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Abstract: The redundant humanoid manipulator has characteristics of multiple degrees of freedom and complex
joint structure, and it is not easy to obtain its inverse kinematics solution. The inverse kinematics problem of a
humanoid manipulator can be formulated as an equivalent minimization problem, and thus it can be solved using
some numerical optimization methods. Biogeography-based optimization (BBO) is a new biogeography inspired
optimization algorithm, and it can be adopted to solve the inverse kinematics problem of a humanoid manipulator.
The standard BBO algorithm that uses traditional migration and mutation operators suffers from slow convergence
and prematurity. A hybrid biogeography-based optimization (HBBO) algorithm, which is based on BBO and
differential evolution (DE), is presented. In this hybrid algorithm, new habitats in the ecosystem are produced
through a hybrid migration operator, that is, the BBO migration strategy and DE/best/1/bin differential strategy,
to alleviate slow convergence at the later evolution stage of the algorithm. In addition, a Gaussian mutation
operator is adopted to enhance the exploration ability and improve the diversity of the population. Based on these,
an 8-DOF (degree of freedom) redundant humanoid manipulator is employed as an example. The end-effector error
(position and orientation) and the ‘away limitation level’ value of the 8-DOF humanoid manipulator constitute the
fitness function of HBBO. The proposed HBBO algorithm has been used to solve the inverse kinematics problem
of the 8-DOF redundant humanoid manipulator. Numerical simulation results demonstrate the effectiveness of this
method.

Key words: Inverse kinematics problem, 8-DOF humanoid manipulator, Biogeography-based optimization (BBO),
Differential evolution (DE)
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1 Introduction

The inverse kinematics problem for a redundant
humanoid manipulator is described as calculation of
the values of joint positions when given the position
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and orientation of the end effector. It is very im-
portant for trajectory planning, motion control, and
workspace analysis of the manipulator (Yin et al.,
2011).

Currently, the methods for solving the inverse
kinematics problem of a robot can be divided into
closed-form solutions and numerical methods (Chen
P et al., 2012). The closed-form methods have mer-
its of high-accuracy solutions, fast solving speed,
and easy identification of all possible solutions, but
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they rely heavily on the particular geometric fea-
tures and lack universality (Zhao et al., 2006; Yin
et al., 2011). So, the closed-form methods are avail-
able only for manipulators with simplified structures.
Numerical methods search for the optimal solution
through iterations in the variable space, and finally
obtain the numerical solution. The Newton-Raphson
method (Kajita, 2005) is relatively simple, but it
needs gradient-based information to solve the equiv-
alent minimization problem, and the quality of the
numerical solution would depend upon initial pa-
rameters. Neural networks (Köker et al., 2004) can
approximate the inverse kinematic relations of the
robot using their approximation capability. They
can map the Cartesian configuration into the corre-
sponding joint angles through training the weights
and thresholds of the network. However, a great
number of training samples should be given to guar-
antee the generalization ability of the network. Ge-
netic algorithms (GAs) (Nearchou, 1998) can also
be employed to solve the inverse kinematics prob-
lem with their global and parallel search character-
istics. However, traditional GAs have the shortcom-
ings of premature and convergence stagnation, which
degrade the optimization performance and influence
the solution accuracy. In addition, there are some
other methods which can solve the problem of the
redundant manipulator. For example, Tian et al.
(2011) proposed a method with a database query,
but this method would require much prior knowledge
and a lot of efforts to constitute the database. Ma
et al. (2007) presented an inverse kinematics method
in which a certain joint variable is fixed, but it would
reduce the flexibility of the redundant manipulator.
Overall, there exist quite a few methods to settle the
inverse kinematics problem of a robot. Generally,
with regard to a redundant humanoid manipulator,
redundant joints exist for its inverse kinematics prob-
lem, and there exist infinite solutions of joint posi-
tions when given the position and orientation of the
end effector. To solve this problem, a certain opti-
mization criterion should be defined in advance, and
then an effective optimization algorithm would be
used to select an appropriate inverse solution among
all available solutions that meet the demand of the
position and orientation of the end effector.

A new population-based evolutionary algorithm
for global optimization, i.e., biogeography-based op-
timization (BBO), was proposed according to the

geographical distribution of species and migration
features (Simon, 2008). Compared with other evolu-
tionary methods, for example, GA (Goldberg, 1989)
and particle swarm optimization (PSO) (Kennedy
and Eberhart, 1995), BBO has demonstrated better
search performance on various unconstrained bench-
mark functions (Simon, 2008). BBO does not re-
quire any prior knowledge of the objective function
gradient, and it is simple in concept, easy to im-
plement, and effective in computation. Currently, it
has been applied widely to different areas such as air-
craft engine health estimation (Simon, 2008), multi-
objective generation dispatching (Chen DJ et al.,
2012), and parameter identification of chaos systems
(Wang and Xu, 2011).

Although BBO has been applied in many prac-
tical optimization problems for its potential advan-
tages and characteristics, it has its own shortcom-
ings. BBO has a good exploitation ability, but it
is poor at exploring search space and global opti-
mum. Therefore, BBO may be trapped in local op-
tima when the problem dimension is high or there are
numerous local optima. To overcome these flaws and
improve the optimization performance, recent work
has focused generally on two aspects. One is the
improvement on search mechanism of biogeography-
based optimization, such as modification of two main
operators of BBO (Gong et al., 2010; Ma and Si-
mon, 2011; Yang et al., 2013), or the use of a cosine
migration model (Chen DJ et al., 2012); the other
is on the framework of the hybrid biogeography-
based optimization, that is, combination of BBO
with other optimization methods, such as simplex
methods (Wang and Xu, 2011) and the predator-
prey approach (Costa e Silva et al., 2012), to improve
optimization efficiency and searching ability.

In this paper, a novel hybrid biogeography-
based optimization (HBBO) algorithm based on dif-
ferential evolution (DE) (Storn and Price, 1997) with
the BBO algorithm is developed to solve the in-
verse kinematics problem of an 8-DOF redundant hu-
manoid manipulator. It uses a hybrid migration op-
erator that includes two strategies, i.e., the standard
BBO migration strategy and the DE/best/1/bin dif-
ferential strategy, to generate new habitats in the
ecosystem, and adopts a Gaussian mutation mech-
anism to efficiently enhance the convergence prop-
erty and the quality of solutions. Also, the fitness
function of the hybrid method consists of two parts,
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i.e., the end-effector error (position and orientation)
and the ‘away limitation level’ value of the 8-DOF
humanoid manipulator. Due to combining the mer-
its of two different methods, this hybrid method is
more efficient and precise for the inverse kinematics
problem.

2 Description of the inverse kinematics
problem

Denote the desired position vector and orienta-
tion matrix of the end effector as pref and Rref re-
spectively, the actual position vector and orientation
matrix of the end effector as p and R respectively,
and the variable vector of the manipulator which
contains n joints as θ = (θ1, θ2, . . . , θn). Then the
errors between the desired and the actual locations
of the end effector can be shown by the following
equations (Wang and Chen, 1991; Yin et al., 2011):

Position error: Δp(θ) = ‖pref − p(θ)‖2, (1)

where ‖ · ‖ represents the Euclidean distance.

Orientation error: Δo (θ) = ‖Δω‖2, (2)

where Δω is the vector of angular velocity that can
be calculated through the corresponding deviation
orientation matrix ΔR.

Denote the element of ΔR by Δrij (i, j =

1, 2, 3), and then ΔR can be shown as follows:

ΔR =

⎛
⎝

Δr11 Δr12 Δr13
Δr21 Δr22 Δr23
Δr31 Δr32 Δr33

⎞
⎠ . (3)

Then Δω can be computed as

Δω =

⎧⎪⎪⎨
⎪⎪⎩

(0 0 0)T, ΔR = E,

θ

2 sin θ

⎛
⎝

Δr32 −Δr23
Δr13 −Δr31
Δr21 −Δr12

⎞
⎠ , ΔR �= E,

(4)
where θ = arccos ((Δr11 +Δr22 +Δr33 − 1)/2) and
E is the unit matrix.

Total error: e (θ) = Δp (θ) + Δo (θ) . (5)

Based on the above, the inverse kinematics
problem of the manipulator is to find a vector so-
lution θ∗, which meets the requirement e (θ∗) ≤
ε (ε→ 0). Then the inverse kinematics problem

of the robot can be transformed into the following
equivalent minimization problem:

minimize e(θ) = e(θ1, θ2, . . . , θn)

subject to θl
k ≤ θk ≤ θu

k , k = 1, 2, . . . , n, (6)

where θ = (θ1, θ2, . . . , θn) is a variable vector in R
n,

θk (k = 1, 2, . . . , n) is the kth joint variable, and θl
k,

θu
k denote the lower and upper bounds of θk respec-

tively. Generally, when the total error reaches an
accuracy level of 10−5, the actual position and ori-
entation of the end effector are deemed to meet the
desired requirement.

3 Principle and description of hybrid
biogeography-based optimization

3.1 Biogeography-based optimization

BBO (Simon, 2008) is a new population-based
heuristic optimization algorithm, which uses the con-
cepts and models from biogeography to describe
natural ways of distributing species, i.e., how species
migrate, how they arise and become extinct (Costa e
Silva et al., 2012). The BBO algorithm achieves in-
formation sharing and updating through constitut-
ing a migration model, relying on species migration
and mutation operators between habitats.

In BBO, each solution is considered as a habi-
tat in an ecosystem, and each solution component is
called a suitability index variable (SIV). The solu-
tion quality of each habitat is evaluated through its
habitat suitability index (HSI), which is analogous to
solution fitness in a population-based optimization
algorithm. Solutions with higher HSI signify habi-
tats with many species, and vice versa. High-HSI
habitats tend to share their features with low-HSI
habitats, and poor habitats are likely to accept new
features from good ones during the process.

BBO includes two main operators, a migration
operator and a mutation operator. The migration
operator is probabilistic and modifies individuals by
migrating features among habitats. The probability
with which the candidate solution Hi is selected as
immigrating habitat is proportional to its immigra-
tion rate λi, and the probability that solution Hj

acts as an emigrating habitat is proportional to its
emigration rate ϑj . Then the migration operator can
be described as follows:

Ω (λ, ϑ) : Hi (SIV)← Hj (SIV) , (7)
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where Ω (λ, ϑ) is the migration operator, which rep-
resents feature adjustment of habitat by migration
rates λ and ϑ, i, j ∈ {1, 2, · · · ,m}, and m is the pop-
ulation size. With this migration, BBO can share
the information among habitats.

In BBO, each habitat has its own immigration
rate λ and emigration rate ϑ. A habitat with many
species means it has a relatively high ϑ and low λ;
on the contrary, a habitat with few species possesses
relatively low ϑ and high λ. The rates ϑ and λ of each
habitat can be calculated according to the following
linear migration model:

λi = I

(
1− k (i)

m

)
, (8)

ϑi = E

(
k (i)

m

)
, (9)

where I and E represent the maximum immigration
rate and maximum emigration rate respectively, and
k (i) is the species number of habitat i (ordered ac-
cording to the fitness: 1 is the worst while m is the
best).

Mutation in BBO is a probabilistic operator
that alters a habitat’s SIV randomly with a prior
probability. Similar to the mutation operator of
GAs, it benefits the diversity of the population. Sup-
pose the probability of a habitat is Pi. Then the
mutation probability πi is inversely proportional to
the habitat probability, which is obtained as follows:

πi = πmax

(
1− Pi

Pmax

)
, (10)

where πmax is the predetermined maximum mutation
probability, Pmax = argmaxPi (i = 1, 2, ...,m). The
calculation of Pi can be referred to Simon (2008).

3.2 Differential evolution

DE is a population-based intelligent search
approach, which solves the optimization problem
through individuals’ cooperation and competition.
In each iteration, DE implements differential muta-
tion and crossover operators on the current popula-
tion to produce a temporary population, and then
employs a greedy selection procedure to make one-
to-one choice between two populations.

For an n-dimensional optimization problem,
suppose the population size is m. The DE/best/1/
bin mutation operator is performed on the current

individual xt
i according to the following equation to

produce a mutant vector vt
i first:

vt
i = xt

gbest + F
(
xt
r1 − xt

r2

)
, (11)

where r1, r2 ∈ {1, 2, · · · ,m} are randomly chosen in-
dices at the tth iteration and r1 �= r2 �= i, xt

gbest is
the best individual of the current population, and
F ∈ [0, 2] is called a scaling factor that is used to
control the amount of perturbation in the process.
Based on the mutant vector, a trial vector ut

i is con-
structed through a crossover operation which com-
bines components from the population vector xt

i and
its corresponding mutant vector vt

i according to

ut
ij =

{
vtij , rand(·) ≤ CR|j = randn,
xt
ij , otherwise,

(12)

where the subscript j represents the jth element in
the corresponding individual, rand(·) is a uniform
number in range [0, 1], CR is the crossover probabil-
ity, and randn is a randomly chosen integer within
the set {1, 2, . . . ,m}. Finally, the fitnesses of xt

i and
ut
i are compared, and the better one is chosen to

generate offspring through greedy selection:

xt+1
i =

{
ut
i, f (ut

i) superior to f (xt
i) ,

xt
i, otherwise.

(13)

More details on the DE algorithm can be referred to
Storn and Price (1997).

3.3 Hybrid biogeography-based optimization

Although BBO has distinctive merits that some
other evolutionary algorithms do not possess, it still
has several disadvantages. In BBO, the update of
habitats relies mainly on the migration operator that
is likely to create similar habitats, and the random
mutation operator is not efficient for introducing new
components to form a better habitat. Therefore,
the standard BBO algorithm suffers from a lack of
diversity, which limits the optimization performance,
especially for complex optimization problems.

An efficient method for increasing population
diversity is hybridization of two different evolution-
ary algorithms. By analyzing the search mechanisms
of BBO and DE, we find that BBO generates a new
habitat based on the migration of species over time
and space, while the DE algorithm adopts three op-
erators, i.e., the differential operator, crossover, and
greedy selection, to produce a new individual. These
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two different search mechanisms can be incorporated
with each other to generate new habitats, which
forms a hybrid method named HBBO. The hybrid
migration operator in HBBO is illustrated in Algo-
rithm 1, where ‘gbest’ is the best habitat index of
the current population.

Algorithm 1 Hybrid migration operator in HBBO
1: for each habitat i ∈ {

1, 2, . . . ,m
}

do
2: Randomly choose index r1 �= r2 �= i

3: Normalize the immigration rate λ

4: for each SIV k ∈ {
1, 2, . . . , n

}
do

5: Select habitat Hi with probability ∝ λi

6: if Hi is selected then
7: Select habitat Hj with probability ∝ ϑj

8: Hi(k)←Hj(k)

9: else
10: if rand(·) ≤ CR|k = randn then
11: Hi(k)←Hgbest(k)+F (Hr1(k)−Hr2(k))

12: else
13: Hi(k)←Hi(k)

14: end if
15: end if
16: end for
17: end for

From this operation it can be seen that the
new habitat feature in HBBO is created through
either the BBO migration strategy or the DE dif-
ferential & crossover strategy, which can improve
the population diversity, and greatly help to en-
hance exploration capability. Moreover, this hybrid
migration operator indicates an attractive modifi-
cation from other viewpoints. The good habitats
can adopt the DE/best/1/bin differential operator
to mimic features of Hgbest, and they are less likely
to be degraded, while poor habitats can still accept
a lot of new features from good habitats due to the
BBO migration operator. In this sense, the current
population can be exploited. Based on this analy-
sis, we can see that the hybrid migration operator
can effectively balance global exploration and local
exploitation.

The mutation operator is another main opera-
tor in BBO, which is able to improve the quality of
solutions. It is frequently used in evolutionary al-
gorithms, particularly in the evolutionary program-
ming (EP) algorithm. All of the mutation schemes
that have been used for EP can also be used for BBO.
Inspired by this, a Gaussian mutation which is often
employed in the EP algorithm would be introduced

to the HBBO algorithm. The Gaussian mutation
operator has the following merits: First, it can be
easily implemented for real-coded variables. Second,
it possesses either local search or global search. Es-
pecially in the early and middle stages of the evo-
lution, Gaussian mutation can improve the diver-
sity of the population and enhance the exploration
capability.

The probability density function of the Gaussian
distribution is (Feller, 1971)

f (x) =
1√
2πσ

exp

[
− (x− μ)

2

2σ2

]
, (14)

where μ is the mean and σ is the standard deviation.
As for a real-valued random variable X distributed
normally with mean μ and variance σ2, it can also
be written as

X ∼ N
(
μ, σ2

)
. (15)

Then the Gaussian mutation operator with mean
μ = 0 and variance σ2 = 1 can be described by

H ′
i (k) = Hi (k) +Nk (0, 1) , (16)

where Hi (k) is the kth SIV of habitat Hi, and
Nk (0, 1) indicates that the random number is gen-
erated for the kth SIV. Algorithm 2 gives the pseu-
docode of the Gaussian mutation operator in HBBO.

Algorithm 2 Gaussian mutation operator in HBBO
1: for each habitat i ∈ {

1, 2, . . . ,m
}

do
2: Compute the probability Pi

3: Select SIV Hi(k) with mutation probability mi

4: if Hi(k) is selected then
5: Update Hi(k) with the Gaussian mutation

operator
6: end if
7: end for

Based on the above description, the pseudocode
of the HBBO algorithm is given by Algorithm 3.

4 Inverse kinematics problem for an 8-
DOFredundant humanoid manipulator
using HBBO

4.1 Kinematics analysis of an 8-DOF hu-
manoid manipulator

Consider the simulation model and the joint
structure model for an 8-DOF redundant humanoid
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manipulator shown in Fig. 1. Table 1 gives the range
of each joint according to the connecting rod configu-
ration and structure design of the 8-DOF humanoid
manipulator.

The unit vectors of the eight joint axis directions
a0−a7 for the humanoid manipulator are as follows:

⎧⎪⎪⎨
⎪⎪⎩

a0 = (0, 0, 1) , a1 = (0, 1, 0) ,

a2 = (1, 0, 0) , a3 = (0, 0, 1) ,

a4 = (1, 0, 0) , a5 = (0, 0, 1) ,

a6 = (1, 0, 0) , a7 = (0, 1, 0) .

(17)

Algorithm 3 HBBO algorithm
1: Generate a random set of habitats H1,H2, ...,Hm

2: Evaluate the HSI value for each habitat
3: Initialize the generation counter t = 1

4: while the halting criterion is not satisfied do
5: Sort the population from best to worst
6: Compute the migration rates λ and ϑ for each

habitat based on HSI
7: Implement the hybrid migration operator shown

in Algorithm 1
8: Update the probability for each habitat
9: Perform the Gaussian mutation operator shown in

Algorithm 2
10: Recompute the HSI value for the population
11: t = t+ 1

12: end while
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Fig. 1 Simulation model (a) and joint structure model
(b) for an 8-DOF humanoid manipulator. a0 is the
rotation direction of the waist joint, and a1 − a7 are
the rotation directions of the shoulder, elbow, and
wrist joint, respectively.

∑∑∑
W is the world-coordinate

system, D the shoulder breadth, L1 the length from
the shoulder center to the elbow center, L2 the length
from the elbow center to the wrist center, and L3 the
length from the wrist center to the racket center

Define the joint variables of the 8-DOF redun-
dant humanoid manipulator as an 8 × 1 vector, i.e.,
θ = (θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7)

T. Then the position
and orientation (pj ,Rj) of each connecting rod are

{
pj = pi +Ribj ,

Rj = RiRaj (qj),
(18)

where pi and Ri are the absolute position and ori-
entation of the mother connecting rod in the world-
coordinate system respectively, aj and bj are the
unit vectors of axis directions and the origin coor-
dinate in the coordinate system of the mother con-
necting rod respectively, and Raj (qj) is the rotation
matrix when the axis vector aj turns around qj rad.
The rotation matrix can be calculated from the fol-
lowing Rodrigues formula (Kajita, 2005):

Raj (qj) = E + âj sin qj + â2
j(1− cos qj), (19)

where

â =

⎡
⎣

ax
ay
az

⎤
⎦
∧

=

⎡
⎣

0 −az ay
az 0 −ax
−ay ax 0

⎤
⎦ .

For this 8-DOF redundant humanoid manipu-
lator, if the waist joint variable θ0 is equal to zero,
then the body orientation (or neck orientation) R0

would be equal to E. Otherwise, the body orien-
tation is R0 = Rz (q0). Suppose the position and
orientation of the body (or the neck) are (p0,R0),
and the position and orientation of each connecting
rod in the world-coordinate system are described as
(pi,Ri) (i = 1, 2, · · · , 8). Then the connecting rod
orientation Ri (i = 1, 2, · · · , 8) for the 8-DOF hu-
manoid manipulator can be determined by

⎧⎪⎪⎨
⎪⎪⎩

R1 = R0 ·Ry(q1), R2 = R1 ·Rx(q2),

R3 = R2 ·Rz(q3), R4 = R3 ·Rx(q4),

R5 = R4 ·Rz(q5), R6 = R5 ·Rx(q6),

R7 = R6 ·Ry(q7), R8 = R7,

(20)

Table 1 Joint ranges of the 8-DOF humanoid
manipulator

Joint LB (◦) UB (◦) Joint LB (◦) UB (◦)

θ0 −30 30 θ4 −20 120
θ1 −126 90 θ5 −180 180
θ2 −133 15 θ6 −80 80
θ3 −180 90 θ7 −42 85

LB: lower bound; UB: upper bound
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where R8 is the ball racket orientation. The con-
necting rod position pi (i = 1, 2, . . . , 8) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = p0 +R0 · b1, b1 = (0 −D 0)T,

p2 = p1 +R1 · b2, b2 = (0 0 0)T,

p3 = p2 +R2 · b3, b3 = (0 0 0)T,

p4 = p3 +R3 · b4, b4 = (0 0 −L1)
T,

p5 = p4 +R4 · b5, b5 = (0 0 −L2)
T,

p6 = p5 +R5 · b6, b6 = (0 0 0)T,

p7 = p6 +R6 · b7, b7 = (0 0 0)T,

p8 = p7 +R7 · b8, b8 = (0 0 −L3)
T,

(21)

where p8 is the position of the racket center.

4.2 Inverse kinematics solution for the 8-DOF
humanoid manipulator based on HBBO

As shown in Section 2, the inverse kinematics
problem of the 8-DOF redundant humanoid manip-
ulator can be turned into an equivalent minimization
problem. Thus, it can be solved using a numerical
optimization method. An optimal or near-optimal
solution that makes the total error e(θ) close to zero
can be found by the HBBO algorithm from the set
of all possible solutions.

For the 8-DOF redundant humanoid manipula-
tor shown in Fig. 1, there are two redundant joints.
Hence, given a certain position and orientation of the
end effector, there exist infinite inverse kinematics
solutions that can meet the position and orientation
requirement. According to the joint variable range
(Table 1), each joint has its physical constraints be-
cause of structure and configuration design of the
manipulator connecting rod. To determine an in-
verse kinematics solution which is maximumly away
from the joint position limit, the following ‘away lim-
itation level’ criterion, meaning the extent of the so-
lution away from the joint position limitation for the
redundant manipulator, is introduced:

ρ =max

[∣∣∣∣
θ0 − θmid

0

(θmax
0 − θmin

0 )/2

∣∣∣∣ ,
∣∣∣∣

θ1 − θmid
1

(θmax
1 − θmin

1 )/2

∣∣∣∣ ,

. . . ,

∣∣∣∣
θ7 − θmid

7

(θmax
7 − θmin

7 )/2

∣∣∣∣
]
, (22)

where θmin
i , θmid

i , and θmax
i (i = 0, 1, . . . , 7) denote

the lower bound, middle value, and upper bound of
the ith joint, respectively. ρ > 1 means that the
obtained inverse kinematics solution is beyond the
joint variable limitation problems.

According to the above, to obtain the inverse
kinematics solution, both e (θ) and ρ should be min-

imized. Then the fitness function of the HBBO algo-
rithm can be constituted from these two objectives,
and formulated as

min f(θ) = e (θ) + α · ρ, (23)

where α is a fixed small positive weight parameter,
which can balance the total error with the ‘away lim-
itation level’. Obviously, α should be set reasonably.
Generally, α can be chosen from 10−4 to 10−7. Spe-
cific appropriate values should be obtained through
parameter effect analysis on the quality of the inverse
kinematics solution.

5 Simulation

Recall the joint structure model (Fig. 1). As-
sume the shoulder width D=0.14 m, the length from
the shoulder center to the elbow center L1=0.26 m,
the length from the elbow center to the wrist center
L2=0.25 m, and the length from the wrist center to
the racket center L3=0.14 m. Suppose the shoulder
center is the origin of the world-coordinate system∑

W , the position and orientation of the neck (or the
body) are p0 = (0.00 0.14 0.00)T m and R0 = E

(the waist joint variable θ0=0), respectively. For the
humanoid manipulator, if the desired position and
orientation of the racket center are respectively given
by

p8 = (0.25 0.35 − 0.35)T m, (24)

R8 = Rz(0)Ry(−π/2)Rx(π/2), (25)

then the position and orientation of the end effector
can be determined by

R7 = R8, (26)

p7 = p8 −R7 · (0 0 −L3)
T

= (0.25 0.21 − 0.35)T m. (27)

To determine an appropriate value of α, pa-
rameter effect analysis on the quality of the inverse
kinematics solution is executed for the HBBO al-
gorithm. Suppose the fitness (Eq. (23)) reaches an
accuracy level of 10−5, then we can consider that
the algorithm has tended to converge. As to the
parameter setting in HBBO, both the maximum
immigration rate I and the maximum emigration
rate E are 1, the predetermined maximum muta-
tion probability is πmax = 0.05, and the scaling fac-
tor and crossover probability of the DE strategy are
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F = 0.60, CR = 1.00, respectively. Also, the op-
timization variable dimension, i.e., the DOF of the
manipulator, is n=8, and the range limitation of each
joint variable θi (i = 0, 1, . . . , 7) is shown in Table 1.

In addition, the population size of HBBO is set
as m=30, and the maximum evolutionary iteration
is set as T=2500; that is, HBBO has 75 000 func-
tion evaluations during the whole evolution proce-
dure. Table 2 lists the best, average, worst, standard
deviation, and convergence rate values over 10 inde-
pendent runs when α is chosen at different values for
the HBBO algorithm.

From Table 2, it can be seen that although the
best fitness under α = 10−5 is slightly inferior to
those results under α = 10−6 and α = 10−7, its
average solution quality is much superior to the oth-
ers. Moreover, the convergence rate is highest when
α = 10−5. Thus, as to the HBBO algorithm, 10−5

can be considered as an appropriate value for α.
To evaluate the effectiveness of the proposed

HBBO algorithm, the standard genetic algorithm
(SGA), DE/rand/1/bin differential evolution (DE),
and BBO algorithm are also conducted on the afore-
mentioned problem. In these experiments the pa-
rameters of each method are set as follows: For SGA,
fitness-proportionate selection, arithmetic crossover,
and uniform mutation are adopted; the crossover
probability is 0.90 and the mutation probability is
0.05. For DE and BBO, each parameter is set to
the same value as in HBBO. In addition, the α in
Eq. (23) is set to 10−5 for all methods, and the pop-
ulation size, the maximum evolutionary iterations,
etc., are also set at the same level as those in HBBO.
Each algorithm is performed 10 independent runs,
and the results are shown in Table 3. It can be seen

that:
1. Compared to SGA and BBO, HBBO exhibits

more accurate results and a superior performance
regardless of the best, average, worst, and standard
deviation values over the 10 independent runs, which
indicates that HBBO can find a much better solution,
and its solution quality is excellent.

2. Compared to DE, although the best fitness
(8.4257×10−6) given by DE is very close to that given
by HBBO (8.0733×10−6), HBBO gives smaller aver-
age, worst, and standard deviation results than DE;
hence, HBBO has a much better optimization per-
formance.

In summary, the results show that HBBO out-
performs SGA, DE, and BBO, and is competent for
the inverse kinematics problems of this 8-DOF hu-
manoid manipulator. Fig. 2 illustrates the average
fitness evolution curves of the 10 independent runs
under these different algorithms. It can be seen that
the average evolution curve of HBBO is much closer
to the optimal solution, i.e., the horizontal axis in the
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Fig. 2 Average evolution curves under different al-
gorithms on the inverse kinematics problem of the
humanoid manipulator

Table 2 HBBO results over 10 independent runs of the inverse problem for different α

α Best Average Worst Standard deviation Convergence rate

10−4 9.7847×10−5 2.9094×10−2 2.9004×10−2 9.1686×10−2 20%
10−5 8.0733×10−6 9.8058×10−6 1.0437×10−5 6.4780×10−7 100%
10−6 9.0915×10−7 2.0063×10−2 2.0056×10−1 6.3419×10−2 90%
10−7 9.3703×10−8 1.0826×10−2 9.8405×10−2 3.0845×10−2 70%

Table 3 Results over 10 independent runs of the inverse kinematics problem under four different methods

Method Best Average Worst Standard deviation

Standard genetic algorithm 3.6036×10−2 4.2291×10−2 4.7253×10−2 4.2084×10−3

Differential evolution 8.4257×10−6 2.0782×10−2 5.7474×10−2 2.8712×10−2

Biogeography-based optimization 1.5693×10−2 6.8393×10−2 1.6791×10−1 6.0563×10−2

Hybrid biogeography-based optimization 8.0733×10−6 9.8058×10−6 1.0437×10−5 6.4780×10−7
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figure, which shows the effectiveness of the HBBO
algorithm.

To further describe the process, a typical evolu-
tion curve of the obtained best fitness (8.0733×10−6)
over 10 independent runs with HBBO is given
(Fig. 3). In this inverse kinematics solution, the cor-
responding total error e (θ) is 3.0053× 10−8; that is,
the accuracy level of the error has reached an order
of 10−8, the ‘away limitation level’ is ρ=0.8073, and
the corresponding inverse kinematics solution of the
manipulator is given by

θ =[0.2474 − 0.3854 − 0.0364 − 0.5922

0.8955 1.4594 0.4948 − 0.5195] rad.

By contrast, the total errors of the best fitness
over 10 independent runs with BBO and SGA algo-
rithms have reached only an accuracy level of 10−2.
The inverse results obtained through BBO and SGA
algorithms are not satisfactory.

From the evolution curve in Fig. 3, we can also
see that HBBO needs only about 500 iterations to
reach a fitness accuracy level of 10−6, and the con-
vergence is very rapid. The HBBO algorithm can
obtain the desired inverse kinematics solution. Fig. 4
shows the corresponding position and orientation of
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Fig. 3 A typical evolution curve of the fitness under
HBBO

Fig. 4 Position and orientation of the 8-DOF hu-
manoid manipulator configurations

the connecting rod configurations for the 8-DOF hu-
manoid manipulator. It can be seen that the con-
necting rod configuration of the humanoid manipu-
lator meets the position and orientation requirement
of the ball racket as described in Eqs. (24) and (25),
which shows the effectiveness of the solution.

The HBBO algorithm has solved the inverse
kinematics problem of the 8-DOF humanoid manip-
ulator through an evolution iteration procedure, and
it spends a little time to obtain the problem solution.
As to the task which does not require high real-time
operation, such as cup grasping or refrigerator open-
ing, it could meet the real-time requirement; how-
ever, for those high real-time operation tasks, e.g.,
ping-pong hitting or baseball playing, this method
would not satisfy the demand. Even so, the solution
obtained using the HBBO algorithm is helpful for
research on the inverse kinematics problem for this
redundant humanoid manipulator with closed-form
solution methods.

6 Conclusions

In this paper, HBBO has been presented to solve
the inverse kinematics problem of the redundant hu-
manoid manipulator. It combines BBO with DE
to constitute a hybrid method. Moreover, a Gaus-
sian mutation operator was introduced into this hy-
brid method to weaken the premature problem of
the algorithm. Based on this, the HBBO algorithm
was applied to solve the inverse kinematics prob-
lem. In this method, the end-effector error (position
and orientation) and the ‘away limitation level’ cri-
terion of the 8-DOF humanoid manipulator consti-
tute the fitness function of HBBO. Simulation results
demonstrated that this method is better than some
other algorithms for the inverse kinematics problem
studied.

Despite these promising results, there is still
room for improving our work in several aspects. For
future work, the solution given by the HBBO algo-
rithm makes it possible to derive the joint analytic
expression of the inverse kinematics problem with
closed-form solution methods, and thus the work en-
velope can be demonstrated effectively if the joint
variables are computed through the analysis formula
when the Cartesian coordinates of the end effector
are given. In addition, it is intended to develop new
algorithms based on BBO, by hybridizing with other
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metaheuristics such as particle swarm optimization
and harmony search, and apply these new hybrid
algorithms to some other optimization problems in
the robotic field, such as robot control and parameter
identification of the robot system.
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