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Abstract:    Mobile cloud computing (MCC) has become a promising technique to deal with computation- or data-intensive 
tasks. It overcomes the limited processing power, poor storage capacity, and short battery life of mobile devices. Providing con-
tinuous and on-demand services, MCC argues that the service must be available for users at anytime and anywhere. However, at 
present, the service availability of MCC is usually measured by some certain metrics of a real-world system, and the results do 
not have broad representation since different systems have different load levels, different deployments, and many other random 
factors. Meanwhile, for large-scale and complex types of services in MCC systems, simulation-based methods (such as Monte-
Carlo simulation) may be costly and the traditional state-based methods always suffer from the problem of state-space explosion. 
In this paper, to overcome these shortcomings, fluid-flow approximation, a breakthrough to avoid state-space explosion, is 
adopted to analyze the service availability of MCC. Four critical metrics, including response time of service, minimum sensing 
time of devices, minimum number of nodes chosen, and action throughput, are defined to estimate the availability by solving a 
group of ordinary differential equations even before the MCC system is fully deployed. Experimental results show that our 
method costs less time in analyzing the service availability of MCC than the Markov- or simulation-based methods. 
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1  Introduction 
 
With excellent performance, low cost, and high 

degree of usability, cloud computing has become a 
promising way to manage information for users. It is 
thought that cloud computing is changing the way 
that network services are provided. The client typi-
cally pays on a per-use basis, rather than maintaining 
expensive computing hardware. Meanwhile, with the 
advancement of mobile technology, mobile Internet 
users have accounted for 70% of the entire Internet 
users, as an absolute majority. A lot of media appli-
cations have migrated to mobile platforms, such as 
entertainment, health, business, social networking, 

which bring natural language processing, speech 
recognition, computer vision, image processing, and 
other computation- or data-intensive tasks. However, 
mobile devices have limited computing power, poor 
storage capacity, and a short battery life, hindering 
the advancement of this emerging business. Thus, 
mobile cloud computing (MCC) has been proposed 
by combining the advantages of mobile computing 
and cloud computing to overcome these shortcom-
ings (Dinh et al., 2013). 

The aim of MCC is to ensure users always ob-
tain continuous, uninterrupted, personalized, and on-
demand services; thus, user experience is very im-
portant and even determines whether the service can 
be used continuously. For example, if Bob has stored 
his data in an MCC system and is often unable to get 
it, he will change the MCC provider without a doubt. 
The phenomenon stated above has been approved  
by a market report from the International Data  
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Corporation (IDC) (Gens et al., 2013). Thus, service 
availability is usually thought to be very essential for 
MCC. 

However, at present, research on MCC service 
availability is still in its early stage, and there are 
some shortcomings:  

1. In practice, the availability of MCC is usually 
guaranteed by service level agreements (SLA), a 
document defining the relationship between the pro-
vider and the recipient. It usually lists many issues, 
including identifying and defining the customer’s 
needs, providing a framework for understanding 
complex issues, and reducing areas of conflict (Qi 
and Gani, 2012). Among these items, the most im-
portant is describing the availability of the service to 
be delivered, which ensures that users obtain good 
experience. However, the metrics of availability  
defined by SLA documents are just some fixed 
boundary conditions, which cannot measure the  
exact values of the availability of the target system at 
any given time. At the same time, due to the intrinsic 
complexity of MCC systems, it is hard to predict the 
service availability when signing an SLA, especially 
before the target system is deployed. 

2. Currently, some other availability analysis 
methods for MCC are based on measuring concrete 
metrics of real-world systems, but the results are not 
representative since different load levels, different 
deployment, and other random factors cause a large 
impact on the measured metrics. So, it is expected to 
study service availability from a theoretical perspec-
tive to reduce random interference.  

3. To analyze service availability from a theo-
retical viewpoint, we usually model MCC by means 
of state-based methods, for example, the Markov 
chain or Petri net. However, as the different types of 
services and the cooperation relationships between 
components are growing rapidly, traditional model-
ing methods based on the state space all suffer from 
the problem of state-space explosion. Many methods 
have been proposed in recent years to deal with 
state-space explosion, such as state-space decompo-
sition, state-space aggregation, and fixed-point itera-
tion. Since these methods have to scan the whole 
state space, the computing time is always an expo-
nential function of the number of all components in 
the system. 

In this paper, instead of measuring the specific 

metrics of some instances, we model MCC systems 
using the performance evaluation process algebra 
(PEPA) (Hillston, 2005) in a formal manner. Based 
on the model, some critical metrics are defined to 
estimate and evaluate the service availability of 
MCC. Furthermore, to overcome the problem of 
state-space explosion, fluid-flow approximation, a 
method proposed in recent years (Hillston, 2005), is 
adopted to convert the PEPA model into a group of 
ordinary differential equations (ODEs). Unlike tradi-
tional state-based analytical techniques, the fluid-
flow approximation method involves approximating 
the underlying discrete state space with continuous 
real-valued variables and describing the time-
evolution of those variables with ODEs (Hayden and 
Bradley, 2008). In other words, it needs only to 
know the population of each species of components, 
rather than the states of all the components. So, the 
number of states that it supports is over 10 100. In 
addition, the proposed model can be used even be-
fore the target system is deployed. 

 
 

2  Modeling mobile cloud computing based 
on PEPA 

2.1  PEPA and fluid-flow approximation 

PEPA, a classical process algebra, is known for 
its easy use (Hillston, 2005). Besides model check-
ing, it can be used for quantitative analysis. Tradi-
tionally, PEPA is mapped to an underlying Markov 
chain for the analysis of performance, but analyzers 
usually encounter state-space explosion problems, as 
the number of states is too large. In this study, a new 
definition of PEPA is introduced using fluid-flow 
approximation proposed by Hillston (2005). 

The state of the PEPA model at time t can  
be represented by P(t), which has the following  
characteristics: 

 

( ) :: ( ) ( ) | ( ),
L

P t P t P t Y t                        (1) 

( ) :: ( , ). | | / | ,P t r P P P P L A              (2) 

( ) :: ( ) || ( ) || ( ),Y t P t P t P t                      (3) 
 

where ( ) ( )
L

P t P t  and Y(t) represent interaction 

and parallel actions, respectively. The choice +, co-
operation 

L
 , hiding /, and constant definition A are 



Lv et al. / Front Inform Technol Electron Eng   2015 16(7):553-567 555

the basic syntaxes. In the prefix (α, r), r means the 
apparent rate of action α. For details of the operation, 
one can refer to Hillston (2005) and Bradley et al. 
(2008). 

Based on the new definition of PEPA, fluid-
flow approximation can be used to convert PEPA 
into ODEs. According to Castiglione et al. (2014), 
the nature of fluid-flow approximation is that the 
large number of discrete states is considered to be of 
continuous change. Then some ODEs can be built to 
describe the trend of state changes.  

Given n classes of components, the ith class of 
components is denoted as Ci. Each class of compo-
nents has a series of derivations, and the jth deriva-
tion of Ci is called Cij. Let N(Cij, t) denote the number 
of components at time t. Exit(Cij) and Enter(Cij) rep-
resent the sets of exit and entry activities of a local 
derivation, respectively. In a short time Δt, the 
changes of an arbitrary derivation Cij can be de-
scribed as follows: 

 

Exit ( ) Enter( )

Exit activities Enter activities

( , ) ( , )

( , ( )) ( , ( )) ,
ij ij

ij ij

ij ik
C C

N C t t N C t

C P t t C P t t 
 

 
 

  

    
 

 

(4) 
 

where the component rate ρα(Cij, P(t)) captures the 
local effect of P(t) on component Cij, and k≠j. Then a 
real-valued variable vij(t) is used to approximate the 
discrete variable N(Cij, t), denoted as vij(t)=E[N(Cij, 
t)]. Furthermore, according to Hayden et al. (2012), 
the error between vij(t) and N(Cij, t) will tend to 0 

while 
,

( , ) .iji j
N C t    

Let Δt be close to 0. We obtain 
 

Exit ( ) Enter( )

d ( )
( , ( )) ( , ( )),

d

1,2, ,| |, 1,2, , .                   (5)
ij ij

ij
ij ik

C C

i

v t
C P t C P t

t

j C i n

 
 

 
 

 

 

 
 

 
For details, one can refer to Tribastone et al. (2012a). 
Therefore, the complexity of solving the model is 
related only to the number of the types of compo-
nents, rather than the population of all types of  
components. 

2.2  MCC model based on PEPA 

Currently, there are many types of MCC appli-

cations in our daily lives, and the most famous ex-
amples include ‘searching the lost child’ (Satyana-
rayanan, 2011), ‘the translation in museum’ (Huerta-
Canepa and Lee, 2010), ‘disaster relief’ (Fernando et 
al., 2013), and ‘the traffic congestion map’ (Rishabh 
et al., 2013). These scenes basically have the same 
mode, and in this study, the traffic congestion map is 
chosen as an example to analyze the service availa-
bility of MCC. 
Example 1 (Traffic congestion map)    While a  
driver is on his/her way to the airport, he/she sends a 
request to a cloud system by phone to get a traffic 
congestion map and avoid encountering a traffic jam. 
Then the cloud gathers the urban traffic status in real 
time through a lot of taxis distributed in the city, and 
forms a near real-time traffic congestion map after 
processing the data collected. Then the map is re-
turned to the driver for choosing the best road.  

To establish a model of universal significance, 
it is necessary to ignore the details not directly asso-
ciated with the service availability of MCC. Taking 
the traffic congestion map as an example, it is easy 
to find that an MCC system has the following typical 
characteristics: 

1. An MCC system can be divided into two 
parts, the cloud and a set of mobile devices. The 
former is either a traditional cloud computing system 
or a set of computing nodes closely related.  

2. While the cloud receives a service request 
from a user, every mobile device is awakened to col-
lect information. 

3. The data collected is submitted to the cloud 
through a wireless link and computed by means of 
classic cloud computing. 

4. The final results will be returned to the users. 
As stated above, computation- or data-intensive 

tasks in an MCC system are submitted to the cloud 
instead of being handled in local devices. This is 
usually called ‘offloading computing’ (Ou et al., 
2007). Different from traditional interactive compu-
ting, after submitting a request, a user will not inter-
act with the cloud again until a final result is returned. 
So, we primarily describe the MCC system from the 
cloud and the mobile device, ignoring user behaviors. 

2.2.1  Modeling the cloud 

Without loss of generality, we assume that the 
cloud part is based on a map-reduce structure whose 
main steps include requesting & waiting, splitting, 
mapping, shuffling, and reducing (Fig. 1). 
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Assuming the sojourn time of each action fol-

lows an exponential distribution in the process of 
cloud computing (Chilwan et al., 2011; Longo et al., 
2011), PEPA can be used to model this process  
(Fig. 2). Certainly, every step may have a more com-
plex process and contains many details, but PEPA 
supports a hierarchical structure and can be easily 
described by combining some simple sentences 
(Fourneau et al., 2002). Therefore, we ignore the 
details, making the model as simple as possible. 
 
 
 
 
 
 
 
 

Assume that the cloud has the ability to process 
M tasks in parallel, which means the tasks can be 
divided into M pieces at most. That is, the number of 
Mappings is M at most. Thereafter, the component 
Master as a derivation of Mapping also has a maxi-
mum amount M. Then the cloud part is described as 

 
Master[M]. 

2.2.2  Modeling the devices 

For the mobile devices, a certain port is always 
monitored to wait for the command of collecting 
information. As soon as it receives a request from the 
cloud, the device turns to the state of Awake, and 
begins to gather data with some sensors. Afterwards, 
the mobile device changes to the Sensing state until 
the information collected is submitted. While finish-

ing a circle as stated above, the mobile device goes 
back to the state of Device and gets ready for the 
next service request. The devices are modeled as 
shown in Fig. 3. 
 
 
 
 
 
 

Given that there are N mobile devices in the 
target system, the Device part can be described as 

 
Device[N]. 

 
Therefore, a simple MCC model can be de-

scribed by the interaction between the cloud part and 
the device part. If the parallel computing capability 
of the cloud is M and the number of mobile devices 
is N, then the MCC model is built as follows: 

 

Master[ ] Device[ ],
L

M N                (6) 

 

where L is a set of cooperation actions, L= 
{broadcast_requesting, return}. Furthermore, con-
sidering a more complex scene where there are many 
types of devices, it can be rewritten as 

 

1 1 2 2Master[ ] (Device [ ] || Device [ ] || ...

|| Device [ ]),
L

k k

M N N

N


 

 

where 
1

,
k

ii
N N


  and Ni represents the number of 

the ith kind of device. 
 
 
3  Metrics of availability 

 
Just like Software-as-a-Service (SaaS), the ser-

vice availability of MCC is characterized by some 
key metrics. In this section, we will discuss four of 
the most important metrics of service availability, 
including response time of service, minimum sensing 
time of devices, minimum number of nodes chosen, 
and action throughput. 

3.1  Response time of service 

Response time of service (RTS), one of the core 
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Fig. 1  Process of cloud computing 

Fig. 3  The PEPA model of the devices 

Fig. 2  The PEPA model of the cloud 
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metrics of service availability, directly determines 
the user experience of MCC. For the characteristics 
inherited from mobile computing, mobile devices 
may move into an area with no signal, or suffer from 
masking or channel interference. These problems 
greatly increase the RTS, and even lead to a terminal 
timeout. 

Traditionally, for MCC, the average RTS  
usually relates to the average processing time of all 
types of services running on the same platform. 
However, it is not very accurate in practice for a cer-
tain service as the execution time of each service 
varies greatly. In this study, RTS for a single type of 
service, or SRTS, is investigated. 

As stated in Section 2.2, the service of MCC is 
implemented primarily in the cloud part by means of 
offloading computing. For a certain type of service, 
SRTS refers to the shortest possible time from re-
ceiving the service request to returning the final re-
sults for the first time. 

Combined with the model given in Section 2.2, 
we describe this metric in a formal manner. SRTS 
can be treated as the passage time to complete the 
first cycle from the state of Master, that is, Master→ 
Reduce→Master. Then we can modify the latter 
Master component and introduce a new component, 
Master′. Correspondingly, the cloud part of MCC 
can be rewritten as shown in Fig. 4. Based on the 
model, we can define the SRTS using the passage 
time which is an infimum, the shortest time used 
from the source state to reach a set of target states 
(Hayden et al., 2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Actually, a component stays in a certain state at 
time t with a probability. Similarly, a component 
arrives at the target collection with a probability θ(t) 

at time t. As a matter of fact, what we are really con-
cerned with is which t makes θ(t) greater than θ0. 
The parameter θ0 is a threshold indicating that a 
component has reached the target collection. It has a 
close relationship with the specific type of service. 
Given the target set C′={Master′, Waiting′, Splitting′, 
Mapping′, Shuffling′, Reducing′}, the number of all 
components in C′ is N(C′, t). While there are M Mas-
ters in the system, to complete the task, the value of 
N(C′, t) must be more than M×θ0. Thus, we can de-
fine the SRTS as follows: 
Definition 1    For any t>0, N(C′, t) represents the 
number of components in C′ at time t. Then, 

 
SRTS=inf{t, N(C′, t)≥M×θ0},               (7) 

 

where N(C′, t) can be expressed as  
 

derivation
( , ) [ (derivation, )],

C
N C t E N t


       (8) 

 
with E[N(derivation, t)] representing the fluid-flow 
approximation of the number of component deriva-
tions at time t. All of the items in the right-hand side 
of the above equations can be obtained by solving 
the model in this subsection. A detailed description 
will be given in Section 4.1. 

3.2  Minimum sensing time of devices 

The data collected by mobile devices is the ba-
sis of MCC. However, due to the unstable wireless 
link between mobile devices and the cloud system, 
terminals may stay in an area with no signal or suffer 
from channel interference. This phenomenon often 
leads to a device timeout; that is, the cloud part al-
ways waits for a response from the device after send-
ing some commands. To avoid meaningless waiting, 
the analyzer needs to estimate the minimum sensing 
time used by devices. 

First we discuss the definition of the minimum 
sensing time. Take the traffic congestion map as an 
example. The process of sensing begins with receiv-
ing a command from the cloud, and ends with return-
ing the data collected. So, the minimum sensing time 
(MST) of the device is the least time used by devices 
from receiving a command to returning a final result.  

Consider there is only one type of device in the 
system. Therefore, MST is the time used to complete 
the process of Device→Sensing→Device. Like in 

Fig. 4  The revised model of the cloud part
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Fig. 4, to distinguish the components, the latter De-
vice is denoted as Device′. Then the revised model of 
the device part is as shown in Fig. 5. 
 
 
 
 
 
 
 
 
 

For simplicity, we assume that all selected de-
vices are identical, and that the delay time of the ac-
tions is independent and identically distributed. 
When all mobile devices are equipped with the same 
MCC client, this assumption is reasonable. Then we 
can give a definition of MST. 
Definition 2    For any device i, 1≤i≤N, where N is 
the overall number of devices, record the current 
state of device i as Si. Then MST can be seen as the 
shortest time from the source state of Device to the 
target set of S′={Device′, Awake′, Sensoring′}: 

 
MST=inf{t, SiS′}.                     (9) 

 
According to the above definition, MST is hard 

to compute in practice. We will look for a way to 
quantify it. 

According to the research on individual passage 
time (Hayden et al., 2012), up to time t, finishing a 
circle for a device means the device belongs to S′, so 
the probability of finishing a circle is 

 
P{Si(t)S′}=P{Si(t)≠Device, Si(t)≠Awake, 

Si(t)≠Sensing}.                      (10) 
 

According to the above statement which means all 
selected devices are identical, we have 
 

{ Device}
1

[ (Device, )] 1

{ Device}.

i

N

S
i

i

E N t E

N P S




   

  

         (11) 

 
Then we can obtain a theorem about the metric MST: 
Theorem 1    For any time t>0, the probability of 
MST follows 





1
{MST } 1 [ (Device, )]

        [ (Awake, )] [ (Sensing, )] .

P t E N t
N

E N t E N t

  

 
  (12) 

 

Proof    According to Eq. (10), if t>MST, all the 
components have finished a circle. Thus, 

 

P{MST≤t}=P{Si(t)≠Device, Si(t)≠Awake, 
Si(t)≠Sensoring} 

=1−P{Si(t)=Device}−P{Si(t)=Awake} 
−P{Si(t)=Sensing}. 

 

Owing to Eq. (11), we have 
 





1
{MST } 1 [ (Device, )]

[ (Awake, )] [ (Sensing, )] .

P t E N t
N

E N t E N t

  

 
 

3.3  Minimum number of nodes chosen 

Due to the statements in Section 3.2, the infra-
structure of the MCC system is usually unreliable. 
To deal with unexpected faults and random high 
loads, each service is always allocated with redun-
dancy processing capabilities. Therefore, more nodes 
than the minimum number of devices needed are 
deployed to provide normal services. In reality, re-
quirements will be sent by the cloud to a lot of local 
devices in this area. However, the fact that fewer 
devices are needed means less energy consumption 
and fewer links unexpectedly interrupted. Thus, it is 
important to estimate the minimum number of nodes 
needed and determine the range of devices chosen. 

Assuming that the expected minimum number 
of nodes is N0, and that the proportion of redundant 
sources is γ, then the actual allocation of devices is 
(1+γ)×N0. The degree of redundancy is determined 
by a variety of environmental factors. According to 
Section 3.2, we can analyze this metric through the 
probability of a terminal timeout. 

With respect to Theorem 1, it is easy to obtain 
the probability of terminal timeout by removing the 
proportion of no timeout. 
Lemma 1    Let the expected minimum number of 
nodes be N0, t>0. If a node is a timeout at a certain 
time t, the probability of the terminal timeout is 
 




0

1
( ) [ (Device, )] [ (Awake, )]

     [ (Sensing, )] .

t E N t E N t
N

E N t

  


  (13) 

Fig. 5  The revised model of the device part
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Based on Lemma 1, we can give a definition of 
the minimum number of nodes needed, given that the 
proportion of a device timeout is λ(t), the minimum 
number of nodes needed is N0, and the minimum 
number of nodes chosen is N1. They satisfy the fol-
lowing relationship: 

 
N0=N1×(1−λ(t)).                      (14) 

 
Combining Eqs. (13) and (14), we can obtain 

the following theorem: 
Theorem 2    Given t>0, the minimum number of 
nodes needed N0, the number of devices chosen N1 
satisfies 

 




2
1 0 0

1

( [ (Device, )] [ (Awake, )]

[ (Sensing, )]) .

N N N E N t E N t

E N t


   

 (15) 

 
Certainly, N1 is less than the maximum number 

of devices that can be reached within the area; that is, 
N1≤(1+γ)×N0. This metric is closely related to energy 
consumption and network interruption. It also plays 
an essential role in MCC. Furthermore, the analysis 
results can be treated as evidence for increase in the 
number of redundant devices. 

3.4  Action throughput 

Throughput is a classical metric to assess the 
transaction processing capability of a component. A 
better processing capability also means good service 
availability under the same conditions; that is, the 
user has a greater probability of gaining what he/she 
wants. Action throughput is a new performance met-
ric developed based on throughput, mainly assessing 
the frequency of a type of action implemented 
(Satyanarayanan, 2011). In an MCC system, action 
throughput is also a very important metric. Taking 
the case of the traffic congestion map as an example, 
the throughput of broadcast_requesting denotes the 
ability of MCC to send service requests per unit of 
time. The greater the value is, the more transactions 
are handled. Similarly, the throughput of return rep-
resents the frequency of returning service results per 
unit of time. While the throughput increases, the ser-
vice processing abilities become better. In this study, 
we focus on the throughput of these two actions. 

First, considering one of the simplest cases, that 

is, action α is not a cooperation action between com-
ponents in the PEPA model. 
Lemma 2    Let k indicate the kth component, Act(k) 
the action set triggered by k, r the apparent rate of 
action α, and πk the steady-state probability of com-
ponent k. We have 

 

( , ) Act ( )

Throughput( ) .k
k r k

r


 


 
  

 
           (16) 

 
Second, for a cooperation action, there is more 

than one partner deciding the action throughput. For 
example, the action throughput of broadcast_ 
requesting is determined by both Device and Master. 
According to Tribastone et al. (2012b), we can rede-
fine the action throughput in a new format: 
Lemma 3    Let L={C1, C2, …, Cq}, q*, q≥2, and 
all of the elements of L have a cooperation action α. 
The action throughput of α in a local place L can be 
described as 

 

( , ) Act ( )

Throughput ( ) min .L k
k L

r k

r


 




 
  

 
       (17) 

 
Owing to the two statements above, we can give 

a more general result of action throughput: 
Theorem 3    In a PEPA model, all components con-
stitute a set ,C L L   and all of the elements of L 

have a cooperation action α. The action throughput 
of α can be described as 

 

( , ) Act( ) ( , ) Act( )

Throughput( )

min .k ll L
k L r k r l

r r
 



 


  

   
    

   
  

    (18) 

 
While there are a large number of components, solv-
ing the solution of πk will suffer from state-space 
explosion, so the fluid-flow approximation method is 
used for analysis of action throughput. Correspond-
ingly, Eq. (18) becomes 
 

( , ) Act ( )

( , ) Act( )

Throughput( ) [ ( )]

min [ ( )] ,

k
k L r k

l
l L

r l
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


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


 
  

 
 

  
 

 


    (19) 
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where E[N(Ck)] represents the mathematical expecta-
tion of the number of components, k, after reaching a 
steady state. 

 
 

4  Analyzing the metrics of service availabil-
ity by fluid-flow approximation 

 
According to the metrics discussed above, we 

analyze the service availability with a simple case of 
the traffic congestion map. The parameters are cho-
sen as shown in Table 1. 

 
 
 
 
 
 
 

 
It is necessary to point out that the values of the 

parameters are computed using the classical method 
proposed by Huang et al. (1995). Given that the av-
erage delay of action α is T, the value of α is 1/E(T), 
where E(T) is the mathematical expectation of T. For 
instance, the action of broadcast_requesting has a 
long latency owing to terminal timeout or the mech-
anism of retransmission. Then its mathematical ex-
pectation of the average delay is 5 time units, and r2 
is 1/5. Other parameters have similar semantics. 

Next, we will analyze the metrics of service 
availability and the impacts of the parameters. In this 
study, the fluid-flow approximation method is adopt-
ed, as there are a lot of mobile devices in MCC sys-
tems and accordingly the state space of the PEPA 
model is very large. 

4.1  Analysis of SRTS 

Before analyzing SRTS, it is necessary to solve 
the PEPA model in Section 3.1. We convert the 
model into ODEs by fluid-flow approximation. Due 
to Hillston (2005), the activity diagram of this model 
is as shown in Fig. 6. 

For easy presentation, we use the following 
mapping: 

 

N(Master, t)→v11, N(Waiting, t)→v12, 
N(Splitting, t)→v13, N(Mapping, t)→v14, 

N(Shuffling, t)→v15, N(Reduce, t)→v16, 
N(Master′, t)→v111, N(Waiting′, t)→v121, 
N(Splitting′, t)→v131, N(Mapping′, t)→v141, 
N(Shuffling′, t)→v151, N(Reduce′, t)→v161, 
N(Device, t)→v21, N(Awake, t) →v22, 
N(Sensing, t)→v23. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using Eq. (5), the ODEs are obtained as given 
in Eq. (20). 

Assuming the initial population of components 
is (99.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 100, 0, 0), 
the state space is 12100×3100>10100 while we use a 
traditional Markov chain method before simplifica-
tion. Clearly, it will bring a state-space explosion. In 
contrast, it is easy to obtain the solution of the case 
using Eq. (20). As shown in Fig. 7, we can find the 
population of each of the components in the set C′ 
after the first ground of service. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Default parameters used in the model 

Parameter Value Parameter Value 
r1 0.2 r6 0.1 
r2 0.5 w1 0.2 
r3 1 w2 2 
r4 1 w3 1 
r5 2   

 
Fig. 6  Activity diagram for the revised model of the 
cloud part 
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Fig. 7  The number of components in set C′ 
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(20) 
 

Based on the solution of the ODEs above, the 
plot of SRTS is obtained (Fig. 8), where the X-axis 
represents SRTS and the Y-axis denotes the propor-
tion of computing nodes that have finished their jobs. 
As SRTS increases, more and more computing nodes 
complete their assigned tasks. For example, if 
θ0=0.9519, then SRTS=41.97. Therefore, given θ0 it 
is easy to obtain any SRTS by the solution of the 
ODEs. 

In this case, to avoid a 0-division calculation, 
we assume that initially there are a few components 
of Waiting, Splitting, Mapping, Shuffling, and Re-
ducing, but in reality the number of these compo-
nents should be close to 0. In the next case, the im-
pacts of the initial conditions on SRTS will be  
analyzed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For comparison, the total number of compo-

nents remains unchanged, and the initial number of 
each of the components is separately set to (99.5, 0.1, 

0.1, 0.1, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 100, 0, 0), (99.95, 0.01, 

0.01, 0.01, 0.01, 0.01, 0, 0, 0, 0, 0, 0, 100, 0, 0), (95, 1, 

1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 100, 0, 0). Fig. 9 gives the 
corresponding curves under these three different ini-
tial conditions. The results of SRTS are not very dif-
ferent. While the time is no more than 40, the curve 
in the 3rd initial condition is slightly higher than the 
others. The curves with the other two initial condi-
tions almost overlap with each other everywhere. 
These results show that the initial condition has little 
impact on SRTS. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

4.2  Analysis of MST 

Just like the analysis of SRTS in Section 4.1, 
before computing MST, the PEPA model in Section 
3.2 needs to be converted into ODEs. First, the  
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Fig. 9  Impact of the initial condition on the response 
time of service 

Fig. 8  The number of computing nodes that have ar-
rived at the target collection (SRTS=41.97 when θ0= 
0.9519)  
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relationships of the components of this model are 
given in Fig. 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The corresponding mapping is then shown as 
 
N(Master)→v11, N(Waiting)→v12,  
N(Splitting)→v13, N(Mapping)→v14,  
N(Shuffling)→v15, N(Reduce)→v16, 
N(Device)→v21, N(Awake)→v22, 
N(Sensing)→v23, N(Device′)→v211, 
N(Awake′)→v221, N(Sensing′)→v231. 
 
According to the definition of fluid-flow ap-

proximation given by Eq. (5), the corresponding 
ODEs are obtained as given in Eq. (21).  

Assuming the initial number of components is 
(100, 0, 0, 0, 0, 0, 99.8, 0.1, 0.1, 0, 0, 0), we can ob-
tain the solution to this case using Eq. (21).  
Fig. 11 shows the number of components for S′ after 
the first ground of service. It is observed that these 
curves will stabilize and converge to a fixed value 
after the 150th time unit. 

Fig. 12 gives the cumulative probability density 
function (CDF) of MST as determined by Eq. (12). 
For instance, setting the threshold of MST to be 100, 
then the CDF of MST is 0.9399. As time goes on, the 
CDF of MST gradually increases. It means that more 
devices finish a circle while the threshold of MST 
increases. In other words, the number of components 
in S′ grows with increase of MST. Furthermore, as 
the threshold increases, most of the devices have 
finished sensing, the growth of the number of com-
ponents in S′ slows down, and finally all of the com-
ponents have entered S′. 
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Fig. 10  The activity diagram for the revised model of 
the device part 

Fig. 11  The number of components in set S'

Fig. 12  The cumulative probability density function of 
the minimum sensing time 
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4.3  Estimating the minimum number of nodes 
chosen 

According to Eq. (14), it is necessary to com-
pute the probability of terminal timeout before ana-
lyzing the minimum number of nodes chosen. Given 
that the initial number of each of the components is 
set to (100, 0, 0, 0, 0, 0, 99.8, 0.1, 0.1, 0, 0, 0) as in 
Section 4.2, the probability of terminal timeout can 
be determined (Fig. 13). 

 
 

 
 
 
 
 
 
 
 
 
 
 
As shown in Fig. 13, the probability of a termi-

nal timeout becomes lower and lower while the 
threshold of the timeout grows. Supposing that the 
threshold is set to be 10 time units, the probability of 
terminal timeout is 0.87 according to Eq. (13). Fur-
thermore, as the threshold is set to be 100 units, the 
probability is near 0.06, which is low enough to en-
sure sufficient devices finishing the first round of 
information collection. Similar to SRTS, the proba-
bility of a terminal timeout is easily obtained after 
setting a certain threshold. 

According to Eq. (15), we can obtain the mini-
mum number of nodes chosen as shown in Fig. 14. 
As the timeout threshold of the terminal increases, 
much fewer nodes need to be deployed. With the 
increase of the threshold, the minimum number of 
nodes needed converges to 100. It is certain that the 
number of nodes needed is equal to N0 when there is 
no terminal timeout. To sum up, as soon as the 
threshold of timeout is given, it is easy to obtain the 
minimum number of nodes chosen in the MCC  
system. 

4.4  Computing the action throughputs 

The action throughputs can be computed ac-
cording to Eq. (19). For example, when the values of 

the parameters are assigned as in Table 1, the action 
throughputs of broadcast_requesting and return are 
computed as follows:  

 
Throughput(broadcast_requesting) 

=min(E[N(Master, t)]×r1, E[N(Device, t)]×w1) 
=4.26, 

Throughput(return) 
=min(E[N(Waiting, t)]×r2, E[N(Sensing, t)]×w3) 
=2.13. 
 
 

 
 
 
 
 
 
 
 
 
In the above case, both broadcast_requesting 

and return are cooperation actions, whose implemen-
tation parameters are determined by both the cloud 
and the devices. So, we should change the two sides 
when increasing the action throughputs.  

To check the impacts of broadcast_requesting 
from parameters on the action throughputs, the criti-
cal parameters r1 and w1 must be studied. First, we 
change r1 from 0.2 to 10. Table 2 shows the changes 
of the action throughput of broadcast_requesting. 

Table 2 shows that the action throughput of 
broadcast_requesting increases very slowly as r1 
grows. Moreover, according to the meaning of 1/r1, 
the mathematical expectation of the time interval 
between two sending requests, the value of r1 must 
fall in a certain range; that is, the action throughput 
will not become too large. 

Similarly, the other parameter w1 changes from 
0.03 to 0.1 when r1=0.2 (Table 3). The action 
throughput of broadcast_requesting is reduced when 
w1 decreases. This is because the time interval be-
tween two sending requests becomes too long for the 
devices. Thus, the cloud does not have enough data 
to deal with, while the value of w1 is too small, and 
the action throughput of broadcast_requesting de-
creases. Meanwhile, the service availability of MCC 
will be degraded to a low level. 

Fig. 13  The probability of a terminal timeout
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Fig. 14  The minimum number of devices chosen
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According to the above analysis, the action 

throughput of broadcast_requesting can be drawn as 
a surface (Fig. 15). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Second, while r2 and w3 are set to a series of 

different values, the action throughput of the return 
slides on the surface is shown in Fig. 16. It is easy to 
obtain the conclusion that the action throughput of 

return increases with the growth of r2 and w3. Fur-
thermore, the growth trend will gradually slow down 
while r2 and w3 become too large. The reason is that 
the time interval between return sensing results can-
not be infinitely reduced and will be stopped at a 
proper range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5  Comparison with existing methods 

To demonstrate the efficiency of our method, 
we compare it with some existing methods. It needs 
almost the same time to compute the metrics for dif-
ferent methods with steady-state probability distribu-
tion or approximation steady-state probability distri-
bution, but the time used to obtain steady-state prob-
abilities varies greatly. So, primary attention is paid 
to comparing the time used to solve the model by 
different approaches including Monte-Carlo simula-
tion, fluid-flow approximation, and the Markov 
chains before and after simplification.  

Taking the model shown in Fig. 4 as an exam-
ple, it is necessary to compare the computing time 
with those of other methods under different initial 
populations of components. In this case, the number 
of derivations of Master is k1=12, the number of der-
ivations of Device is k2=3, and the initial populations 
of Master and Device are shown as M and N, respec-
tively. So, the number of states of the Markov chains 
method before simplification is 12M×3N. After sim-
plification, the upper bound of the state space of the 

Markov chains method is 1 2

1 21 1C C .k k
N k M k     In addition, 

the Markov chains method and Monte-Carlo simula-
tion method are tested using the eclipse PEPA plug-
in tool developed by the University of Edinburgh 

Table 2  The action throughput of broadcast_requesting 
while r1 changes 

r1 
Population Action 

throughput Master Device 

0.2 21.3 74.3 4.26 

0.3 15.3 72.4 4.59 

0.4 11.9 71.3 4.77 

0.6   8.3 70.1 4.97 

0.8   6.3 69.5 5.07 

1.0   5.1 69.1 5.12 

2.0   2.6 68.6 5.27 

3.0   1.8 68.0 5.32 

5.0   1.1 67.6 5.36 

10.0   0.5 67.6 5.39 

 

Table 3  The action throughput of broadcast_requesting 
while w1 changes (r1=0.2) 

w1 
Population Action 

throughput Master Device 

0.03 53.2 84.7 2.54 

0.04 40.6 80.6 3.22 

0.05 29.1 76.9 3.84 

0.06 21.3 74.3 4.26 

0.10 21.3 74.3 4.26 
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Fig. 15  The action throughput of broadcast_requesting 
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Fig. 16  The action throughput of return 
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(Tribastone, 2007). For the simulation method, the 
number of transient steps is set to 10 000, the confi-
dence level is 0.99, and all other parameters use the 
default settings. The experiment was executed in a 
PC with a 4-core 2.4 GHz CPU, 4 GB RAM, and the 
results are shown in Table 4.  

In Table 4, it is apparent that while M and N in-
crease, the Markov chains method suffers from a 
serious problem of state-space explosion even after 
simplification. At the same time, the simulation 
method takes too long a time to obtain the solution 
while M and N get larger. Yet, note that there are 
perhaps more than a million nodes in the MCC sys-
tems, and apparently the simulation method does not 
meet the requirements. Thereafter, the fluid-flow 
approximation method which costs less time is a 
good choice.  

We can draw the same conclusion while study-
ing the comparison by solving the model in Fig. 5. 
Compared with the Markov chain or simulation-
based methods, it is easier to analyze the availability 
of MCC by a fluid-flow approximation method.  
 
 
5  Related works 

 
Nowadays, there has been much research on the 

availability of cloud and some results can be directly 
used in the area of MCC. However, we should be 
aware that the service availability of MCC is much 
different from that of cloud computing, because of 
the inherited characteristics of the mobile. Only a 
few of the current results of service availability are 
fit for MCC. With the wide application of MCC, the 
requirements of service availability of MCC systems 
are increasing. 
 

 
 
 
 
 
 
 
 
 
 
 

Since the research on MCC is currently at an 
early stage, SLA is treated as an important way to 
guarantee the service availability of MCC (Undheim 
et al., 2011). Qi and Gani (2012) presented a review 
on the characteristics, recent research, and future 
research trends of MCC, and discussed the open 
problems of SLA and how it should be used for 
availability. Wu et al. (2012) proposed a series of 
admission control and scheduling algorithms for 
SaaS providers to effectively use public cloud re-
sources to maximize profit by using a function of 
SLA. In these studies, the items of SLA have been 
used to estimate the availability of MCC, but the lack 
of rapid analysis methods hinders their practical use. 
In addition, before the target system is deployed, it is 
hard to predict the availability for SLA. 

Using the sampling method to assess the metric 
of availability is another common approach. The 
sampling method usually has advantages of being 
simple, and timeliness, but we must first have a rep-
resentative test system. In Singh and Kumar (2012), 
six typical cloud systems from Amazon, Microsoft, 
Google, and other companies were observed to ob-
tain the metrics of availability on different aspects, 
and the results were compared through a hexagonal 
floor plan. Widjajarto et al. (2012) believed that the 
IaaS (Infrastructure-as-a-Service) systems provide 
resources including compute power, storage, net-
work bandwidth, and powers, so they treated these 
resources as the metrics of availability and set up an 
availability analysis model. For a real test system, 
however, different load levels, different deployments, 
and other random factors bring large impacts on the 
measured metrics. Just like SLA, this method is una-
vailable before the target system is deployed. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4  The comparison of computing time 

Parameter 

Number of components Computing time (ms) 

Markov chains 
before simplifi-

cation 

Markov chains 
after simplifi-

cation 

Markov 
chains before 
simplification

Markov chains 
after simplifi-

cation 

Monte-Carlo 
simulation 

Fluid-flow 
approximation

M=N=3 6104 546 10 438 328 3562 31.4 
M=N=10 3.65×1015

 940 576 – – 8688 31.4 
M=N=100 4.27×10155 2.43×1018 – – 51 219 31.4 
M=N=200 1.82×10211 1.44×1022 – – 100 938 31.4 
M=N=1000 2.01×101556 1.34×1031 – – 506 281 31.4 

‘–’ means it is beyond the machine’s computing power 
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Apart from the above two approaches, some ex-
isting availability evaluation methods used in cloud 
or MCC are usually based on the state space from a 
theoretical point of view, for example, the Markov 
method used in Chilwan et al. (2011) to analyze the 
availability of cloud, the Petri net used in Longo et al. 
(2011) to analyze the availability of IaaS. However, 
these methods always suffer from the problem of 
state-space explosion. Even though many methods 
have been proposed in recent years to deal with 
state-space explosion, such as state-space decompo-
sition, fixed-point iteration, and state-space aggrega-
tion (Ever et al., 2013), it is not easy to meet the de-
mands for computing service availability. Because 
these methods have to scan the whole state space, the 
computing time used is an exponential function of 
the number of all components in the system. 

Fluid-flow approximation, also known as 
‘mean-field approximation’, proposed by Hillston 
(2005), avoids the problem of state-space explosion 
by converting PEPA into ODEs. The technology 
arouses a great deal of interest in many fields. In 
Tribastone et al. (2012a) and Castiglione et al. 
(2014), it has been used to deal with state-space ex-
plosion of the Petri net and process algebra. Recently, 
Hayden et al. (2012) presented a method for compu-
ting global passage time using the technology of 
mean-field approximation, and our study is partly 
inspired by the work of Hayden. 

 
 

6  Conclusions 
 
We propose a service availability analysis 

method for MCC based on fluid-flow approximation. 
Some critical metrics of service availability are ana-
lyzed, including the response time of service, the 
minimum sensing time of devices, the minimum 
number of nodes chosen, and the action throughput. 
This provides a basis for further studies on the avail-
ability of MCC. 

Compared to existing methods, the major im-
provements of our work are: 

1. The proposed method is based on a formal 
language, instead of SLA or measuring a real-world 
system. Thus, we can analyze the service availability 
of MCC even before a target system is deployed. 
Meanwhile, it avoids a variety of random interfer-
ences from different real systems under testing.  

2. The fluid-flow approximation approach is 
used to convert the PEPA model into ODEs, avoid-
ing the problem of state-space explosion which is 
widely existing in current models, such as the Mar-
kov chains or Petri net.  

3. By studying the core metrics of the service 
availability of MCC, the impacts of parameters and 
the initial conditions are analyzed by means of the 
passage time. Based on these results, the service 
availability of MCC can be easily estimated. 

In this study, only some representative metrics 
of availability are considered. In the future, more 
metrics will be studied. 
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