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Abstract:    Karhunen-Loève transform (KLT) is the optimal transform that minimizes distortion at a given bit allocation for 
Gaussian source. As a KLT matrix usually contains non-integers, integer-KLT design is a classical problem. In this paper, a joint 
reversibility-gain (R-G) model is proposed for integer-KLT design in video coding. Specifically, the ‘reversibility’ is modeled 
according to distortion analysis in using forward and inverse integer transform without quantization. It not only measures how 
invertible a transform is, but also bounds the distortion introduced by the non-orthonormal integer transform process. The ‘gain’ 
means transform coding gain (TCG), which is a widely used criterion for transform design in video coding. Since KLT maximizes 
the TCG under some assumptions, here we define the TCG loss ratio (LR) to measure how much coding gain an integer-KLT loses 
when compared with the original KLT. Thus, the R-G model can be explained as follows: subject to a certain TCG LR, an integer- 
KLT with the best reversibility is the optimal integer transform for a given non-integer-KLT. Experimental results show that the 
R-G model can guide the design of integer-KLTs with good performance. 
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1  Introduction 
 

Transform plays an important role in source 
coding, especially for image/video coding systems 
and standards. It is inefficient to directly compress 
spatial data (i.e., image samples or inter/intra predic-
tion residuals), because spatial data are often highly 
correlated and their energy tends to be evenly dis-
tributed. With a suitable transform, spatial data can be 
converted into a different representation, i.e., trans-
form domain data, so that inter sample correlation of 
the data can be decreased or even removed. Thus, the 
transform coefficients are efficient to compress using 

scalar quantization and entropy coding. 
It has been shown that Karhunen-Loève trans-

form (KLT) is the optimal transform that minimizes 
distortion at a given bit allocation for a Gaussian 
source (Goyal, 2001). However, in the past, KLT 
usually played as a theoretical reference for transform 
design, while discrete cosine transform (DCT) (Ah-
med et al., 1974) was widely used in video coding. 
This is because: (1) KLT depends highly on the 
characteristics of source and the characteristics of 
video signal are not stable but spatially or temporally 
changed, and (2) although video signal varies from 
time to time, it can be approximated as a first-order 
Markov process, for which DCT is very similar to 
KLT. Nevertheless, DCT is not as dominant as before 
since context-based adaptive transforms, e.g., mode- 
dependent directional transform (Ye and Karczewicz, 
2008), rate-distortion optimized transform (Zhao et 
al., 2011), discrete sine transform (Yeo et al., 2011; 

Frontiers of Information Technology & Electronic Engineering 

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 

 

‡ Corresponding author 
* Project supported by the National Natural Science Foundation of 
China (Nos. 61371162 and 61431015) 

 ORCID: Xing-guo ZHU, http://orcid.org/0000-0002-6319-2471 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015 

Guo Yunlong
CrossMark

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500071&domain=pdf


Zhu et al. / Front Inform Technol Electron Eng   2015 16(10):883-891 
 

884

Han et al., 2012), and secondary transform (Saxena 
and Fernandes, 2013), have emerged recently and 
showed much better rate-distortion (RD) performance 
than DCT in video coding. These context-based 
transform coding schemes have similar characteristics; 
i.e., they are based on KLT. 

However, the basis vectors of KLTs usually 
consist of non-integer numbers that are not friendly 
for hardware implementation. In addition, encoder- 
decoder mismatch may occur due to different im-
plementations of the non-integer inverse transform at 
the encoder and decoder, which can result in untoler-
ated performance degradation (Hinds et al., 2007). To 
overcome the drawback of non-integer transform, 
integer transforms need to be designed. This leads to a 
problem: how to design integer-KLT from a given 
KLT in video coding. 

Given a KLT, a large number of integer-KLTs 
can be obtained. To select a good integer-KLT from 
them, we can incorporate these integer-KLTs into a 
video encoder and compare compression performance. 
However, this wastes too much time and the results 
could only indicate that the chosen one has the best 
performance on the tested videos but not all the situ-
ations. It is necessary to develop a simple and reliable 
model that can be used to evaluate the performance of 
integer-KLTs. This is exactly the work we have done. 

 
 

2  Review of KLT and the integerization 

2.1  KLT 

KLT is a transform that decorrelates vectors of 
input samples. However, it is totally dependent on the 
characteristics of the input signal. Let x represent a 
random column vector of input samples from a sta-
tionary source and y a random vector of the transform 
coefficients by a transform matrix T. The analysis 
transform process can be illustrated as 

 

y=Tx.                                 (1) 
 

Let Rx be the autocorrelation matrix of the input 
process and Ry,T the autocorrelation matrix of the 
transform coefficients by T. Then we have 

 

Rx=E{xxT},                             (2) 
Ry,T=E{yyT}=T·Rx·T

T,                   (3) 

where E{·} denotes the mathematical expectation. If 
Ry,T is a diagonal matrix with eigenvalues of Rx on its 
main diagonal, the transform matrix T is a KLT matrix 
of the input signal and the row vectors of T are exactly 
the eigenvectors of Rx. 

2.2  Integerization of KLT 

Generally, a KLT matrix, full of non-integers, is 
not very friendly for hardware implementation or 
standardization since non-integer operations may 
introduce untolerated performance degradation in 
videos due to encoder-decoder mismatch. Obviously, 
there is a natural way to derive integer-KLT as 

 

A=int(T·α),                               (4) 
 

where T is a KLT matrix with non-integers,  is a 
scalar factor, the int(·) operator denotes the integeri-
zation process, and A is a corresponding derived  
integer-KLT matrix. This derivation can be described 
in two steps: scaling and integerization. In the scaling 
process, a KLT matrix is multiplied by a scalar factor 
α to obtain a scaled transform matrix. In the in-
tegerization process, an integer is selected as an ap-
proximation for each element in the scaled transform 
matrix. The integerization process can be mathemat-
ical rounding, floor, ceiling, or other operations. 

The choice of α depends on the limitation of 
complexity. A higher value of α could make A more 
approximate to T, but it increases the implementation 
complexity of the transform process. In this study, we 
focus on the derivation of A for a given T and α.  

2.2.1  Integer-KLTs with mathematical rounding 

There is no doubt that rounding each element in 
the scaled transform matrix to the corresponding 
nearest integer is a simple and natural method, as 
shown in Eq. (5). The rounding method has been 
widely used in integer DCT design for video coding, 
such as the 44 integer DCT in the draft of H.26L 
(Wiegand, 2001) and the 88 integer DCT design 
proposed by Zhang et al. (2006): 

 

A(i, j)=round(T(i, j)·α).                   (5) 
 

2.2.2  Integer-KLTs with TCG 

The TCG (Jayant and Noll, 1984) is a widely 
used figure of merit to measure the performance of a 
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transform, and it has been serving as a useful guide in 
designing the integer transform in video coding. For a 
transform A, TCG is defined as  
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where N is the transform size and Ry,A is the auto-
correlation matrix of transform coefficients by A. 

Since the integerization method in Eq. (1) can be 
mathematical rounding, floor, ceiling, or other oper-
ations, for a given T and α, we can derive a large 
number of integer-KLTs as candidates and each can-
didate transform has its own TCG value. By using 
TCG as a measurement, integer-KLT with the highest 
TCG value will be chosen as the best one. That is, 

 

arg max{TCG( )},



C

A C                    (7) 

 

where  is the candidate set of integer-KLTs and C is 
a sample in the set. 
 

 
3  Design of integer-KLTs with the R-G model 

 
In the previous section, we have discussed two 

effective methods to derive an integer-KLT: mathe-
matical rounding and maximizing TCG. However, 
they could still be improved by considering more 
characteristics of KLT. Although depending highly on 
the statistics of the input signal, the KLT matrices 
have some common properties: 

1. Orthogonality: the basis vectors of T are or-
thogonal, i.e., ti

Ttj0 for ij, where ti is the ith basis 
vector of T. 

2. Normality: the basis vectors of T have equal 
norm, i.e., ti

Ttitj
Ttj for i, j0, 1, , N1. It is desirable 

for simplifying the quantization process by eliminat-
ing the scaling matrix in quantization. 

3. Maximizing TCG: the basis vectors of T have 
been shown to provide the best energy compaction or 
the best TCG, which is desirable for compression 
efficiency. 

The first two properties can also be named or-
thonormality, which makes KLT an orthonormal 

transform that satisfies T–1TT, which is desirable for 
a simple synthesis transform. The synthesis transform 
is 

 

1 Tˆ ˆ ˆ= = ,  x T y T y                     (8) 
 

where x̂  is the reconstructed signal and ŷ  the quan-

tization of y. In the following, we would discuss how 
to embed these good properties into the design of 
integer-KLTs. 

3.1  Reversibility of a transform 

From the analysis transform in Eq. (1) and syn-
thesis transform in Eq. (8), we can see that, if no 

quantization error is introduced (meaning ˆ = ),y y  a 

signal could be perfectly reconstructed by KLTs 

(meaning ˆ = ),x x  since KLT is orthonormal. We can 

say that KLT is reversible. However, this lossless 
reconstruction could not be held by integer-KLTs, if 
basis vectors of integer-KLTs are not orthogonal or 
have different norms. It indicates that the reconstruc-
tion error is highly associated with the orthogonality 
and normality of a transform. Unfortunately, we have 
no idea whether orthogonality is more important than 
normality or not. To solve this, we should first study 
the relationship between the reconstruction error and 
the integer-KLT matrix. 

In a practical transform coding system, the 
analysis and synthesis transforms with an integer- 
KLT can be described as follows: 

 

y=Ax/α,                               (9) 
Tˆ ˆ= / .x A y                         (10) 

 

Assuming ˆ =y y  and ignoring the round-off error 

of the division, the reconstruction error vector e is 
 

T 2ˆ= = / ,  e x x x A Ax Ux         (11) 

where  

U=(α2I−ATA)/α2,                       (12) 
 

in which I is an identity matrix. 
That is, without quantization, the reconstruction 

error can be analytically described by the transform 
matrix and the input signal vector. A similar conclu-
sion was derived in the integer DCT design (Dong  
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et al., 2009). Using the Euclidean norm (denoted as 
||·||) to measure the distortion D, statistically we have 

 
D=E{||e||}=E{||Ux||}.                   (13) 

 
Using the property of induced norm, we can 

obtain the upper bound of the distortion: 
 

D≤||U||·E{||x||}=c·||U||.                  (14) 
 
Since the input signal x is a random vector that 

obeys a certain distribution, its Euclidean norm can be 
treated as a random variable and the corresponding 
expectation is a constant, denoted as c. 

By now we have demonstrated how the integer- 
KLT matrix affects the reconstruction distortion for 
the case without quantization. As given in Eq. (14), 
the reconstruction distortion is bounded by matrix U. 
Accordingly, we define the reversibility (denoted as 
symbol R) of an integer-KLT A as the norm of U, 
which is shown as follows: 

 
R(A)=||U||.                            (15) 

 
Obviously, in the design of integer-KLTs, we 

would like the value of R to be as small as possible, 
which can make the integer-KLTs more orthonormal. 
Therefore, the normality and orthogonality of KLTs 
can be well retained. 

3.2  TCG loss ratio of a transform 

KLT maximizes the rate distortion performance 
for stationary Gaussian sources if scalar quantizers 
for transform coefficients are optimized (Goyal, 
2000). In other words, TCG can be maximized by 
KLT. Thus, TCG has been working as a criterion in 
integer cosine transform (ICT) design in video coding. 
Note that the definition of TCG comes from high rate 
coding for Gaussian sources. However, in practical 
video coding systems, the prediction residue to be 
transformed is not a Gaussian source but obeys the 
Laplace distribution (Chen, 2012), and the coding rate 
ranges from low to high. On one side, the TCG of a 
transform should be high; on the other side, a trans-
form with the highest TCG may not be the best 
transform that maximizes the rate distortion perfor-
mance for a practical video coding system.  

Therefore, we define the TCG loss ratio (LR) to 
indicate how much coding gain is lost from the in-
tegerization process when compared with the original 
KLT: 

 

TCG( ) TCG( )
LR( ) 100%.

TCG( )


 

T A
A

T
     (16) 

 

Based on the definition of LR, we regard the 
integer-KLTs that satisfy inequality (17) as the ones 
that have excellent rate distortion performance close 
to the original KLT: 

 

0≤LR(A)≤η,                         (17) 
 

where  is a threshold to control TCG(A) within a left 
neighborhood of TCG(T). Different from Eq. (7), 
which selects the integer-KLT with the closest TCG 
to that of the original KLT, inequality (17) defines a 
group of integer-KLTs with TCG close enough to that 
of the original KLT. 

It is difficult to derive a proper value for  
mathematically. Fortunately, previous studies on ICT 
design could be used as a reference to find a suitable 
value. Table 1 illustrates the LR of the 44 ICT in 
H.264/AVC, for a stationary Gauss-Markov input 
with correlation coefficient  ranging from 0.5 to 0.9, 
which simulates the characteristic of prediction resi-
due in video coding. We can find that the value of LR 
ranges from 0.62% to 3.57%. As a result, a value less 
than 3.57% for  can ensure high enough TCG for a 
44 integer-KLT. 

 
 
 
 
 
 
 
 
 
 
 

3.3  R-G model for designing integer-KLT 

So far, we have used reversibility to measure the 
orthonormality of a transform, and have a constraint 
on the LR to keep a high TCG for the transform. 

Table 1  Loss ratio of the 44 ICT in H.264/AVC 

 
TCG (dB) 

LR (ICT)
KLT ICT 

0.5 0.937 0.904 3.57% 

0.6 1.454 1.415 2.67% 

0.7 2.193 2.152 1.88% 

0.8 3.328 3.288 1.19% 

0.9 5.409 5.376 0.62% 

ICT: integer cosine transform; KLT: Karhunen-Loève transform 
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Naturally, we combine the two items and obtain the 
R-G model for designing integer-KLT as follows: 

 

arg min{ ( )} s.t . 0 LR( ) .R





  
C

A C C     (18) 

 

Eq. (18) seems to be an optimization problem. 
However, the relationship between the LR and re-
versibility acts randomly. According to our observa-
tion, in a candidate set of integer-KLTs for a given 
KLT, with the decrease of LR, the value of R is not 
monotonous, which means the problem is not a con-
vex optimization problem. Therefore, we use an 
enumeration method to solve Eq. (18). Given a KLT 
matrix T and a scalar factor α, the derivation method 
for an integer-KLT according to the R-G model has 
the following four steps: 

Step 1: Generate the rounding integer-KLT ma-
trix Ar using Eq. (5). 

Step 2: For each element Ar(i, j) in Ar, an integer 
set Sij{bij|Ar(i, j)–kbijAr(i, j)k} is built, where k is 
an integer that specifies the search range, i, j0, 1, , 
N1. There are NN integer sets, and we can obtain an 
integer-KLT candidate by picking up NN elements 
from these integer sets (one element from one set). 
Totally (2k1)NN integer-KLT candidates can be 
obtained which form a candidate set . 

Step 3: For each sample in , the value of LR is 
calculated. All the integer-KLTs with 0LR are 
reserved and form another set, denoted as . 

Step 4: For each integer-KLT in , the value of R 
is calculated, and the one with the minimal value is 
the target integer-KLT. 

During the derivation process, the value of k is 
usually small to reduce the complexity of the deriva-
tion method, and different values are set to  for dif-
ferent transform sizes, e.g., 0.62% for the 44 trans-
form. In step 4, if there is more than one target  
integer-KLT with the minimal value of R, we select 
the one with the highest value of TCG among these 
target ones as the final derived integer-KLT. 
 
 
4  Performance and analysis 

 
In this section, we design integer-KLTs to verify 

the effectiveness of the R-G model using the mode- 

dependent directional transform (MDDT), since the 
transform matrices used in MDDT are KLTs. Before 
starting the experiments, we briefly describe intra 
coding in the H.264/AVC standard and MDDT. 

4.1  Mode-dependent directional transform 

In intra coding of H.264/AVC, an image block is 
first predicted by spatially neighboring pixels through 
a certain intra prediction mode and then the resulting 
residual block is transform coded by a 2D transform 
with column and row ICTs. Fig. 1a illustrates the 
eight directional intra modes for 44 blocks. Figs. 1b 
and 1c give the prediction processes of mode 0 (ver-
tical mode: using top neighbors to predict the current 
block) and mode 1 (horizontal mode: using left 
neighbors to predict the current block), respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Later, some researchers found that residual 

blocks still contain significant directional information 
(Ye and Karczewicz, 2008); i.e., the residual ampli-
tudes tend to increase along the prediction direction as 
the distance from the reference samples increases. 
MDDT exactly uses this property to maximally 
compact residual signal energy. Generally, MDDT 
replaces ICT by a pair of KLTs for residue blocks 
according to the prediction modes. All KLTs come 
from singular value decomposition on a training set of 
residuals and then are integerized. Although the 
characteristics differ from sequences, the property of 
directional information in residual blocks is similar, 
which makes KLTs in MDDT be offline trained. 
Many publications show that MDDT further removes 
correlation in residues and outperforms the ICT-based 
transform coding scheme in video compression (Ye 
and Karczewicz, 2008; Yeo et al., 2011). 

8

1

6
4

507
3

(a)                                 (b)                           (c) 

Fig. 1  Intra prediction modes for a 4×4 block in 
H.264/AVC 
(a) Eight directional modes; (b) Vertical mode; (c) Horizon-
tal mode 
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4.2  Comparison of integer-KLTs with different 
integerization methods 

In this part, we follow the MDDT design to 
generate 16 float KLT matrices for the eight  
directional modes (two for each mode) of 44 blocks. 
In the integerization process, α is set to be 128. Be-
sides the group of integer-KLTs generated with the 
R-G model (denoted as AR-G), integer-KLTs are gen-
erated with the following two methods: 

1. Integerization with rounding: in this group, 16 
integer-KLTs are derived according to Eq. (5), de-
noted as Ar. 

2. Integerization with maximal TCG: in this 
group, 16 integer-KLTs are derived according to  
Eq. (7), denoted as Ag. The integer-KLTs’ candidate 
set Φ is the same as the one used in integerization 
with the R-G model. 

Figs. 2 and 3 list the column and row integer- 
KLTs, respectively, with different integerization 
methods for mode 0. Ag or AR-G can be seen as opti-
mization based on Ar with some element modification 
according to the corresponding criterion. 

The LR and reversibility of column and row  
integer-KLTs for all directional modes are shown in 
Tables 2 and 3, respectively, from which we obtain: 

For the LR, LR(Ag)LR(Ar)LR(AR-G)0.2%. 
This indicates that all the integer-KLTs have high 
TCG that is very close to that of KLTs. 

For reversibility, R(AR-G)R(Ar)R(Ag) holds for 
all matrices. This means that AR-G results in a lower 
bound of distortion than the other two. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The LR and reversibility cannot directly reflect 

the RD performance of transform in video coding. To 

show this, we implement MDDT with the three 
groups of integer-KLTs into KTA-1.9. KTA-1.9 is a 
widely used study platform for video coding. Since 
MDDT is used for intra coding, we test only all intra 
coding cases, and the test condition is as follows: 

88 transform: off, since here we compare only 
the 44 transform. 

Quantization parameter (QP) setting: high bitrate, 
QP4, 7, 10, 13; median bitrate, QP22, 27, 32, 37. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Loss ratio and reversibility of column integer-
KLTs for all directional modes 

Mode
LR (%) R 

Ar Ag AR-G Ar Ag AR-G

0 0.00 0.00 0.14 0.0134 0.0253 0.0079

1 0.00 0.00 0.02 0.0121 0.0251 0.0058

3 0.00 0.00 0.07 0.0118 0.0323 0.0089

4 0.01 0.00 0.06 0.0124 0.0329 0.0056

5 0.00 0.00 0.09 0.0120 0.0274 0.0092

6 0.01 0.00 0.03 0.0118 0.0266 0.0060

7 0.01 0.00 0.03 0.0157 0.0312 0.0074

8 0.01 0.00 0.03 0.0110 0.0207 0.0076

Table 3  Loss ratio and reversibility of row integer-
KLTs for all directional modes 

Mode
LR (%) R 

Ar Ag AR-G Ar Ag AR-G

0 0.00 0.00 0.07 0.0102 0.0244 0.0065

1 0.01 0.00 0.05 0.0110 0.0307 0.0053

3 0.00 0.00 0.08 0.0075 0.0278 0.0065

4 0.02 0.00 0.11 0.0115 0.0228 0.0062

5 0.01 0.00 0.07 0.0081 0.0307 0.0065

6 0.00 0.00 0.02 0.0105 0.0261 0.0057

7 0.01 0.00 0.18 0.0107 0.0287 0.0056

8 0.01 0.00 0.13 0.0140 0.0238 0.0050

Fig. 3  Row integer-KLTs for vertical prediction mode 
(a) Float KLT matrix; (b) Scaled KLT matrix with α=128;
(c) Ar; (d) Ag; (e) AR-G 

 
   
  
   

0.322 0.538 0.592 0.506

0.741 0.351 0.311 0.481

0.557 0.623 0.180 0.519

0.194 0.446 0.721 0.493

 
   
  
   

41.26 68.90 75.77 64.75

94.83 44.88 39.82 61.58

71.24 79.78 23.02 66.44

24.80 57.08 92.34 63.12

 
   
  
   

41 69 76 65

95 45 40 62

71 80 23 66

25 57 92 63

 
   
  
   

41 69 76 65

96 44 39 63

72 79 24 67

25 57 92 62

 
   
  
   

42 70 75 64

94 45 41 62

72 79 23 67

26 57 92 63

Fig. 2  Column integer-KLTs for vertical prediction mode
(a) Float KLT matrix; (b) Scaled KLT matrix with α=128;
(c) Ar; (d) Ag; (e) AR-G 

 
   
 
   

0.450 0.534 0.535 0.475

0.682 0.279 0.326 0.593

0.513 0.535 0.385 0.550

0.264 0.592 0.678 0.348

 
   
  
   

57.64 68.40 69.50 60.76

87.25 35.68 41.72 75.89

65.67 68.52 49.25 70.36

33.73 75.75 86.75 44.53

 
   
  
   

58 68 69 61

87 36 42 76

66 69 49 70

34 76 87 45

 
   
  
   

58 68 69 61

87 35 41 76

67 68 49 71

35 76 86 45

 
   
  
   

57 68 70 60

87 37 41 76

67 68 48 70

33 76 86 46

(a)                                                  (b)

(c)                               (d)                                 (e)
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Others: default as in the configuration file. 
To evaluate the RD performance, we use the 

Bjontegaard delta (BD) bitrate (Bjontegaard, 2001), 
which means that the bitrate increases compared with 
anchor at the same peak signal-to-noise ratio (PSNR). 
Since mathematical rounding is the simplest in-
tegerization method, we set MDDT with Ar as the 
anchor. The test video sequences are listed in Table 4, 
and RD performance in Table 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When comparing Ag with Ar at the same PSNR,  
Ag will introduce an increase of about 2.17% bitrate 
on average, while AR-G can save 0.63% bitrate in the 
high bitrate condition. High bitrate corresponds to 
low QP or low quantization distortion, and for this 
case, distortion due to the non-orthonormal integer 
transform becomes important. Thus, the transform  

with the best reversibility, i.e., AR-G, shows the best 
RD performance. 

At the median bitrate, simulation results indicate 
that AR-G has about 0.02% bitrate saving and Ag has 
about 0.05% bitrate increase on average when com-
pared with Ar. In fact, it is fair to say that the three 
groups show similar RD performance. On one side, 
the BD-bitrate of AR-G (or Ag) is negative on some 
sequences and positive on others, meaning that AR-G 
(or Ag) does not outperform Ar on all the test videos. 
On the other side, the BD-bitrate fluctuations are 
almost within 0.1%, which can be ignored in RD 
performance comparison. In this case, since quanti-
zation distortion dominates the total distortion and the 
distortion due to the non-orthonormal integer trans-
form becomes less important, the advantage of AR-G 
with the best reversibility is not as remarkable as that 
in the high bitrate case. 

4.3  Discussion 

Based on 16 KLTs, we have derived three groups 
of integer-KLTs by different integerization methods 
and then compared the three groups through TCG, 
reversibility, and RD performance. 

The TCGs of integer-KLTs from the three groups 
are all very close to the corresponding KLTs, which 
indicates that all the integerization methods well re-
tain the third property mentioned in Section 3. 

Since only integerization with the R-G model 
considers the reversibility of a transform, AR-G un-
doubtedly owns the best value of R. As we have 
mentioned in Section 3.1, better reversibility leads to 
better orthonormality. This is proved by Table 6, 
where normality (norm) and orthogonality (orth) are 
defined as 

 
1

0

norm( ) | ( , ) 1|,
N

i

Q i i




 A                (19) 

1 1

0 0,

orth( ) | ( , ) |,
N N

i j j i

Q i j
 

  

  A              (20) 

where 

Q=AAT/α2.                        (21) 
 
Almost all the integer-KLTs in the AR-G group 

have the best normality and orthogonality, with few  

Table 4  Description of test video sequences 

Sequence 
Sequence 
number 

Resolution 
Frame rate 
(frame/s) 

Duration 
(s) 

Carphone 0 176×144 30 10 

Foreman 1 176×144 30 10 

Football 2 352×288 30 10 

News 3 352×288 30 10 

Mobile 4 352×288 30 10 

BigShips 5 1280×720 60 10 

Crew 6 1280×720 60 10 

Night 7 1280×720 60 10 

City 8 1280×720 60 10 

ShuttleStart 9 1280×720 60 10 

Table 5  BD-rates of Ag and AR-G when compared with Ar 

Sequence  
number 

High bitrate (%)  Median bitrate (%)

Ag AR-G  Ag AR-G 

0 2.74 −0.78  −0.06 0.03

1 3.60 −0.92  0.02 −0.11

2 1.98 −0.35  0.03 −0.08

3 1.80 −0.77  0.08 −0.05

4 2.30 −1.03  0.29 −0.11

5 2.19 −0.32  0.11 0.06

6 1.00 −0.25  0.00 0.02

7 2.23 −0.72  0.05 0.04

8 3.05 −0.91  0.05 0.01

9 0.83 −0.25  −0.06 −0.07

Average 2.17 −0.63  0.05 −0.02 
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exceptions (in bold in Table 6). In these few cases, Ar 
owns the best normality (or orthogonality), but its 
orthogonality (or normality) is much larger than that 
of AR-G. Take the column transform of mode 6 as an 
example. The normality of Ar is 0.0066, which is a 
little better than that of AR-G. However, AR-G has much 
better orthogonality, i.e., 0.0153 vs. 0.0461.  

In summary, AR-G has the best orthonormality 
followed by Ar and then Ag. This is consistent with the 
order of reversibility of the three groups. 

Generally, mathematical rounding is a simple 
and effective integerization method for integer-KLTs 
design, since it keeps high TCG and good reversibility. 
It can be further improved. Integerization with min-
imal TCG does not take reversibility into account, 
which may lead to a poor RD performance in the high 
bitrate (low quantization distortion) case. The R-G 
model ensures that the derived integer-KTLs have the 
best reversibility and retain high and adequate TCG. It 
tries best to keep the good properties of KLT in  
integerization. 

Although we extend the discussion based on 
MDDT, it is evident that the proposed approach is 
applicable for any KLT, such as discrete sine transform 
(Yeo et al., 2011; Han et al., 2012) and KLTs used in 
secondary transform (Saxena and Fernandes, 2013). 
 
 
5  Conclusions 

 
In this paper, we discuss integerization of KLT 

and focus on how to maintain useful properties (or-
thonormality and high TCG) of KLT for video com-
pression. An R-G model that jointly considers the  

 
 
 
 
 
 
 
 
 
 
 
 
 
TCG and reversibility of a transform is proposed for 
integer-KLT design. The experimental results show 
the effectiveness of the R-G model. 

In the discussion, we always assume a scalar 
factor in integerization. In fact, this factor could be a 
diagonal matrix, and a scaling process is needed after 
transform for normalization of transform coefficients. 
This is similar to the ICT design in H.264/AVC. For 
this case, the mind of the R-G model still works, but 
the modeling of reversibility is much more complex, 
which would be our future research. 
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