lee, D., 2010. A virtual cloud computing
provider for mobile devices. Proc. 1st ACM Workshop
on Mobile Cloud Computing & Services: Social Net-
works and Beyond, Article 6, p.1-5. [doi:10.1145/
1810931.1810937]

Longo, F., Ghosh, R., Naik, K., et al., 2011. A scalable avail-
ability model for Infrastructure-as-a-Service cloud.
IEEE/IFIP 41st Int. Conf. on Dependable Systems &
Networks, p.335-346. [doi:10.1109/DSN. 2011.5958247]

Ou, S., Yang, K., Zhang, J., 2007. An effective offloading
middleware for pervasive services on mobile devices.
Perv. Mob. Comput., 3(4):362-385. [doi:10.1016/j.pmcj.
2007.04.004]

Qi, H., Gani, A., 2012. Research on mobile cloud computing:
Review, trend and perspectives. 2nd Int. Conf. on Digital
Information and Communication Technology and Its
Applications, p.195-202. [doi:10.1109/DICTAP.2012.
6215350]

Rishabh, S., Sanjay, K., Munesh, C.T., 2013. Mobile cloud
computing: a needed shift from cloud to mobile cloud.
5th Int. Conf. on Computational Intelligence and Com-
munication Networks, p.536-539. [doi:10.1109/CICN.
2013.116]

Satyanarayanan, M., 2011. Mobile computing: the next dec-
ade. ACM SIGMOBILE Mob. Comput. Commun. Rev.,
15(2):2-10. [doi:10.1145/2016598.2016600]

Singh, G., Kumar, R., 2012. Availability metrics for cloud
vibrant behaviour with benchmarks influence on diverse
facets. Int. J. Softw. Eng. Appl., 3(1):101-115. [doi:10.
5121/ijsea.2012.3108]

Tribastone, M., 2007. The Pepa Plug-in Project. 4th Int. Conf.
on the Quantitative Evaluation of Systems, p.53-54.
[doi:10.1109/QEST.2007.34]

Tribastone, M., Gilmore, S., Hillston, J., 2012a. Scalable
differential analysis of process algebra models. IEEE
Trans. Softw. Eng., 38(1):205-219. [doi:10.1109/TSE.
2010.82]

Tribastone, M., Ding, J., Gilmore, S., et al., 2012b. Fluid
rewards for a stochastic process algebra. IEEE Trans.
Softw. Eng., 38(4):861-874. [doi:10.1109/TSE.2011.81]

Undheim, A., Chilwan, A., Heegaard, P., et al., 2011. Differ-
entiated availability in cloud computing SLAs. 12th
IEEE/ACM Int. Conf. on Grid Computing, p.129-136.
[doi:10.1109/Grid.2011.25]

Widjajarto, A., Supangkat, S.H., Gondokaryono, Y.S., et al.,
2012. Cloud computing reference model: the modelling
of service availability based on application profile and
resource allocation. Int. Conf. on Cloud Computing and
Social Networking, p.1-4.

Wu, L., Garg, S.K., Buyya, R., 2012. SLA-based admission
control for a Software-as-a-Service provider in cloud
computing environments. J. Comput. Syst. Sci., 78(5):
1280-1299. [doi:10.1016/j.jcss.2011.12.014]

