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Abstract: In this Exa byte scale era, data increases at an exponential rate. This is in turn generating a massive
amount of metadata in the file system. Hadoop is the most widely used framework to deal with big data. Due
to this growth of huge amount of metadata, however, the efficiency of Hadoop is questioned numerous times by
many researchers. Therefore, it is essential to create an efficient and scalable metadata management for Hadoop.
Hash-based mapping and subtree partitioning are suitable in distributed metadata management schemes. Subtree
partitioning does not uniformly distribute workload among the metadata servers, and metadata needs to be migrated
to keep the load roughly balanced. Hash-based mapping suffers from a constraint on the locality of metadata, though
it uniformly distributes the load among NameNodes, which are the metadata servers of Hadoop. In this paper, we
present a circular metadata management mechanism named dynamic circular metadata splitting (DCMS). DCMS
preserves metadata locality using consistent hashing and locality-preserving hashing, keeps replicated metadata for
excellent reliability, and dynamically distributes metadata among the NameNodes to keep load balancing. NameNode
is a centralized heart of the Hadoop. Keeping the directory tree of all files, failure of which causes the single point of
failure (SPOF). DCMS removes Hadoop’s SPOF and provides an efficient and scalable metadata management. The
new framework is named ‘Dr. Hadoop’ after the name of the authors.

Key words: Hadoop, NameNode, Metadata, Locality-preserving hashing, Consistent hashing
http://dx.doi.org/10.1631/FITEE.1500015 CLC number: TP311

1 Introduction of the most widely used large-scale distributed file
systems like GFS (Ghemawat et al., 2003) and Ceph

Big data, a recent buzz in the Internet world, (Weil et al., 2006) and which processes the ‘big data’
is growing louder with every passing day. Face- efficiently.

book has almost 21 PB data in 200 million ob- HDFS separates file system data access and

jects (Beaver et al., 2010) whereas Jaguar ORNL  ctadata transactions to achieve better performance
has more than 5 PB data. The stored data is 454 scalability. Application data is stored in various
growing so rapidly that EB-scale storage systems — g¢orage servers called DataNodes whereas metadata
are likely to be used by 2018-2020. By that time ¢ stored in some dedicated server(s) called NameN-
there should be more than one thousand 10 PB de- ode(s). The NameNode stores the global namespaces
ployments. Hadoop has its own file system, the  a5q directory hierarchy of the HDFS and other inode
Hadoop Distributed File System (HDFS) (Shvachko i, formation. Clients access the data from DataNodes
et al., 2010; Dev and Patgiri, 2014), which is one through NameNode(s) via network. In HDF'S, all the
metadata has only one copy stored in the NameNode.
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offline. ~ This is termed ‘single point of failure’
(SPOF) of Hadoop (Wiki, 2012).

The NameNode allows data transfers between a
large number of clients and DataNodes, itself not be-
ing responsible for storage or retrieval of data. More-
over, NameNode keeps all the namespaces in its main
memory, which is very likely to run out of memory
with the increase in the metadata size. Considering
all these factors, centralized architecture of NameN-
ode in the Hadoop framework seems to be a serious
bottleneck and looks quite impractical. A practi-
cal system needs an efficient and scalable NameNode
cluster to provide an infinite scalability to the whole
Hadoop framework.

The main problem in designing a NameNode
cluster is how to partition the metadata efficiently
among the cluster of NameNodes to provide high-
performance metadata services (Brandt et al., 2003;
Weil et al., 2004; Zhu et al., 2008). A typical meta-
data server cluster splits metadata among itself and
tries to keep a proper load balancing. To achieve
this and to preserve better namespace locality, some
servers are overloaded and some become a little bit
under loaded.

The size of metadata ranges from 0.1 to 1 per-
cent in size as compared to the whole data size stored
(Miller et al., 2008). This value seems negligible, but
when measured in EB-scale data (Raicu et al., 2011),
the metadata becomes huge for storage in the main
memory, e.g., 1 to 10 PB for 1 EB data. On the other
hand, more than half of the file system accesses are
used for metadata (Ousterhout et al., 1985). There-
fore, an efficient and high performance file system
implies efficient and systemized metadata manage-
ment (Dev and Patgiri, 2015). A better NameNode
cluster management should be designed and imple-
mented to resolve all the serious bottlenecks of a file
system. The workload of metadata can be solved by
uniformly distributing the metadata to all the Na-
meNodes in the cluster. Moreover, with the ever
growing metadata size, an infinite scalability should
be achieved. Metadata of each NameNode server can
be replicated to other NameNodes to provide better
reliability and for excellent failure tolerance.

We examine these issues and propose an efficient
solution. As Hadoop is a ‘write once, read many’
architecture, metadata consistency of the write op-
eration (atomic operations) is beyond the scope of
this paper.

We provide a modified model of Hadoop, termed
Dr. Hadoop. ‘Dr.” is an acronym of the authors
(Dipayan, Ripon). Dr. Hadoop uses a novel Na-
meNode server cluster architecture named ‘dynamic
circular metadata splitting’ (DCMS), which removes
the SPOF of Hadoop. The cluster is highly scalable
and it uses a key-value store mechanism (DeCandia
et al., 2007; Escriva et al., 2007; Lim et al., 2007;
Biplob et al., 2010) that provides a simple interface:
lookup (key) under write and read operations. In
DCMS, locality-preserving hashing (LpH) is imple-
mented for excellent namespace locality. Consistent
hashing is used in addition to LpH, which provides
a uniform distribution of metadata across the Na-
meNode cluster. In DCMS, with the increase in the
number of NameNodes in the cluster, the throughput
of metadata operations does not decrease, and hence
any increase in the metadata scale does not affect
the throughput of the file system. To enhance the
reliability of the cluster, DCMS also provides repli-
cation of each NameNode’s metadata to different
NameNodes.

We evaluate DCMS and its competing metadata
management policies in terms of namespace local-
ity. We compare Dr. Hadoop’s performance with
that of traditional Hadoop from multiple perspec-
tives like throughput, fault tolerance, and NameN-
ode’s load. We demonstrate that DCMS is more
productive than traditional state-of-the-art meta-
data management approaches for the large-scale file
system.

2 Background

This section discusses the different types of
metadata server of distributed file systems (Haddad,
2000; White et al., 2001; Braam, 2007) and the ma-
jor techniques used in distributed metadata manage-
ment in large-scale systems.

2.1 Metadata server cluster scale
2.1.1 Single metadata server

A framework having a single metadata server
(MDS) simplifies the overall architecture to a vast
extent and enables the server to make data place-
ment and replica management relatively easy. Such
a structure, however, faces a serious bottleneck,
which engenders the SPOF. Many distributed file
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systems (DFSs), such as Coda (Satyanarayanan et
al., 1990), divide their namespace among multiple
storage servers, thereby making all of the metadata
operations decentralized. Other DFSs, e.g., GFS
(Ghemawat et al., 2003), also use one MDS, with a
failover server, which works on the failure of primary
MDS. The application data and file system metadata
are stored in different places in GFS. The metadata
is stored in a dedicated server called master, while
data servers called chunkservers are used for stor-
age of application data. Using a single MDS at one
time is a serious bottleneck in such an architecture,
as the numbers of clients and/or files/directories are
increasing day by day.

2.1.2 Multiple metadata servers

A file system’s metadata can be dynamically
distributed to several MDSs. The expansion of the
MDS cluster provides high performance and avoids
heavy loads on a particular server within the clus-
ter. Many DFSs are now working to provide a dis-
tributed approach to their MDSs instead of a cen-
tralized namespace. Ceph (Weil et al., 2006) uses
clusters of MDS and has a dynamic subtree parti-
tioning algorithm (Weil et al., 2004) to evenly map
GFS is
also moving into a distributed namespace approach
(McKusick and Quinlan, 2009). The upcoming GFS
will have more than hundreds of MDS with 100 mil-
lion files per master server. Lustre (Braam, 2007)
in its Lustre 2.2 release uses a clustered namespace.

the namespace tree to metadata servers.

The purpose of this is to map a directory over mul-
tiple MDSs, where each MDS will contain a disjoint
portion of the namespace.

2.2 Metadata organization techniques

A file system having cloud-scale data manage-
ment (Cao et al., 2011) should have multiple MDSs
to dynamically split metadata across them. Subtree
partitioning and hash-based mapping are two major
techniques used for MDS clusters in large-scale file
systems.

2.2.1 Hash-based mapping

Hash-based mapping (Corbett and Feitelson,
1996; Miller and Katz, 1997; Rodeh and Teperman,
2003) uses a hash-function, which is applied on a
pathname or filename of a track file’s metadata. This

helps the clients to locate and discover the right
MDS. Clients’ requests are distributed evenly among
the MDS to reduce the load of a single MDS. Vesta
(Corbett and Feitelson, 1996), Rama (Miller and
Katz, 1997), and zFs (Rodeh and Teperman, 2003)
use hashing of the pathname to retrieve the meta-
data. The hash-based technique explores a better
load balancing concept and removes the hot-spots,
e.g., popular directories.

2.2.2 Subtree partitioning

Static subtree partitioning (Nagle et al., 2004)
explores a simple approach for distribution of meta-
data among MDS clusters. With this approach,
the directory hierarchy is statically partitioned and
each subtree is assigned to a particular MDS. It pro-
vides much better locality of reference and improved
MDS independence compared to hash-based map-
ping. The major drawback of this approach is im-
proper load balancing, which causes a system per-
formance bottleneck. To cope with this, the subtree
might be migrated in some cases, e.g., PanFS (Nagle
et al., 2004).

3 Dynamic circular metadata splitting
(DCMS) protocol

The dynamic circular metadata splitting of the
Dr. Hadoop framework is a circular arrangement of
NameNodes. The internal architecture of a NameN-
ode (metadata server) is shown in Fig. 1 and it is
a part of the circular arrangement of DCMS. The
hashtable storage manager keeps a hashtable to store
the key-value of metadata. It also administers an
SHA1 (U.S. Department of Commerce/NIST, 1995)
based storage system under two components, i.e., a
replication engine and failover management. The
replication engine features the redundancy mecha-
nisms and determines the throughput of read or write
metadata in the DCMS.

DCMS implements metadata balancing across
the servers using consistent hashing and excellent
namespace locality using LpH that provides the most
A Dbetter
LpH based cluster exploits the minimum number of
remote procedure calls (RPCs) for read and write
lookups.

efficient metadata cluster management.

All these features and approaches are described
in the subsequent portions of this paper.
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Hashtable storage manager

Replication Failover
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[ Key-value store using SHA1 ]

Locality-preserving
hashing
Circular arrangement of
NameNodes

Fig. 1 The skeleton of a NameNode server in DCMS

hashing

Consistent ]

3.1 DCMS features

DCMS simplifies the design of Hadoop and Na-
meNode cluster architecture and removes various
bottlenecks by addressing all difficult problems:

1. Load balance: DCMS uses a consistent hash-
ing approach, spreading keys uniformly all over the
NameNodes; this contributes a high degree of typical
load balance.

2. Decentralization: DCMS is fully distributed:
all the nodes in the cluster have equal importance.
This improves robustness and makes DCMS appro-
priate for loosely organized metadata lookup.

3. Scalability: DCMS provides infinite scalabil-
ity to the Dr. Hadoop framework. With the increase
in the size of metadata, only the nodes (NameNode)
in the cluster need to be added. No extra parameter
modification is required to achieve this scaling.

4. Two-for-one: The left and right NameNodes
of a NameNode keep the metadata of the middle one
and behave as the ‘hot-standby’ (Apache Software
Foundation, 2012) to it.

5. Availability: DCMS uses a Resource-Manager
to keep track of all the NameNodes which are newly
added, as well as the failure ones. During failure, the
left and right sides of the failure NameNode of DCMS
can serve for the lookup of the failure one. The fail-
ure node will be replaced by electing a DataNode as
NameNode using a suitable election algorithm. That
is why there is no downtime on DCMS. The failure
NameNode will serve as the DataNode, if recovered
later.

6. Uniform key size: DCMS puts no restriction

on the structure of the keys in the hashtable; the
DCMS key-space is flat. It uses SHA1 on each file
or directory path to generate a unique identifier of k&
bytes. So, even a huge file/directory pathname does
not take more than k bytes of key.

7.  Self-healing, self-
balancing: In the DCMS, the administrator need not
worry about the increase in the number of NameN-
odes or replacement of NameNodes. The DCMS has
the feature of self-healing, self-balancing, and self-
managing of metadata and the MetaData server.

self-managing, and

3.2 Overview

DCMS is an in-memory hashtable-based system,
in which a key-value pair is shown in Fig. 2. It
is designed to meet the following five general goals:
(1) high scalability of the NameNode cluster, (2) high
availability with a suitable replication management,
(3) excellent namespace locality, (4) fault tolerance
capacity, and (5) dynamic load balancing.

Ki= SHA1
(path-name)

/ A AN

Vi = metadata
information

/home/dip/ IP: 192.168.12.15,
folder/fold/fold1/ Blocks: 56,
file.txt UlID: (1000/dip),
GID: (1000: dip),
DataNode:
DN4, ...

Fig. 2 Key-value system. Key is SHA1 (pathname),
while the value is its corresponding metadata

In DCMS design, each NameNode stores one
unique hashtable. Like other hash-based mapping,
it uses a hashing concept to distribute the metadata
across multiple NameNodes in the cluster. It main-
tains a directory hierarchical structure such that
metadata of all the files in a common directory gets
stored in the same NameNode.
metadata, it uses locality-preserving hashing (LpH)
which is based on the pathname of each file or direc-
tory. Due to the use of LpH in DCMS, it eliminates
the overhead of directory hierarchy traversal. To
access data, a client hashes the pathname of the file
with the same locality-preserving hash function to lo-

For distribution of

cate which metadata server contains the metadata of
the file, and then contacts the appropriate metadata
server. The process is extremely efficient, typically
involving a single message to a single NameNode.
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DCMS applies the SHA1() hash function on the
pathname of each file or directory’s full path. SHA1
stands for ‘secure hash algorithm’, which generates
a unique 20-byte identifier for every different input.

In HDFS, all the files are divided into pre-
defined sizes of multiple chunks, called blocks.
The SHA1() is applied to each block to gener-
ate a unique 20-byte identifier, which is stored
in the hashtable as the key. For exam-
ple, the identifiers of the first and third blocks
of file ¢/home/dip/folder/fold/foldl/file.txt’ are
SHA1(home/dip/folder/fold /fold1 /file.txt, 0) and
SHA1(home/dip/folder/fold/fold1 /file.txt, 2), re-
spectively.

3.3 System architecture

In DCMS, each NameNode possesses equal pri-
ority and hence the cluster shows pure decentral-
ized behavior. The typical system architecture is
shown in Fig. 3. The DCMS is a cluster of Na-
meNodes where each of them is organized in a cir-
cular fashion.
noted by NameNode X which has neighbors, viz.,
NameNode (X — 1) and NameNode (X +1). The
hash function is sufficiently random. This is SHA1
in our case. Many keys are inserted, due to the na-
ture of consistent hashing; these keys will be evenly
distributed across the various NameNode servers.
DCMS improves the scalability of consistent hashing
by avoiding the requirement that every node should
know about every other node in the cluster. How-
ever, in DCMS, each node needs routing information
of two nodes, which are its left and right nodes in
topological order. This is because each NameNode
will put a replica of its hashtable to its two neigh-
bor servers. The replication management portion is
discussed in the following section.

The DCMS holds three primary data structures:
namenode, fileinfo, and clusterinfo. These data
structures are the building blocks of the DCMS meta-
data. The namenode and clusterinfo are stored on
the typical Resource-Manager (JobTracker) of typ-
ical Hadoop architecture, and fileinfo is stored on
each namenode which handles the mapping to file to
its paths in the DataNodes.

The namenode data structure
stores the mapping of the NameNode’s hostname to
NameNode-URL. It is used to obtain the list of all
the servers to keep track of all the NameNodes in

Each NameNode’s hostname is de-

1. namenode:

DCMS: dynamic circular metadata splitting

JobTracker
(Resource-Manager)

Query % n

Fig. 3 System architecture. Physical NameNode
servers compose a metadata cluster to form a DCMS
overlay network

/* File Information mapping of: file or directory

path - nodeURL */
public static Hashtable<FilePath, MetaData>
fileInfo = new Hashtable<FilePath, MetaData>();

/* Cluster information mapping of: nodeURL

and Clusterinfo object */
public static Hashtable<String, ClusterInfo>
clusterinfo = new Hashtable<String, ClusterInfo>();

/* Data structure for storing all the NameNode servers */

public Hashtable<NameNode_hostname, Namenode-URL>

namenode = new Hashtable<NameNode_hostname,
Namenode-URL>();

the DCMS cluster. The Resource-Manager holds
this data structure to track all the live NameNodes
in the cluster by a heartbeat mechanism. It must
update this mapping table information when a new
NameNode joins or leaves the DCMS cluster. The
Dr. Hadoop framework can be altered by reforming
this data structure.

2. fileinfo: The fileinfo data structure, stored
in each NameNode of the DCMS cluster, keeps the
mapping of the SHA1() of the file or directory path
to the corresponding location where they are stored
in the DataNodes. The mapping is basically the key-
value stored in the hashtable. The mapping locates
the DataNodes on the second layer. The mapped
fileinfo metadata is used to access DataNodes on the
cluster where the files are actually stored.

3. clusterinfo: The clusterinfo data structure,
stored in the Resource-Manager, stores the basic
information about the cluster such as storage size,
available space, and the number of DataNodes.
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3.4 Replication management

In Dr. Hadoop we replicate each hashtable of
NameNodes to the different NameNodes. The idea
of replication management of Dr. Hadoop in DCMS
is that each replica starts from a particular state,
receives some input (key-value), goes to the same
state, and outputs the result. In DCMS, all the
replicas possess the identical metadata management
principle. The input here means only the metadata
write requests, because only file/directory write re-
quests can change the state of a NameNode server.
The read request needs only a lookup.

We designate the main hashtable as primary,
and the secondary hashtable replicas are placed in
the left and right NameNodes of the primary. The
primary is given the charge of the replication of
all metadata updates and to preserve the consis-
tency with the other two. As shown in Fig. 4,
NameNode (X + 1) stores the primary hashtable
HT (X 4 1) and its secondary replicas are stored
in NameNode X and NameNode (X + 2) as its
left and right NameNodes, respectively. These two
nodes, hosting the in-memory replicas, will behave
as hot-standby to NameNode (X + 1).

HT_X | |HT_(X-1)| HT_(X+1) HT_(X+1)| | HT_X | HT_(X+2) || HT_(X+2)| | HT_(x+1)| HT_(x+3)

NameNode_X NameNode_(X+1) NameNode_(X+2)

Fig. 4 Replication management of Dr. Hadoop in
DCMS

The metadata requests are not concurrent in
Dr. Hadoop in order to preserve metadata consis-
tency. When a primary NameNode processes the
metadata write requests, it first puts the replicas to
its secondary before sending the acknowledgement
back to the client. Details about these operations
are explained later.

The secondary replica hashtable does not need
to process any write metadata request. The clients
send only the metadata write requests to the primary
hashtable, i.e., HT (X + 1) in the figure. However,
the read requests are processed by any replica, either
primary or secondary, i.e., HT X or HT (X +2)in
the figure, to increase the throughput of read.

4 Hashing approaches of DCMS
4.1 Consistent hashing

The consistent hash function assigns each Na-
meNode and key (hashtable) an n-bit identifier using
a base hash function such as SHA1 (U.S. Department
of Commerce/NIST, 1995). A NameNode’s identi-
fier is chosen by hashing its IP address, while a key
identifier for the hashtable is produced by hashing
the key.

As explained in an earlier section, DCMS con-
sists of a circular arrangement of NameNodes. As-
sume n bits are needed to specify an identifier. We
applied consistent hashing in DCMS as follows: iden-
tifiers are ordered in a HashCode module 2". Key
k is assigned to NameNode 0 if this result is 0, and
so on. This node is called the home node of key k,
denoted by home(k). If identifiers are denoted by 0
to 2" — 1, then home(k) is the first NameNode of the
circle having hostname NameNode 0.

The following results are proven in the papers
that introduced consistent hashing (Karger et al.,
1997; Lewin, 1998) and that are the foundation of
our architecture.

Theorem 1 For any set of N nodes and K keys,
with high probability, we have

1. Each node is responsible for at most (1 +
e)K/N keys.

2. When an (N + 1)th node joins or leaves the
network, responsibility for O(K/N) keys changes
hands (and only to or from the joining or leaving
node).

With SHA1, this € can be reduced to a negligible
value providing a uniform K/N key distribution to
each NameNode in the DCMS.

We need to discuss the term ‘with high probabil-
ity’ mentioned in the theorem. As the NameNodes
and keys in our model are randomly chosen, the prob-
ability distribution over the choices of keys is very
likely to produce a balanced distribution. However,
if an adversary chooses all the keys to hash to an
identical identifier (NameNode), the situation would
produce a highly unbalanced distribution, leading to
destruction of the load balancing property. The con-
sistent hashing paper uses ‘k universal hash func-
tions’, which guarantees pure load balancing even
when someone uses non-random keys.

Instead of using a ‘universal hash function’, the
DCMS uses the standard SHA1 function as our base
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hash function. This will make the hashing more de-
terministic, so that the phrase ‘high probability’ no
longer makes sense. However, it should be noted
that, collision in SHA1 is seen, but with a negligible
probability.

4.1.1 Collision probability of SHA1

Considering random hash values with a uniform
distribution, a hash function that produces n bits
and a collection of b different blocks, the probability
p that one or more collisions will occur for different
blocks is given by

p< b(b—1) 1
- 2 2n

For a huge storage system that contains 1 PB
(1015 bytes) of data or an even larger system that
contains 1 EB (10'® bytes) stored as 8 KB blocks
(10'* blocks), using the SHA1 hash function, the
probability of a collision is less than 1072°. Such a
scenario seems sufficiently unlikely that we can ig-
nore it and use the SHA1 hash as a unique identifier
for a block.

4.2 Locality-preserving hashing

In EB-scale storage systems, we should imple-
ment near-optimal namespace locality by assigning
keys that are consistent based on their full path-
names to the same NameNode.

To attain near-optimal locality, the entire di-
rectory tree nested under a point has to reside on
the same NameNode. The clients distribute the
metadata for the files and directories over DCMS
by computing a hash of the parent path present in
the file operation. Using the parent path implies that
the metadata for all the files in a given directory is
present at the same NameNode. Algorithms 1 and 2
describe the creation and reading operations of a file
by a client over DCMS.

Algorithms 1 and 2 show the write and read
operations respectively in Dr. Hadoop on DCMS to
preserve the locality-preserving hashing.

In Algorithm 1, the client sends the query as a
file path or directory path to Dr. Hadoop and it out-
puts the data in the DataNodes as well as metadata
in the NameNodes of DCMS with proper replication
and consistency.

As mentioned in Section 3.4, the hashtable of
NameNode X will be denoted as Hashtable X.

Algorithm 1 Write operation of Dr. Hadoop in

DCMS
Require: Write query(filepath) from the client

Ensure: File stored in DataNodes with proper replica-
tion and consistency
for i <~ 0 to m do
hashtable(NameNode i) < hashtable i;
end for
while true do
Client issue write(/dirl/dir2/dir3/file.txt);
// Perform hash of its parent path
file.get AbsolutePath();
if client path hashes to NameNode X then
update(hashtable (X —1));
update(hashtable (X +1));
end if
Reply back to the client from the NameNode X for
acknowledgement;
end while

Algorithm 2 Read operation of Dr. Hadoop in
DCMS
Require: Read query(filepath) from the client
Ensure: Read data from files stored int the DataNodes
for i <+ 0 to m do
hashtable(NameNode 7)< hashtable i;
end for

while true do
Client issue read(/dirl/dir2/dir3/file.txt);
// hash of its parent path
file.get AbsolutePath();
if client path hashes to NameNode X then
parallel reading from
hashtable X
hashtable (X —1)
hashtable (X + 1);
end if
Perform getBlock()
Perform getMoreElements()
The client then communicates directly with the
DataNodes to read the contents of the file;
end while

When a client issues a write operation of
‘/dirl/dir2/dir3/file.txt’, it hashes the parent path,
i.e., hash of ‘/dirl/dir2/dir3’, so that all the files
that belong to that particular directory reside in the
same NameNode. If the hash of the above query out-
puts 3, then the metadata of that file will get stored
in the Hashtable 3.
replication purposes, that metadata will be repli-
cated to Hashtable 2 and Hashtable 1. After the
whole process is completed, Dr. Hadoop will send an

For synchronous one-copy
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acknowledgement to the client.

The read operation of Dr. Hadoop portrayed
in Algorithm 2 to preserve LpH follows a similar
trend to Algorithm 1. When the client issues a
read operation on ‘/dirl/dir2/dir3 /file.txt’, it would
again make a hash of its parent directory path. If
during the write this value was 3, it will now out-
put the same value. So, as per the algorithm, the
client will automatically contact again NameNode 3
where the metadata actually resides. Now, as the
metadata is stored in three consecutive hashtables,
DCMS provides a parallel reading capacity, i.e., from
Hashtable 2, Hashtable 3, and Hashtable 4. The
application performs getBlock() in parallel each time
to obtain the metadata of each block of the file. This
hugely increases the throughput of the read opera-
tion of Dr. Hadoop.

Fig. 5 shows the step-by-step operation to access
files by clients in Dr. Hadoop.

NameNode 3

NameNode 1

Client App

NameNode 2

DataNode 1 DataNode 2

DataNode 3

Fig. 5 Client accessing files on the Dr. Hadoop
framework

Step 1: Client wishes to create a file named
‘/dirl/dir2/filename’. It computes a hash of the
parent path, ‘/dirl/dir2’; to determine which Na-
meNode has to contact .

Step 2: Before returning the response back to
the client, NameNode sends a replication request to
its left and right topological NameNodes to perform
the same operation.

Step 3: Look up or add a record to its
hashtable and the file gets stored/retrieved in/from
DataNodes.

Step 4: NameNode sends back the response to
the client.

5 Scalability and failure management
5.1 Node join

In a DCMS-like dynamic network, new NameN-
odes join in the cluster whenever the metadata limit
exceeds the combined main memory size (considering
the replication factor) of all the NameNodes. While
doing so, the main challenge for this is to preserve
the locality of every key k in the cluster. To achieve
this, DCMS needs to ensure two things:

1. Node’s successor and predecessor are properly
maintained.

2. home(k) is responsible for every key k of
DCMS.

In this section we discuss how to conserve these
two factors while adding a new NameNode to the
DCMS cluster.

For the join operation, each NameNode main-
tains a successor and predecessor pointer. A NameN-
ode’s successor and predecessor pointer contains the
DCMS identifier and IP address of the correspond-
ing node. To preserve the above factors, DCMS must
perform the following three operations when a node
n, i.e., NameNode N, joins the network:

1. Initialize the successor and predecessor of
NameNode N.

2. Update these two pointers
Node (N — 1) and NameNode 0.

3. Notify the Resource-Manager to update its
namenode data structure about the addition of
NameNode N.

of Name-

5.2 Transferring replicas

The last operation to be executed when a
NameNode N joins DCMS is to shift the reason-
ability of holding the replicas (hashtable) of its new
successor and predecessor. Typically, this involves
moving the data associated with the keys to keep the
balance of the hashtable in DCMS for Dr. Hadoop.
Algorithm 3 and Fig. 6 provide the detailed overview
of this operation.

5.3 Failure and replication

in DCMS of
Dr. Hadoop would not be very large. So, we use
heartbeat (Aguilera et al., 1997) to do failure de-
tection. Each NameNode sends a heartbeat to the
Resource-Manager every 3 s. The Resource-Manager

The number of NameNodes
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Algorithm 3 Node join operation of Dr. Hadoop:
addnew NameNode N()
Require: Random node from the cluster of DataNodes
Ensure: Add the Nth NameNode of DCMS
Randomly choose one DataNode from the cluster as
the Nth NameNode of DCMS
while true do
update metadata(NameNode N);
update metadata(NameNode (N —1));
update metadata(NameNode 0);
end while
while update metadata(NameNode N) do
place(hashtable (N — 1));
place(hashtable N);
place(hashtable 0);
end while
while update metadata(NameNode (N — 1)) do
hashtable 0.clear();
place(hashtable N);
end while
while update metadata(NameNode X) do
hashtable (N — 1).clear();
place(hashtable N);
end while

HT_1| HT_O| HT_2
/ NameNode_0 \

HT_O{ HT_1| HT_2 ¢ » HT_1| HT_2|HT_0
NameNode_1 NameNode_2
(a)

NameNode_0 NameNode_3

HT_1| HT_O| HT_1 "————————— HT_0 HT 3 HT 2

Node X is elected as
NameNode_3, because

the RAMs of existing
NameNodes are full

HT 2 ¢————» HT_1| HT_2|HT_3

HT_O{ HT_1

NameNode_1

NameNode_2

(b)

Fig. 6 Dynamic nature of Dr. Hadoop: (a) initial
setup of DCMS with half filled RAM; (b) addition of
NameNode in DCMS when RAM gets filled up

detects a NameNode failure by checking every 200 s if
any node has not sent the heartbeat for at least 600 s.
If a NameNode N is declared a failure, other Na-
meNodes whose successor and predecessor pointers
contain NameNode N must adjust their pointer ac-
cordingly. In addition, the failure of the node should
not be allowed to distort the metadata operation

in progress, as the cluster will be in a re-stabilized
situation.

After a node fails, but before the stabilization
takes place, a client might send a request to this Na-
meNode for a lookup (key). Generally, these lookups
would be processed after a timeout, but from another
NameNode (its left or right) which will be acting as
a hot standby for it, despite that failure. This case is
possible because the hashtable has its replica stored
in its left and right nodes.

6 Analysis
6.1 Design analysis

Let the total number of nodes in the cluster
be n. In traditional Hadoop, there is only 1 pri-
mary NameNode, 1 Resource-Manager, and (n — 2)
DataNodes to store the actual data. The single Na-
meNode stores all the metadata of the framework.
Hence, it becomes a centralized NameNode which
cannot tolerate the crash of a single server.

In Dr. Hadoop, we use m NameNodes that dis-
tribute the metadata r times. So, Dr. Hadoop can
handle the crash of (r — 1) NameNode servers. In
traditional Hadoop, 1 remote procedure call (RPC)
is enough for lookup using a hash of the file/directory
path needed to create a file. Using Algorithm 1, how-
ever, Dr. Hadoop needs 3 RPCs to create a file and
1 RPC to read a file.

Dr. Hadoop uses m NameNodes to handle the
read operation. The throughput of read metadata is
thus m times that of the traditional Hadoop. Simi-
larly, the throughput of write metadata operation is
m/r times that of traditional Hadoop (m/r is calcu-
lated because the metadata is distributed over m Na-
meNodes but with an overheard of replication factor
7). The whole analysis and comparison are tabulated
in Table 1.

6.2 Failure analysis

In the failure analysis of Dr. Hadoop, the fail-
ure of NameNode is assumed to be independent
of one another and be equally distributed over
time. We ignore the failures of DataNodes in this
study because they have the same effect on Hadoop
and Dr. Hadoop, which thus simplifies our failure
analysis.
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Table 1 Analytical comparison of traditional Hadoop
and Dr. Hadoop

Parameter Traditional Dr.
Hadoop Hadoop

Maximum number of NameNode 0 r—1
crushes that can survive
Number of RPCs needed for read 1 1
operation
Number of RPCs needed for write 1 r
operation
Metadata storage per NameNode X (X/r)ym
Throughput of metadata read X Xm
Throughput of metadata write X X(m/r)

6.2.1 Traditional Hadoop

Mean time between failure (MTBF) is defined
by the mean time in which a system is supposed to
fail. So, the probability that a NameNode server fails
in a given time is denoted by

1
MTBF’ (1)

f=

Let Ruadoop be the time to recover from the fail-
ure. Therefore, the traditional Hadoop framework
will be unavailable for fRpadoop Of the time.

If NameNode fails once a month and takes 6 h
to recover from the failure,

f=1/(30x24) =138 x 107, Rpadoop = 6,

Unavailability = f - Ruadoop- (2)

Thus, Unavailability = 1.38 x10™3x6 = 8.28x 1073,
So, Availability = (100 — 0.828) x 100% =99.172%.

6.2.2 Dr. Hadoop

In Dr. Hadoop, say there are m metadata servers
used for DCMS and let r be the replication factor
used. Let f denote the probability that a given server
fails at a given time ¢ and Rpr. Hadoop the time to
recover from the failure.

Note that approximately we have

TRHadoop (3)

RDr.Hadoop = m

This is because the recovery time of metadata is di-
rectly proportional to the amount of metadata stored
in its system. As per our assumption, the metadata
is replicated r times.

Now, the probability of failure of any r consec-
utive NameNodes in DCMS can be calculated using

the binomial distribution of the probability. Let P
be the probability of this happening. We have

P=mfr(l—f)"" (4)

Let there be 10 NameNodes and let each meta-
data be replicated three times, i.e., r = 3, and let the
value of f be 0.1 in three days. Putting these values
in the equation results in a P of 0.47%.

In Dr. Hadoop a portion of the system becomes
offline if and only if the r consecutive NameNodes of
DCMS fail within the recovery time of one another.

This situation occurs with a probability

For Hadoop = mf <M) 11— (5)
To compare the failure analysis with that of tra-
ditional Hadoop, we take the failure probability f
much less than in earlier calculation. Let f be 0.1 in
three days, m be 10, and for DCMS, r = 3.

Rp:. Hadoop 15 calculated as

TRHadoop
m

Rp,. Hadoop = =3 x 6/10 =1.8.
So, the recovery time of Dr. Hadoop is 1.8 h, while
in the case of Hadoop, it is 6 h. Now,

0.1 x1.8

3
_ 10—-3
Sl ) (1—0.1)10-3,

FDr.HadOOp =10 x 0.1 x (

The above gives
Fpr. Hadoop — 7.46 x 1079.

The file system of Dr. Hadoop is unavailable for
FDr.HadoopRDr.Hadoop of the time.
FDr.HadoopRDr.Hadoop =746 x 1079 x 1.8 =1.34 x
1078, Thus, Availability = 99.99%.

So, this shows the increase in the availability
of Dr. Hadoop over traditional Hadoop, which is
99.172%. The improvement of recovery time is also
shown and proved.

7 Performance evaluation

This section provides the performance evalua-
tion of DCMS of Dr. Hadoop using trace-driven sim-
ulation. Locality of namespace is first carefully ob-
served and then we perform the scalability measure-
ment of DCMS. Performance evaluation of DCMS
against locality preservation is compared with: (1)
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FileHash in which files are randomly distributed
based on their pathnames, each of them assigned to
an MDS; (2) DirHash in which directories are ran-
domly distributed just like in FileHash. Each Na-
meNode identifier in the experiment is 160 bits in
size, obtained from the SHA1 hash function. We use
real traces as shown in Table 2. Yahoo means traces
of NFS and email by the Yahoo finance group and
its data size is 256.8 GB (including access pattern
information). Microsoft means traces of Microsoft
Windows production (Kavalanekar et al., 2008) of
build servers from BuildServer00 to BuildServer07
within 24 h, and its data size is 223.7 GB (access
pattern information included). A metadata crawler
is applied to the datasets that recursively extract
file/directory metadata using the stat() function.

Table 2 Real data traces

Trace Number of Data size Metadata extracted
files (GB) (MB)
Yahoo 8 139 723 256.8 596.4
Microsoft 7 725 928 223.7 416.2

The cluster used for all the experiments has 40
DataNodes, 1 Resource-Manager, and 10 NameN-
odes. FEach node is running at 3.10 GHz clock
speed with 4 GB of RAM and a gigabit Ethernet
NIC. All nodes are configured with a 500 GB hard
disk. Ubuntu 14.04 is used as our operating system.
Hadoop 2.5.0 version is configured for comparison
between Hadoop and Dr. Hadoop keeping the HDFS
block size as 512 MB.

For our experiments, we have developed an en-
vironment for different events of our simulator. The
simulator is used for validation of different design
choices and decisions.

To write the code for the simulator, the sys-
tem (Dr. Hadoop) was studied in depth and different
entities and parameters such as replication factor,
start time, end time, and split path are identified.
After this, the behaviors of the entities are specified
and classes for each entity are defined.

The different classes for simulation are placed
on an in-built event-driven Java simulator, Sim-
Java (Fred and McNab, 1998). SimlJava is a pop-
ular Java toolkit which uses multiple threads for the
simulation. As our model is based on an object-
oriented system, the multiple threaded simulator was
preferred.

In terms of resource consumption, SimJava gives
the best efficiency for long running simulations. For
experiments with a massive amount of data, it might
run out of system memory. This does not occur in
our case, because we basically deal with metadata
and the simulator delivers its best result when we
verify it with a real-time calculation.

The accuracy of the designed simulator is mea-
sured based on the real-time calculation, using
benchmarking based on the nature of the experi-
ment. For failure analysis, the real-time calculation
is done and the result is compared with that found
from the simulator. For other experiments, bench-
marks are executed and a mismatch ranging from
milliseconds to tens of seconds is observed. The over-
all results show a mismatch of around 1.39% on aver-
age between the designed simulator and a real-time
device.

To better understand the accuracy of the sim-
ulator, in Fig. 8a, a comparison between simulator
results and real-time results is shown.

7.1 Experiment on locality-preserving

DCMS uses LpH which is the finest feature
of Dr. Hadoop.
Dr. Hadoop’s MDS cluster is necessary to reduce the
I/O request of a metadata lookup. In this experi-
ment, we have used a parameter, locality = Z;’;l Dijs
where p;; (either 0 or 1) represents whether a sub-
tree (directory) path p; is stored in NameNode j or
not. Basically, this metric shows the total number of
times a subtree path is split across the NameNodes.
Fig. 7 portraits the average namespace locality com-
parison of paths at three different levels on two given
traces using three metadata distribution techniques.

Excellent namespace locality of

Figs. 7a and 7b show that the performance of
DCMS is significantly improved over FileHash and
DirHash for the given two traces. This is because
DCMS achieves optimal namespace locality using
LpH; i.e., keys are assigned based on the order of
the pathnames. In contrast, in the cases of FileHash
and DirHash, the orders of pathnames are not main-
tained, so namespace locality is not preserved at all.

7.2 Scalability and storage capacity

The scalability of Dr. Hadoop is analyzed with
The
growth of metadata (namespace) is studied with the

the two real traces as shown in Table 2.
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Fig. 7 Locality comparisons of paths at three levels
over two traces in the cluster with 10 NameNodes:
(a) Yahoo trace; (b) Microsoft Windows trace

increasing data uploaded to the cluster in HDFS.
These observations are tabulated in Tables 3, 4, and
5 for Hadoop and Dr. Hadoop with 10 GB data up-
loaded on each attempt. The metadata size of Table
5 is 3 times its original size for Yahoo and Microsoft
respectively because of the replication. Figs. 8a
and 8b represent the scalability of Hadoop and
Dr. Hadoop in terms of load (MB)/NameNode for
both datasets. The graphs show a linear increment
in the metadata size of Hadoop and Dr. Hadoop. In
traditional Hadoop, with the increase in data size
in the DataNodes, the metadata is likely to grow
to the upper bound of the main memory of a sin-
gle NameNode. So, the maximum limit of data size
that DataNodes can afford is limited to the size of
available memory on the single NameNode server.
In Dr. Hadoop, DCMS provides a cluster of NameN-
odes, which reduces the metadata load rate per Na-
meNode for the cluster.
increase in the storage capacity of Dr. Hadoop.

Due to the scalable nature of DCMS in
Dr. Hadoop, each NameNode’s load is inconsequen-
tial in comparison to that of traditional Hadoop. In
spite of three times replication of each metadata in

This results in enormous

Table 3 Incremental data storage vs. namespace size
for the traditional Hadoop cluster (Yahoo trace)

Data namespace Data namespace
(GB) (MB) (GB) (MB)
10 29.80 140 318.33
20 53.13 150 337.22
30 77.92 160 356.71
40 96.18 170 373.18
50 119.02 180 394.22
60 142.11 190 426.13
70 159.17 200 454.76
80 181.67 210 481.01
90 203.09 220 512.16
100 229.37 230 536.92
110 251.04 240 558.23
120 279.30 250 570.12
130 299.82 256.8 594.40

Table 4 Incremental data storage vs. namespace size
for the traditional Hadoop cluster (Microsoft trace)

Data namespace Data namespace

(GB) (MB) (GB) (MB)
10 20.50 130 254.12
20 41.83 140 271.89
30 59.03 150 297.12
40 77.08 160 312.71
50 103.07 170 329.11
60 128.18 180 352.12
70 141.90 190 369.77
80 157.19 200 384.76
90 174.34 210 393.04
100 190.18 220 401.86
110 214.20 223.7 416.02
120 237.43

Table 5 Data storage vs.
Dr. Hadoop cluster

namespace size for the

Data Namespace (MB)

(GB) Yahoo Microsoft
100 684.11 572.65
200 1364.90 1152.89

256.8 1789.34 1248.02

DCMS, the load/NameNode of Dr. Hadoop shows
a drastic decline compared to Hadoop’s NameNode.
Fewer loads on the main memory of a node implies
that it is less prone to failure.

In Fig. 8a, we have also compared the value
obtained by the simulator with that by real-time
analysis. As the result suggests, the percentage of
mismatch is very little and lines for Hadoop and
Hadoop RT are almost proximate. This validates
the accuracy of the simulator.
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Dr. Hadoop load per NameNode: (a) Microsoft Win-
dows trace; (b) Yahoo trace

7.3 Experiment on throughput

In Dr. Hadoop, each NameNode of DCMS be-
haves as both a primary NameNode and a hot
standby node for its left and right NameNodes. Dur-
ing failover, the hot standby takes over the respon-
sibility of metadata lookup. That might affect the
throughput of read and write operations. These two
metrics are most imperative for our model as they
dictate the load of work performed by the clients.
We first performed the experiment of throughput for
read/write when they are in no failure. Later, the
throughput (operation/s) is obtained during the Na-
meNode failure circumstances to evaluate the per-
formance on fault tolerance.

7.3.1 Read/write throughput

This experiment demonstrates the throughput
of metadata operations during no failover. A multi-
threaded client is configured, which sends metadata
operations (read and write) at an appropriate fre-
quency and the corresponding successful operations
are measured. We measure the successful comple-

tion of metadata operation per second to compute
Dr. Hadoop’s efficiency and capacity.

Figs. 9a and 9b show the average read and
write throughput in terms of successful completion
of operations for Hadoop and Dr. Hadoop for both
data traces. Dr. Hadoop’s DCMS throughput is sig-
nificantly higher than that of Hadoop. This vali-
dates our claim in Table 1. The experiment is con-
ducted using 10 NameNodes; after few seconds in
Dr. Hadoop, the speed shows some reduction only
because of the extra RPC involved.

7.3.2 Throughput against fault tolerance

This part demonstrates the fault tolerance of
Dr. Hadoop using DCMS. A client thread is made to
send 100 metadata operations (read and write) per
second, and successful operations against these for
Hadoop and Dr. Hadoop are displayed in Figs. 10a
and 10b.

In Fig. 10a, the experiment is carried out on
a Yahoo data trace, where Hadoop shows a steady
We kill the primary Na-
meNode’s daemon at t = 100 s and eventually the

state throughput initially.
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whole HDF'S goes offline. At around ¢ = 130 s, the
NameNode is again restarted and it recovers itself
from the check-pointed state from the secondary Na-
meNode and repeats the log operations that it failed
to perform. During the recovery phase, there are few
spikes because the NameNode buffers all the requests
until it recovers and batches them all together.

To test the fault tolerance of DCMS in
Dr. Hadoop, out of 10 NameNodes, we randomly kill
the daemons of a few, viz., NameNode 0 and Na-
meNode 6 att = 40s. This activity does not lead to
any reduction of successful completion of metadata
operations because the neighbor NameNodes act as
hot standby to the killed ones. Again, at ¢ = 70 s,
we kill NameNode 3 and NameNode 8, leaving 6
NameNodes out of 10, which reflects an amount of
declination in throughput. At ¢t = 110 s, we restart
the daemons of two NameNodes and this stabilizes
the throughput of Dr. Hadoop.

An experiment with the Microsoft data trace
is shown in Fig. 10b.
the Yahoo trace for Hadoop. During the test for

It shows a similar trend to

Dr. Hadoop, we kill two sets of three consecutive
NameNodes, NameNode 1 to NameNode 3 and
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Fig. 10 Fault tolerance of Hadoop and Dr. Hadoop:
(a) Yahoo trace; (b) Microsoft Windows trace

NameNode 6 to NameNode 8, at t = 90 s to ac-
quire the worst case scenario (with a probability of
almost 10~8). This made a portion of the file system
unavailable, and throughput of Dr. Hadoop gives a
poorest value. At ¢t = 110 s we again start Na-
meNode 1 to NameNode 3 to increase its through-
put. Again, at ¢ = 130 s we start NameNode 6
to NameNode 8, which eventually re-stabilizes the
situation.

7.4 Metadata migration
situation

in a dynamic

In DCMS, addition and deletion of files or di-
rectories occur very frequently. NameNodes join
and leave the system, the metadata distribution of
Dr. Hadoop changes, and thus DCMS might have
to perform migration of metadata to maintain con-
sistent hashing. DCMS needs to justify two situa-
tions: the first is how DCMS behaves with the stor-
age load/NameNode when the numbers of servers
are constant. The second is how much key distribu-
tion or migration overhead is needed to maintain the
proper metadata load balancing. The experiment
on scalability and storage capacity has answered the
first problem sufficiently.

Fig. 11 depicts the metadata migration over-
head showing outstanding scalability. We perform
All the NameNodes in
the DCMS system are in an adequate load balancing
state at the beginning, as discussed earlier in Sec-
tion 4.1.
allowed to join the system randomly after a periodic

the experiment as follows.

In the experiment, two NameNodes are

time, and the system reaches a new balanced key
distribution state. We examine how many metadata
elements are migrated to the newly added servers.

— Yahoo
--------- Microsoft

Number of metadata (x10°)
w
T

10->12  12->14 14->16 16->18 18->20
Increase in the number of NameNodes

Fig. 11 Migration overhead
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7.5 Hadoop vs. Dr. Hadoop with MapReduce
job execution (WordCount)

In this experiment, a MapReduce job is executed
to show the results for both frameworks. Word-

Count, a popular benchmark job, is executed on
Hadoop and Dr. Hadoop (Fig. 12).
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800+

600

400

Execution time (s)

200

4 8 16 32 64 128
Data size (GB)

Fig. 12 Wordcount job execution time with different
dataset sizes

The job is executed on a Wikipedia dataset,
with varying input sizes from 4 to 128 GB. In
Hadoop, the single NameNode is responsible for the
job execution. In contrast, in Dr. Hadoop, the
JobTracker (master for DCMS) submits the job to
any particular NameNode after mapping the input
filepath. So, an extra step is involved in the case
of Dr. Hadoop, due to which a slower execution is
shown in comparison to Hadoop.

The overhead of replicating metadata in
Dr. Hadoop is also a factor for this little delay. As
the locality of metadata is not 100% in Dr. Hadoop,
the metadata of subdirectories might be stored in
different NameNodes. So, this might be a case of in-
creased RPC, which increases the job execution time
initially.

However, as the size of the dataset increases
beyond 32 GB, the running time is found almost
to neutralize all these factors.

During the execution, the rest of the Name-
Nodes are freely available for other jobs. This is
not for the case of Hadoop, which has a single Name-
Node. So, it is quite practical to neglect the small
extra overhead when considering a broader scenario.

8 Related work

Various recent studies for decentralization of the
NameNode server are discussed in this section.

Providing Hadoop with a highly available meta-
data server is an urgent and topical problem in the
Hadoop research community.

The Apache Foundation of Hadoop came out
with a feature of secondary NameNode (White,
2009), which is purely optional. The secondary Na-
meNode periodically checks NameNode’s namespace
status and merges the fsimage with edit logs. It de-
creases the restart time of the NameNode. Unfortu-
nately, it is not a hot backup daemon of NameNode,
thus not fully capable of hosting DataNodes in the
absence of NameNode. So, it could not resolve the
SPOF of Hadoop.

Apache Hadoop’s core project team has been
working on a backup NameNode that is capable of
hosting DataNodes when NameNode fails. The Na-
meNodes can have only one backup NameNode. It
continually contacts the primary NameNode for syn-
chronization and hence adds to the complexity of the
architecture. According to the project team, they
need a serious contribution from different studies for
the backup NameNode contribution.

Wang et al. (2009) with a team from IBM China
worked on NameNode’s high availability by replicat-
ing the metadata.
lar to our work, but the solution consists of three
stages: initialization, replication, and failover. This
increases the complexity of the whole system by hav-

Their work is somewhat simi-

ing different systems for cluster management and
for failure management. In our Dr. Hadoop, sim-
ilar work is done with less overhead and with the
same kind of machines.

A major project of Apache Hadoop (HDFS-976)
was for the HA of Hadoop by providing a concept of
the Avatar node (HDF'S, 2010). The experiment was
carried out on a cluster, which consists of over 1200
nodes. The fundamental approach of this concept
was to switch between primary and standby NameN-
odes as if it were switched to an Avatar. For this, the
standby Avatar node needs some support from the
primary NameNode which creates an extra load and
overhead to the primary NameNode because it is al-
ready exhausted by the huge client requests. This
deteriorates the performance of the Hadoop cluster.

Zookeeper, a subproject of Apache Hadoop, uses
replication among a cluster of servers and further
provides a leader election algorithm for the coor-
dination mechanism. However, the whole project
focuses on coordination of distributed application
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rather than an HA solution.

ContextWeb performed an experiment on an
HA solution of Cloudera Hadoop. DRBD was
used from LINBIT and Heartbeat from a Linux-HA
project, but the solution was not optimized for per-
formance and availability of Hadoop. For example,
it replicated numerous unnecessary data.

E. Sorensen added a hot standby feature to the
Apache Derby (Bisciglia, 2009). Unfortunately, the
solution does not assist a multi-threading approach
to serve replicated messages. Therefore, it cannot be
used in the parallel processing of large-scale data of
Hadoop.

Okorafor and Patrick (2012) worked on HA of
Hadoop, presenting a mathematical model. The
model basically features zookeeper leader election.
The solution covers only the HA of Resource-
Manager, not the NameNode.

A systematic replica management was provided
by Berkeley DB (Yadava, 2007), but it features only
the database management system.
to use Berkeley DB replication for their application
other than for a DBMS purpose, they have to spend

If users want

a lot of time redesigning the replica framework.

IBM DB2 HADR (high availability disaster re-
covery) (Torodanhan, 2009) can adjust replication
management for efficiency at runtime. The solu-
tion uses a simulator to estimate the previous perfor-
mance of a replica. According to the actual scenario
of Hadoop, however, this approach is not suitable for
tuning the replication process.

9 Conclusions

This paper presents Dr. Hadoop, a modifica-
tion of the Hadoop framework by providing a dy-
namic circular metadata splitting (DCMS), a dy-
namic and excellent scalable distributed metadata
management system. DCMS keeps excellent names-
pace locality by exploiting locality-preserving hash-
ing to distribute the metadata among multiple Na-
Attractive features of DCMS include its
simplicity, self-healing, correctness, and good perfor-
mance when a new NameNode joins the system.

meNodes.

When the size of the NameNode cluster changes,
DCMS uses consistent hashing that maintains the
balance among the servers. DCMS has an additional
replication management approach, which makes it
most reliable in case of a node failure. Dr. Hadoop

continues to work correctly in such a case, albeit with
degraded performance when consecutive replicated
servers fail. Our theoretical analysis on availability
of Dr. Hadoop shows that this framework stays alive
for 99.99% of the time.

DCMS offers multiple advantages, such as high
scalability, efficient balancing of metadata storage,
and no bottleneck with negligible additional over-
head. We believe that Dr. Hadoop using DCMS will
be a valuable component for large-scale distributed
applications when metadata management is the most
essential part of the whole system.
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