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Abstract:
resolution monitoring images, particularly engineering vehicles. There are many pixels in high-resolution monitoring

This paper presents a novel formulation for detecting objects with articulated rigid bodies from high-

images, and most of them represent the background. Our method first detects object patches from monitoring images
using a coarse detection process. In this phase, we build a descriptor based on histograms of oriented gradient, which
contain color frequency information. Then we use a linear support vector machine to rapidly detect many image
patches that may contain object parts, with a low false negative rate and a high false positive rate. In the second
phase, we apply a refinement classification to determine the patches that actually contain objects. In this stage, we
increase the size of the image patches so that they include the complete object using models of the object parts.
Then an accelerated and improved salient mask is used to improve the performance of the dense scale-invariant
feature transform descriptor. The detection process returns the absolute position of positive objects in the original
images. We have applied our methods to three datasets to demonstrate their effectiveness.
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1 Introduction Liu et al. (2008), and Rahtu et al. (2010). Most im-
age detection methods cannot be directly applied to
high-resolution images because they require expen-

However, high-resolution cameras

In this paper, we present a new formulation

for detecting objects with articulated rigid bodies in 6 operations.

high-resolution images. Our method is very accurate
and fast. There have been significant developments
in image detection over the last decade. Most meth-
More
precise results can be achieved with more compu-
tationally complex procedures, but they are more
time consuming, such as Dalal and Triggs (2005),

ods scan images to find interesting objects.
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are being increasingly applied to monitoring tasks.
Our method rapidly detects all objects that are sim-
ilar to a goal object using the histogram of oriented
gradient (HOG) features (Dalal and Triggs, 2005)
with color frequencies. Then it produces an accurate
classification to determine the goal object, by apply-
ing a dense scale-invariant feature transform (SIFT)
descriptor (Liu et al., 2008) with a saliency mask.

Dalal and Triggs (2005) applied the HOG de-
scriptor to human detection, using a method that
is strongly based on the popular SIFT algorithm
from Lowe (2004). Since then, many researchers
have applied it to intelligent image processing, in
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areas such as aided driving (Zaklouta and Stanci-
ulescu, 2014) and pedestrian detection (Li et al.,
2013) and recognition (Déniz et al., 2011; Kobayashi,
2013). Kobayashi (2013) constructed features us-
ing HOG probability density functions (PDFs), and
their method performed well. Local objects can be
accurately characterized by the distribution of edge
directions or local intensity gradients based on their
appearances and shapes. The HOG extracts the gra-
dient direction histogram of the local area and con-
siders it a feature of the local image. Then they
optimized the features and used a classifier such as a
support vector machine (SVM) to detect the object.
Avidan (2006)’s feature vector contains the RGB val-
ues of pixels, which are used to improve weak clas-
sifiers. Ott and Everingham (2009) computed color-
HOG descriptors on a soft segmentation of pixels into
foreground and background. In this paper, we con-
catenate the selected frequency of the RGB channels
to improve the HOG descriptor of Dalal and Triggs
(2005) using simple calculations.

Lowe (2004) proposed the SIFT descriptor for
constructing image features. It is scale, rotation, and
affine invariant and is not sensitive to illumination.
Since it was first introduced, many SIFT variations
have been proposed. Ke and Sukthankar (2004) used
principal component analysis (PCA) for the normal-
ized gradient patch and found that PCA descriptors
are more robust to illumination and rotation than
SIFT descriptors. Bay et al. (2008) presented a new
detector and descriptor called SURF (speeded-up ro-
bust features). The extraction and comparison of
features are more rapid than conventional descrip-
tors, by relying on images for image convolutions,
building on the strengths of the leading existing de-
tectors and descriptors, and simplifying the relevant
methods. Juan and Gwun (2009) presented a de-
tailed comparison for SIFT, PCA-SIFT, and SURF.
The comparison was based on David’s algorithm.
van de Sande et al. (2010) used color SIFT to in-
crease the illumination invariance and discriminative
power. Other researchers (Liu et al., 2008; Vedaldi
and Fulkerson, 2010) have used SIFT descriptors at
every image location and obtained promising results
in many applications; this method is called dense
SIFT. Liu et al. (2008) aligned two images by sam-
pling their common dense SIFT features. Their ap-
proach can robustly align complex scenes with large
spatial distortions. Vedaldi and Fulkerson (2010)

demonstrated that dense SIFT could more rapidly
produce descriptors that are equivalent to those pro-
duced by SIFT. We will improve the performance of
dense SIFT by using it in salient regions to reduce
background interference.

Methods for detecting salient objects in im-
ages have received considerable attention in recent
years because of their broad range of applications.
The goal of salient-object detection is to find the
most informative and important regions in images.
The methods can be applied to image segmenta-
tion (Goferman et al., 2010), image cropping (San-
tella et al., 2006), object detection and recogni-
tion (Kanan and Cottrell, 2010; Rutishauser et al.,
2004), picture collage (Goferman et al., 2010), etc.
Salient-object detection typically involves computing
the saliency map and outputting the salient object.
Early studies on salient-object detection obtained
the saliency map using visual attention. Methods
include the bottom-up model of visual attention
(Itti and Koch, 2001) and the top-down approach
(Kanan et al., 2009). Goferman et al. (2012) pro-
posed ‘context-aware saliency’ to detect image re-
gions that represent a scene. This technique is based
on four principles observed in psychological litera-
ture, and produces promising results. However, most
techniques are computationally expensive, and thus
they are time-consuming and cannot be applied in
most industrial fields. Rahtu et al. (2010) combined
a saliency measure with a conditional-random-field
(CRF) model and obtained promising results. Based
on their work, we propose an adaptive optimization
algorithm for determining the feature map, which
better retains the contours of salient objects and re-
duces the computational time.

Felzenszwalb et al. (2010b)’s deformable parts
model (DPM) is one of the most popular object de-
tection methods. It is the foundation of the win-
ning system in Pascal VOC 2007-2011.
it is often important to use large training sets for

However,

objects with many rigid components and highly ac-
curate results are difficult to achieve. Our work alle-
viates these difficulties, as discussed in Section 3.
Based on the pictorial structure framework (Fis-
chler and Elschlager, 1973; Felzenszwalb and Hut-
tenlocher, 2005), our method increases the outlines
of patches from the coarse detection phase.

Our formulation consists of two phases: coarse
detection and refinement classification. The coarse
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detection phase frees us from high-resolution images
and focuses the technique on small image patches
of objects. The refinement classification accurately
determines which patches are objects.

2 Methods

Fig. 1 shows the architecture of the proposed
formulation. First, we perform a coarse detection
in high-resolution images to find objects with HOG
features that are similar to our objects. Because the
detection typically yields several small patches and
does not include the entire object, we expand the
outline based on part models. Second, we extract
these image patches and generate their dense SIFT
features to determine whether they are objects. A
multi-detector is used for the coarse detection stage,
and a multi-classifier is used in the refinement phase.
Finally, we mark the objects in the original images
and categorize the images according to the presence
of objects.

Patch|extraction

Detection &

Classification

Class|refinement

Excavator

1 _LazyArm

Fig. 1 An overview of the proposed method

2.1 Coarse detection with color frequencies

We considered the CIELab, RGB, and HSV
color spaces. The HOG descriptors are concatenated
with all channels of the color space. CIELab per-
formed the best, HSV was almost equal to RGB,
and they all performed better than the gray-HOG
descriptor. However, the length of the features
and the computational complexity increased linearly
with the number of color channels.

Most same-category objects can be clustered
according to color (particularly for engineering ve-
hicles), which is an advantage for detection algo-

rithms. Considering this, we call an object’s color
information its ‘color frequency features’. We have
concatenated the color frequency features with the
HOG descriptors to improve the detection accuracy.
The purpose of coarse detection is to achieve a high
detection rate in a small amount of time. A high
false positive rate is acceptable. There are negligi-
ble differences between the false positive rates using
CIELab and our color frequency method when we are
considering high false positive rates (Fig. 2). How-
ever, our method is very quick. Fig. 3 illustrates the
concatenation of these features into a classical HOG

descriptor.
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Fig. 2 Comparison of our HOG descriptor, the
CIELab descriptor, and the classical descriptor

We compute the horizontal (Gy,) and vertical
(Gv,) gradients of these images in three dimensions
by applying the filter [—1 0 1] (Fig. 3b). Here, i
denotes the ith-dimensional color space. We then
find the maximum gradient of the three dimensions
at the same pixel using

M(xay):ma’x \/GHz (:r,y)2 + GVi (‘T’vy)27
1=1,2,3. (1)

These three features improve the accuracy when
objects are clustered according to color. There will
be redundancy when objects are not clustered by
their color, but there is no adverse impact on the
accuracy. We also record the dimension that contains
the maximum value and compute the orientation of
the gradient using

GH(x7 y)

The norm and orientation of the gradient of
the image are computed using the above method.

0(z,y) = arctan
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We create the selected color dimension in this step.
Then the image is split into cells (C), as shown in
Fig. 3b. Each cell is split into N bins and we com-
pute a histogram (Fig. 3c). W is a detected window,
the histograms of which determine a final descriptor.
There is a block B in W, where B is composed of
several cells. All histograms within a block are nor-
malized and concatenated with the color frequency
(Fig. 3d). The sliding block B in window W with
stride S creates the histograms of W. A final de-
scriptor is obtained by grouping all the normalized
histograms of W into a single vector.
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Fig. 3 HOG descriptor with color frequencies: (a)
an image patch; (b) the RGB color spaces of (a);
(c) the HOG features and color frequencies of (b);
(d) the HOG descriptor added with color frequencies.
References to color refer to the online version of this
figure

Fig. 4 compares our algorithm with that of Dalal
and Triggs (2005) in terms of descriptor length. Our
descriptor is longer than that of Dalal and Triggs
(2005), when the image is relatively large. However,
there is a negligible time difference if the descrip-
tor length is constrained to 6000.
the linear SVM as a baseline classifier, our improved
descriptor has a higher detection rate (Fig. 2). Be-
cause in the subsequent steps we apply a refinement

If we consider

classification, our improvement of the detection rate,
which results in an error rate of greater than 30%,
can help improve the whole system precision.

Our HOG descriptors focus on the rigid com-
ponents because there may be frequent changes to
the relative positions of components. Many image
regions are obtained using these descriptors and a
linear SVM detector, which may or may not contain
object components. We then expand the regions so
that they contain entire objects to produce a precise
classification.
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Fig. 4 Comparison of descriptor lengths. For the al
scale, the sizes of cell C, block B, and stride S are
4x4, 8x8, and 4x4, respectively. For the a2 scale, the
sizes of cell C, block B, and stride S are 8x8, 16x16,
and 8x8, respectively

2.2 Outline expansion based on part models

Felzenszwalb et al. (2010b) used a star-
structured part-based model, which was defined with
a ‘root’ filter and a set of part filters and deforma-
tion models. Here, we define the rigid components of
the object as the goals of coarse detection and ‘root’

filter models (Fig. 5).

Fig. 5 Expanding a patch’s contour (the cab is the
goal part and the array R is [2.0,2.0,2.0,1.0])

We train only the root filters, and detect the
main components using the method described in Sec-
tion 2.1 (coarse detection). We increase the outline of
each goal part according to the possible relative po-
sitions of the rigid components, using the goal part
as the point of reference. The outline is expanded
using the following steps:

1. Construct an array P that stores the upper-
left and lower-right coordinates of the goal, which is
obtained using the method given in Section 2.1.

2. Estimate four parameters that represent the
ratios of four possible components (left, top, right,
bottom) of the goal, and store them (left, top, right,
bottom) in array R successively.

3. Increase the outline according to the size of
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the goal and the four directional ratios, and store the
new coordinates in array F.
This process is summarized as

Elil=a-|P[(i +2)%4] — P[i]| - R[i] + P[i],

3
i=0,1,2,3, )

where % is the ‘mod’ operator, and R can be easily
estimated when collecting the training set. E should
be adjusted to ensure that all the positions are con-
tained in the images (Fig. 5). Errors in the patch
contours are acceptable, because we reduce them in
the subsequent step.

2.3 Saliency with adaptive acceleration

The function of this part of our technique is to
extract salient objects from image patches, to re-
duce the computational cost of our SIFT extraction
method and improve the accuracy of the classifier.

In Rahtu et al. (2010), the saliency measure ap-
plies a sliding window to the image and compares
the contrast in each window according to the distri-
bution of certain features in an inner window and
the distribution in the edge of the window. They
considered a rectangular window (W) that was di-
vided into two disjoint parts: a rectangular inner
window K and a border B. They hypothesized that
the points in K were salient and the points in B were
part of the background. Let Z be a random variable
with values in W, which describes the distribution of
pixels in W. Then the saliency measure of a point is
defined as the conditional probability

Solw) = P(Z € K|F(Z) € Qr@). (&)

where x denotes every point in the image, F' is a
map that maps x to a certain feature F'(x), and the
feature space is divided into disjoint bins. Qp(,)
denotes the bin that contains the feature F(x). The
saliency measure of x is always a number between 0
and 1. If the feature at = is similar to the features
at points in the inner window, pixel z is salient. We
can compute Sy(x) using Bayes’ formula, that is,

P(F(x)|1o)P(Io)

So(z) = P(F(2)|10)P(Io) + P(F(z)[1,)P(I;)’ ®)

where I represents the condition Z € K, I repre-

sents Z € B, and F(z) denotes F(Z) € Qp(s)-
Using the CIELab color model, a regularized

histogram for P(F(Z) € Qp)|Z € K) is defined

based on a Gaussian function, to increase the ro-
bustness of F'. The saliency map is achieved by slid-
ing window W (with different scales) over the image,
and the final saliency value is the maximum over all
windows that contain the pixel. This implies that an
increase in the scale results in an increase in accu-
racy for some methods. Four scales were applied in
the experiments in Rahtu et al. (2010).

We reduced the number of scales to two to ex-
tract our salient object by optimizing the saliency
value. Consider a matrix M that stores a saliency
map in one scale, which has values between 0 and
1. We reassign the values to either ¢; or ts, where
t1 is the value of the background and ¢2 the value of
the salient object, in a similar way to that in Otsu
(1975). Uniformly divide the range [0, 1) into 100
parts (levels), i.e., [0, 0.01, ..., 0.99]. Denote N
the total number of points in the matrix and n; the
number of points at level i. The probability of level
iis

1
Uz

P = —, i = 1. 6

pi= ;:op (6)

The matrix points are split into two classes using
a threshold of ¢: with levels [0, 0.01, 0.02, ..., ¢] and
with levels [¢+0.01, ¢+0.02, ..., 0.99]. The between-
class standard deviation for the two classes is

t 1 2
1 . :
o= |7 (3 - Yo
=0 =0

97 1/2
1099 1
+Ps i Z ipi —lei , (7)
1=t+0.01 1=0
t 0.99
where P, = Y, _p; and Py = > 7.7 0 pi. We

compute the between-class standard deviations for
all levels between 0 and 1. We select the opti-
mal threshold (¢*) that maximizes the between-class
standard deviation. For these two optimal classes,
we re-apply the processing and find the optimal
thresholds (¢1 and ¢2) of the two classes, respectively.
The values of M are reassigned to ¢; when they are
less than t* and to t when they are greater. Af-
ter this operation, there are only two values in the
saliency map, t; and t5. Using two scales, we obtain
two saliency maps. The final saliency value is the
maximum of these two saliency maps.

Compared with Rahtu et al. (2010), our saliency
map’s foreground is sharper and the outline of the
salient object is more complete (Fig. 6). For these
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comparisons the Caltech 101 (Li et al., 2007) and
engineering vehicles datasets were used. For Caltech
101, the average ratio of Rahtu et al. (2010)’s salient
areas to ours is 0.90, and it is 0.87 for the engineering
vehicle dataset. We ran these experiments more than
10 times, and randomly chose 2000 samples from the
dataset each time. Fig. 7 also shows that we detected
more of the bodies of the engineering vehicles.

Fig. 6 Comparison of the original and accelerated
saliency maps: (a) original image; (b) Rahtu et al.
(2010)’s saliency; (c) object detected by Rahtu et al.
(2010); (d) our saliency; (e) object detected by our
saliency

(a) (b) (c) (d) (e)

Fig. 7 Several comparison examples: (a) original im-
ages; (b) Rahtu et al. (2010)’s saliency images; (c) our
saliency images; (d) the objects detected by Rahtu
et al. (2010)’s method; (e) the objects detected by
our method

Our method better satisfies our requirements;
it pays more attention to the integrity of the object
and can tolerate a certain number of saliency errors.
Moreover, it is twice as fast as the method of Rahtu
et al. (2010).

In our experiments the ratios of the row and
column sizes and the sampling steps in the two scales
to the largest image dimension are {0.2, 0.2, 0.02; 0.5,

0.5, 0.03}, respectively. We set the ratios of the row
and column of the border B to the scale window W
to {0.1, 0.1} in both scales. The ratios can be found
by testing all possible window positions and scales
with an appropriate growth span. Here, the growth
span is 0.01 when it comes to the sampling steps.
Otherwise, it is 0.1.

2.4 Dense SIFT with a saliency mask

Dense SIFT extracts SIFT features from a reg-
ular dense grid of the image. The main concept is to
divide the image into density collections of indepen-
dent patches, sample each patch for a SIFT vector,
and combine the vectors into the image’s descriptor.
By enriching the feature vectors, we can improve the
description of the image information used in Dalal
and Triggs (2005)’s method.

In a similar way to Liu et al. (2008), we divide
an image into many small patches with equal scales.
We define the center pixel of each patch as the key
point, and compute a SIFT feature for each patch.
The patch is divided into 16 components that con-
tain 4x4 image grids. We calculate an orientation
histogram of the gradient with eight bins, which cov-
ers the 360-degree range of rotations for each com-
ponent. When distributing each gradient value into
neighboring bins, we use a trilinear interpolation to
avoid the boundary effect of histogram binning. The
SIFT feature of the patch is obtained by combining
the 4x4x8 bins. Thus, the dimensionality of a SIFT
feature is 128. The SIFT descriptor of the image is
generated by combining the SIFT features of all the
patches.

This classical dense SIFT computes all the
patches, without considering unnecessary computa-
tions and interferences from complex backgrounds.
After analyzing the performance of the saliency mask
from Section 2.3, we apply it before computing the
SIFT features of the patches. This significantly re-
duces the background interferences and saves time.

Fig. 8 shows two strategies for applying the
saliency mask to extract dense SIFT features, which
is called the saliency mask method. The image is
divided into cells similar to the HOG method. A
block containing cells is defined as a patch. Here,
the stride of the block is equal to the size of cells.
All patches are obtained when the block scans over
the image. In Figs. 8a, 8al, 8bl, and 8cl, the
image contains 120x 120 pixels, the cell contains 8 x8
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pixels, and the block contains 8 X8 pixels. There are
255 patches with 95 effective patches being gener-
ated. In Figs. 8a, 8a2, 8b2, and 8c2, the cell contains
4 x4 pixels and the block contains 8 x8 pixels. There
are 841 patches with 402 foreground patches being
obtained.

(a2)

(b2)

Fig. 8 Process of using the saliency mask. There are
two strategies: (a) is the binary saliency map, (al)
and (a2) are path maps of the binary saliency map,
(b1) and (b2) are patch maps of the gray image, and
(cl) and (c2) are saliency patch images

First, the binary saliency map of the image is
generated based on the method described in Sec-
tion 2.3 (Fig. 8a). Second, P is created as the patch
map of the binary saliency map (Figs. 8al and 8a2).
All patches of the binary saliency map are gener-
ated using the saliency mask method. If the center
pixel of the patch is black and the sum of the black
pixels in the patch is greater than a threshold (y),
this patch is defined as the background and all pix-
els of the patch are assigned 0. Otherwise, it is the
foreground and all pixels are assigned 255. In these
experiments, we set the threshold v to 0.6 times the
number of pixels in the patch. After this processing,
all patches are combined to generate P. Third, the
patch map of the gray image (G) is created in a simi-
lar way (Figs. 8bl and 8b2). Then the saliency patch
image is created based on P and G (Figs. 8cl and
8¢2). The patch map of the gray image (G) contains
all patches of the gray image and the patch map of
the binary saliency map (P) determines whether the
patch is in the foreground or background. Finally,
the dense SIFT descriptor of this image is obtained
by combining all the SIFT features of the foreground
patches in the saliency patch image.

2.5 Bag-of-words (BOW) model with spatial
pyramid and histogram intersection kernel
(HIK)

A spatial pyramid (Lazebnik et al., 2006) and
histogram intersection kernel (HIK) (Grauman and
Darrell, 2005) can be applied to improve the per-
formance when considering a bag-of-words model
(BOW) (Li and Perona, 2005). Fig. 9 presents a
comparison of four kernels, their optimizations using
the spatial pyramid, and the saliency forms of two
superior kernels. Fig. 9 was produced by randomly
selecting 30 categories from Caltech 101 (Li et al.,
2007), and averaging the results of several experi-
ments. We applied 5-fold cross-validation (Breiman
and Spector, 1992) and the Wilcoxon rank-sum test
(Wilcoxon, 1945) for statistical significance. There
were 50 or 30 categories in the training data and 20
in the test dataset. Fig. 9 shows that the pyramid
HIK with saliency was the most accurate, and thus
we used this method in the remainder of this study.

90
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Fig. 9 Comparison of common kernels and their
optimizations

Lazebnik et al. (2006) quantized the feature vec-
tors into M discrete types, and subdivided the image
at a resolution of L levels. The sum of the separate
channel kernels is the final kernel, that is,

M
K'X,Y) =) k' (Xu, Vi), (8)

where X,,, and Y,, represent the coordinates of the
features of type m that are found in the respective
images. In practice, we set L = 2. M is defined based
on the size of the SIFT descriptor. Fig. 9 also shows
the relationship between M and the SIFT descriptor
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of Caltech 101, where most of the image patches have
descriptor lengths in the range of 600-1200.

Considering Wu and Rehg (2009)
hypothesizing that the size of the training images’
histograms’ BOW was N x M, we generated the im-
ages’ intersection kernels by calculating the sum of
the minimum of each row in the BOW histogram and
the image’s BOW. That is,

and

M
kui(hi) =Y min(hy,h), k=1,2,...,N, (9)
=1

where M is the channel of the original kernel, h is
the histogram of the training images’ BOW, and hy,
is the histogram that contains the kth image’s BOW
in each row. By combining all the k1, we create the
histogram intersection kernel for the BOW model.
When testing, hj contains the test image’s BOW
and kg is the test image’s kernel.

3 Experimental results

Fig. 9 validates our saliency method for Caltech
101 based on 5-fold cross-validation. The kernel with
the best performance was HIK with a pyramid, which
had a mean average precision (MAP) of 81.8% at
400 words. The saliency method increased the MAP
to 84.9%. Because we obtained small patches with
similar characteristics to Caltech 101 after the coarse
detection process, we used Caltech 101 to build a
saliency test even though it contains images with
single-centered objects and smooth backgrounds.

We considered three datasets. One dataset con-
tains monitoring data from power facilities, and con-
tains 8000 images for each day. The goal of our work
is to detect engineering vehicles in these images, such
as ‘cement car’ (car of watering cement), crane, ex-
cavator, and ‘lazyArm’ (lazy arm). The second and
third datasets were VOC 2012 and VOC 2011. Each
dataset contains objects from 20 categories, which
poses a challenge in object detection because there
are significant variations in the appearances of ob-
jects from each category. We applied an SVM as our
detector and classifier in all cases.

3.1 Remote monitoring dataset
3.1.1 Comparison with existing methods

Our work was aimed to detect engineering ve-
hicles from monitoring images. In this dataset, 97%

of the images were 1280x1024 pixels or larger, but
the target objects covered only a few pixels. A
refined detection made directly from these images
would require more than 20 s of computational time
for each image, which is unacceptably long. Thus,
our method first uses a coarse detection method to
extract image patches that may include object com-
ponents. The main purpose of this coarse detection
stage was to achieve a high detection rate in a short
period of time. Because the vehicles’ rigid compo-
nents can change their relative positions, we detected
only the main components in this phase (e.g., cabs
and arms), as shown in Fig. 10.

IE _.1
(a) ®  © @

Fig. 10 Engineering vehicles with highlighted main
parts: (a) cement cars; (b) cranes; (c) excavators; (d)
lazy arms

Fig. 2 illustrates that the proposed method gen-
erates many false positive image patches to guar-
antee that the detection rate exceeds 0.9. We per-
formed several experiments to determine the HOG
descriptor parameters, and found that the best de-
tection window (W) was 40x40 pixels with 18 bins.

After the coarse detection stage, we obtained
many small patches that may contain components
of objects. We increased the size of these patches so
that they covered the entire objects using the method
described in Section 2.2. We generated a saliency
mask to reduce interference and extract the SIFT
features. Then we applied an SVM multi-classifier
to distinguish chaotic patches. Fig. 11 validates our
saliency method by comparing it with the radial ba-
sis function (RBF) and HIK. The proposed saliency
method improved the accuracy, and reduced the op-
erational load by decreasing the descriptor length.

Table 1 contains the results of the refine-
ment classification phase. The average accuracy
was 91.0%. Table 2 presents the final detection
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Fig. 11 Comparison of kernels in the dataset

results, and compares our method to a classical HOG
without the saliency model and DPM (Felzenszwalb
et al., 2010b). We randomly sampled the tests and
applied 10-fold cross-validation (Breiman and Spec-
tor, 1992). The stated results are the average of all
tests. In this application, the false positive rate was
0.6 to ensure that the detection rate in the coarse
phase was approximately 0.96 (Fig. 2).

Table 1 Accuracy of our classification in the second
phase (refinement classification phase) for the engi-
neering vehicle dataset (%)

CcC Crane ET LazyArm Neg
CC 87.1 0.0 10.3 2.6 0.0
Crane 14.2 82.6 3.3 0.0 0.0
ET 4.9 4.3 88.1 0.0 2.7
LazyArm 0.0 0.0 1.7 97.0 1.3
Neg 0.0 0.0 0.0 0.0 100.0

CC: cement car; ET: excavator

Table 2 Comparison of the proposed method with
existing methods for the engineering vehicle dataset

(%)

Ours Ours DPM
Category 0.96 rate  0.92 rate HOG 0.96 rate
Cement car 83.7 80.2 75.7 77.5
Crane 79.5 76.2 72.3 75.9
Excavator 84.6 81.1 76.2 81.8
LazyArm 93.1 89.2 84.6 92.7

‘Ours 0.96 rate’ means that the detection rate in the first
phase is set to 0.96; ‘Ours 0.92 rate’ sets the detection rate to
0.92; ‘HOG’ applies the classical gray-HOG descriptor in the
first phase and the classical SIFT descriptor only with the
pyramid HIK in the second phase; ‘DPM 0.96 rate’ uses the
DPM method (Felzenszwalb et al., 2010b) with a detection
rate of 0.96

3.1.2 An emphasis on comparison with DPM

When the relative positions of object compo-
nents can significantly vary (e.g., in engineering ve-

hicles), the accuracy of the DPM method strongly
depends on having a sufficiently large training set
for the number of sub-models. However, it is hard to
determine the size of the required training set, and
it is impossible to collect large training sets for real
applications. Maximizing over latent part locations
in latent SVMs is an essential part of the DPM. How-
ever, significant variations in the relative positions of
the components reduce its reliability. Our work can
avoid these weaknesses with two thousand to three
thousand positive samples in each category. We first
detected the main components of objects, and then
determined bounding boxes based on the models.
Finally, we applied the bag-of-features (Zhang et al.,
2007) idea to obtain a precise classifier.

We also performed experiments to test DPM
performance on our dataset. Different sample sizes
and 10-fold cross-validation were used. The stated
results were the average of all the experiments.
Fig. 12 shows the results for the excavator dataset,
and confirms that DPM strongly depends on the
number of training sets and models. DPM performs
well using the largest training set.
method outperforms DPM (Table 2).

However, our
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Fig. 12 Comparison of DPM’s results with training

sets of different sizes, with the detection rate being
set to 0.96 (Table 1). ‘1600P (2000 Neg)’ implies that
the training set has 1600 positive samples and 2000
negative samples

Felzenszwalb et al. (2010b)’s method requires
more than 15 s per image in the dataset (with-
out parallelization), with five components per im-
age. Researchers have recently accelerated DPM
by one order of magnitude. Modified methods in-
clude cascade (Felzenszwalb et al., 2010a), coarse-
to-fine (Pedersoli et al., 2015), branch-and-bound
(Kokkinos, 2011), and fast Fourier transform (FFT)
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(Dubout and Fleuret, 2012). Yan et al. (2014)’s
method takes 3 or 4 frames/s for a given category
with six components per image, on the Pascal VOC.
This is currently the fastest method available. Our
work ran at 1 frame/s per image on Pascal VOC, and
at 0.5 frames/s per image for the engineering vehicle
dataset. This is faster than most DPM algorithms.
Our PC has a 2.5 GHz Intel Core i5 CPU, and we
used only one thread.

3.2 Generalization performance

In this part, we chose the VOC 2012 and VOC
2011 to test our formulation’s generalization perfor-
mance. Our methods can perform better in some
VOC 2012 and VOC 2011 categories compared to
the challenge winners. Following is the detailed ex-
periment on the PASCAL VOC 2012.

The 20 categories in the dataset contain signifi-
cant variations. The resolutions of most images are
from 500x300 or 300x500 to 500x500 pixels. The
ratio of the area of positive objects also varies sig-
nificantly from 0.12 to 1.00. We resized the original
images to 50% and 200%, respectively. The samples
contained all the original images. In the coarse de-
tection stage, we used the images from one folder of
each category to train the HOG descriptor, and used
the images from another folder as the test set.

When increasing the outline, the array (R) of
the four parameters should be easily estimated dur-
ing the sample collection phase. The parameters
were not very precise, but this is acceptable because
the saliency work in the subsequent steps can reduce
the errors. R was [0.5, 1.0, 0.5, 1.0] for the airplane,
bicycle, boat, bus, car, motorbike, and train cate-
gories, [3.0, 1.0, 3.0, 3.0] for the bird, cat, cow, dog,
horse, and sheep categories, [0.5, 0.5, 0.5, 0.5] for the
bottle and person categories, and [2.0, 1.0, 2.0, 1.0]
for the chair, dining table, potted plant, soft, and
TV monitor categories.

In the refinement phase, we calculated a binary
classification for the 20 categories. For each cat-
egory, the negative samples were patches of other
samples and some randomly extracted background
patches. The main objective of this paper was to
detect images that contained the target object, and
thus the object contours were not very accurate. Ta-
ble 3 shows our results based on this evaluation cri-
terion and a qualitative comparison with the VOC

2012 winner. Table 3 illustrates that our formula-

tion performed well for objects with similar HOG
feature parts, such as the airplane, car, and per-
son categories. However, for objects that have parts
that can significantly vary (such as the bird, boat,
and chair categories), there was a decrease in perfor-
mance. Our methods also performed better in some
VOC 2011 categories such as airplane, bicycle, cow,
motorbike, and sheep. For brevity, we do not provide
the VOC 2011 details. However, these results can be
provided upon request.

Table 3 Results of our method and a comparison with
the VOC 2012 winner (%)

Our method
Category Coarse Refinement Entire VO(_J 2012
detection classification detection winner
phase* phase method
Airplane 82.3 89.5 73.7 65.0
Bicycle 70.1 84.8 59.4 54.5
Bird 33.8 70.5 23.8 25.1
Boat 29.3 72.9 21.3 24.9
Bottle 46.5 72.7 33.8 32.1
Bus 69.2 82.5 57.1 57.1
Car 68.7 81.7 56.1 49.3
Cat 60.2 83.3 50.1 53.7
Chair 28.5 60.3 17.2 19.5
Cow 47.8 78.3 37.4 35.3
Dining table 32.3 67.7 21.9 38.1
Dog 54.3 76.8 41.7 42.9
Horse 62.5 78.3 48.9 51.0
Motorbike 62.2 83.5 51.9 59.5
Person 72.2 84.3 60.9 46.1
PP 38.1 52.1 19.9 22.8
Sheep 60.6 71.9 43.6 40.3
Sofa 34.9 62.3 21.7 39.7
Train 58.3 83.8 48.8 51.1
™ 65.5 72.3 47.2 49.4
MAP 54.4 75.7 42.5 42.9

PP: potted plant; TM: TV monitor; MAP: mean average
precision. A bold value means it is better. Though the
method of the results of the VOC 2012 winner is not the same
as the method of our results, we compared them because the
detection rate of ours can be set in the coarse detection
phase. * The false positive rate was set to 0.6

4 Discussion and conclusions

In this paper, we proposed a new method for
detecting objects. The method simulates human be-
ings’ behavior in looking for a target object from
hundreds of different classes of objects.
will browse these objects quickly. When a similar
object appears, he/she will spend a little more time
to confirm whether the object is the target. We di-
vided the process into two steps, coarse detection and

A person



356 Liu et al. / Front Inform Technol Electron Eng 2015 16(5):346-357

accurate confirmation, and presented the formula-
tion. It can perform well in varying environments,
particularly in datasets whose objects have compo-
nents with significantly varying relative positions.

Our technique has a coarse detection phase and
a refinement classification phase. We increased the
detection rate in the coarse phase by adding color
frequencies to the HOG descriptor. Because the op-
erational costs increase as the descriptors grow, the
length should be selected to balance the costs and
detection rate. The contour expansion guarantees
the integrity of the positive objects. We applied the
saliency method to determine accurate contours and
reduce background interferences. After acceleration,
the saliency method was fast and accurate. Dense
SIFT with a saliency pyramid HIK kernel was the
most accurate.

In our experiments, we selected three datasets
to analyze the proposed method. The results were
very good for the first dataset, and our technique
outperformed existing methods when applied to the
VOC 2012 and VOC 2011 datasets.

The bottleneck in the total performance of the
proposed method is the coarse detection rate. The
HOG descriptor is fast and accurate when the ob-
ject contours do not significantly vary. However, few
objects satisfy this condition. We are currently at-
tempting to combine this method with a deep neural
network. We are also planning to investigate some
more efficient and robust descriptors based on local
binary pattern (LBP) (Ojala et al., 2002), binary
robust independent elementary features (BRIEF)
(Calonder et al., 2010), binary robust invariant scal-
able keypoints (BRISK) (Leutenegger et al., 2011),
and Daisy (Tola et al., 2010), among others.
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