
Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 143

A framework for an integrated unified modeling language*

Mohammad ALSHAYEB‡, Nasser KHASHAN, Sajjad MAHMOOD
(Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

E-mail: alshayeb@kfupm.edu.sa; khashan@live.com; smahmood@kfupm.edu.sa

Received Mar. 23, 2015; Revision accepted July 22, 2015; Crosschecked Jan. 20, 2016

Abstract: The unified modeling language (UML) is one of the most commonly used modeling languages in the software in-
dustry. It simplifies the complex process of design by providing a set of graphical notations, which helps express the object-
oriented analysis and design of software projects. Although UML is applicable to different types of systems, domains, methods,
and processes, it cannot express certain problem domain needs. Therefore, many extensions to UML have been proposed. In this
paper, we propose a framework for integrating the UML extensions and then use the framework to propose an integrated unified
modeling language-graphical (iUML-g) form. iUML-g integrates the existing UML extensions into one integrated form. This
includes an integrated diagram for UML class, sequence, and use case diagrams. The proposed approach is evaluated using a
case study. The proposed iUML-g is capable of modeling systems that use different domains.

Key words: Unified modeling language (UML), Integration, Modeling, System analysis and design
http://dx.doi.org/10.1631/FITEE.1500094 CLC number: TP311

1 Introduction

The unified modeling language (UML) (Booch

et al., 2005) is a modeling language used to specify,
visualize, construct, and document aspects of the
system-development process. Although UML pro-
vides a set of graphical notations, which helps in ex-
pressing the object-oriented analysis and design of
software projects, some software engineers found
UML unable to cover some problem domains. For
this reason, UML allows its users to customize it to
address the desired problem domains. This is done
by UML extension mechanisms that enable UML to
better adapt to a variety of different domains. These
mechanisms allow the user to leverage the existing
UML specifications to the desired level, thereby
making modeling easier. Atkinson et al. (2015) pro-
posed a modeling framework that was best able to

support the extension scenarios.
There are two types of UML extension mecha-

nisms, UML lightweight extension and UML heavy-
weight extension. UML lightweight extension in-
volves using profiles (Magureanu et al., 2013; Hsu et
al., 2014; Lara et al., 2014; Boulil et al., 2015). A
UML profile defines limited extensions to the meta-
model elements. It uses three main constructs: ste-
reotypes, tag definitions, and constraints. This type
of UML extension provides a simple and straight-
forward mechanism for customizing existing UML
modeling elements to a particular domain. It does not
change the UML behavior, but it can add to or modi-
fy the UML structure. The second type is UML
heavyweight extension (Zubcoff et al., 2009; Génova
et al., 2014), which involves the reuse technique of
the UML package. It also involves two steps: select-
ing the desired modeling elements that one wants to
extend, and merging them with the elements from the
targeted problem domain. It can customize UML
behavior and operations, but its development is diffi-
cult and costly.

In general, UML extensions add new terminol-
ogies and properties and define new semantics to

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the King Fahd University of Petroleum and
Minerals, Saudi Arabia (No. IN100046)

 ORCID: Mohammad ALSHAYEB, http://orcid.org/0000-0001-
7950-0099
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Yunlong Guo
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500094&domain=pdf

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 144

make the language suitable to a specific problem
domain. The problem is that, after extending UML, it
becomes suitable only for a specific domain, which
may make it unusable for other domains even if they
differ only in small details. In this paper, we propose
a framework for integrating the UML extensions,
and then use the framework to integrate the available
UML extensions in the literature to form an integrated
UML-graphical (iUML-g) form. The motivation for
this work is to reduce the time and effort invested
during modeling the targeted system using UML
extensions. iUML-g tends to save time and effort
when it comes to modeling, since it provides one
integrated form for all required problem domains.
iUML-g also provides the designers with a flexible
way to model the targeted systems. iUML-g gives
one broad set of graphical concepts to model differ-
ent domains at the same time.

2 Literature review

This section surveys the literature on the exten-

sions of class, sequence, and use case diagrams.
These three diagrams are the most commonly used
representatives for three distinctive views of the
modeled system. The class diagram depicts the sys-
tem’s structure, the sequence diagram represents the
interactions between the system’s objects, and the
use case diagram describes the provided functionali-
ty of the system.

2.1 Class diagram

Fontoura et al. (2000) proposed a new profile
called UML-F, which describes how to represent
framework variation points in UML diagrams to de-
scribe the structure and behavior of these variation
points. Byeon et al. (2004) used a diagrammatic tool
called ‘stereotype creator’ to create iconic stereotypes
to model the global navigation satellite system (GNSS)
application. The main elements of geo-referenced
classes are a graphical representation with a symbol-
istic icon and an iconic notation to indicate the geo-
graphic type, class name, attributes, and operations.

Dong (2002) presented notations to represent
individual and composed design patterns. The author
believed that identifying the design patterns is ex-
tremely difficult, especially when they are composed,
because some pattern-related information may be-

come truncated or even lost when using traditional
UML diagrams. Dong (2002) showed a number of
annotations for design patterns, including Venn-
diagram-style pattern annotation, dotted bounding
pattern annotation, UML collaboration notation, pat-
tern role annotations, stereotype annotations, and
tagged pattern annotation. Dou et al. (2013) reused
the UML meta-model definition and proposed a
metamodeling approach for pattern specification.

Sanada and Adams (2002) defined a new UML
profile to model design patterns and frameworks in
design class diagrams. This work distinguishes be-
tween design class diagrams, detailed design class
diagrams, and design pattern class diagrams. Sanada
and Adams (2002) also added stereotypes and tags to
model frameworks. Peterson et al. (2006) used a
UML class diagram to represent an automated teller
machine (ATM) model integrated with UMLpac for
possible security considerations. Without extending
UML, it would be challenging for UML to model the
secured health care system using regular notations
and other modeling elements. Mahmood and Lai
(2013) presented an extension to UML called RE-
UML to support the phases of requirements analysis
and assessment process (RAAP). RE-UML extends
the UML class diagram with two specialized classes:
RClass to specify stakeholder requirements, and
CClass to specify component features. Jantan et al.
(2008) proposed a hypermedia design method called
ComHDM, which is a UML profile. The authors
proposed modeling elements to model the conceptual,
navigational, and user interface artifacts of web hy-
permedia applications. Fernández-Medina et al.
(2007) addressed the confidentiality problems of data
warehouses by specifying security constraints in the
conceptual multidimensional database model to de-
sign secure data warehouses. Cunha et al. (2015)
proposed a model transformation from alloy to UML
class diagrams annotated with object constraint lan-
guage (OCL).

2.2 Sequence diagram

Zhou et al. (2008) made three contributions:
first, they proposed a UML extension profile for
aspect-oriented modeling; second, they built a frame-
work for UML; and finally, they presented a way to
model the dynamic behaviors that occur in aspect-
oriented software. Their main objective was to pro-
pose an architecture for aspect-oriented modeling

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 145

and address the separation of concerns properly.
Hausmann et al. (2001) specified the operational
semantics of UML behavioral diagrams. They ex-
tended the sequence diagram by introducing a new
modeling construct (synchronization).

Xie et al. (2007) proposed synchronization
adorned UML (saUML) sequence diagram notation
to highlight aspects of thread interactions. Their
main objective was to investigate whether the pro-
posed graphical notation made it easier to understand
concurrent executions and concurrency concepts as
opposed to purely textual representations. They
found that the proposed representation was beneficial
compared to a text-only presentation.

Seemann and von Gudenberg (1999) defined a
textual language UMLscript-RT to describe UML
sequence diagrams, adding an explicit loop and al-
ternative statements for the simulation of real-time
systems. da Silva and de Lucena (2004) proposed a
multi-agent system modeling language (MAS-ML)
that extended the UML class and sequence diagrams.
For the sequence diagram, they proposed three new
stereotypes (<<role commitment>>, <<role cancel>>,
and <<role change>>).

Saleh and El-Morr (2004) proposed an exten-
sion to UML (M-UML) that covered all aspects of
mobility at the various views and diagrams of UML.
For sequence diagrams, they proposed a new stereo-
type <<localized>> to show when mobile interac-
tions need not be co-located. Fontoura et al. (2000)
proposed the UML-F, which allows the explicit rep-
resentation of framework variation points. They ex-
tended both the class and sequence diagrams. For the
sequence diagram, they added the tag {optional} to
indicate interactions that are not mandatory.

Fei and Yan (2008) analyzed a real application
called SPAERIS using a UML extension called
Agent UML. SPAERIS is an application used to
monitor and control a ship’s security. They used
Agent UML to design a distributed management in-
formation system.

Cruz-Lemus et al. (2011) presented a number of
experiments to investigate whether the use of stereo-
types improves the comprehension of UML sequence
diagrams.

2.3 Use case diagram

Dong et al. (2002) proposed an extension to

UML to address a distributed system. Their UML
extension changes the use case diagram to be active
and multilevel for requirement engineering of a dis-
tributed system. Djemaa et al. (2006) presented web-
adaptive UML (WA-UML), which is a UML profile
to model adaptive web applications. This profile
adds labels and notations to UML diagrams in order
to express UML more effectively.

Chung and Supakkul (2006) proposed a UML
extension to represent the nonfunctional require-
ments with functional requirements in the use case
model. Stein et al. (2002) extended UML to present
aspects. Misbhauddin and Alshayeb (2015) provided
an extension to the UML use case metamodel to fa-
cilitate model analysis and interchange. Table 1
summarizes all the discussed extensions.

3 Extension integration

iUML-g provides a flexible method for combin-

ing different UML extensions. It provides a process
to integrate available or new UML extensions. In
software systems that use different domain applica-
tions, a designer may need to combine the notation
of more than one UML extension. The designer will
need to consider the overlap and conflicts between
the targeted extensions. iUML-g provides a set of
graphical notations, which removes the overlap and
conflict between the integrated extensions. The
iUML-g integration process that integrates the avail-
able UML extensions is discussed in the following
subsections.

3.1 Integration process

The integration process is applied to UML ex-
tensions that provide graphical symbols. The process
starts by creating a graphical library that contains the
graphical symbols themselves and their descriptions.
Extensions that do not cause any conflict and that
keep the original intent of the symbols clear are then
integrated. In other words, the final symbol must
deliver the idea behind it without any confusion. The
following process explains the integration of graph-
ical symbols:

1. Creation of a library: Create a library for the
graphical symbols. The library will contain the
graphical symbols themselves and their descriptions.

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 146

2. Case A (Combination): For each type of

UML diagram, combine possible graphical symbols
that cause no graphical conflicts, but make sure that
the final symbol still represents its intended goal.

3. Case B (Conflict): In case of a graphical con-
flict, insert each graphical symbol on its own into the
library.

3.2 Inclusion and exclusion criteria

We define the inclusion/exclusion criteria;
only extensions that meet our inclusion criteria are

included in iUML-g and the others are excluded. The
inclusion criteria are as follows:

1. UML lightweight extensions;
2. Extensions that provide graphical notation/

icons for the notation;
3. UML class, sequence, and use case diagram

extensions only;
4. UML domain-specific extensions that can be

combined with other same domain-specific exten-
sions, preferably working on different areas of the
extension but at the same level;

Table 1 Summary of lightweight UML extensions

Reference Domain Purpose of extension Diagram

Fontoura et al.
(2000)

Object-oriented
frameworks

To model variation points in UML diagrams Class & sequence

Byeon (2004) Global navigation
satellite system

To provide notational help for accurate calculations
of real-world geographical entities

Class

Dong (2002) Design patterns
compositions

To represent design patterns in the application and
composition of design patterns and maintain pattern-
related information

Class

Sanada and Adams
(2002)

Design patterns To model design patterns and frameworks in design
class diagrams (DCDs)

Class

Peterson et al. (2006) Security To incorporate security techniques into software
class design

Class

Mahmood and Lai
(2013)

Component-based
software system

To specify satisfaction and risk assessment to evalu-
ate customer demands against component features

Class

Jantan et al. (2008) Web hypermedia
applications

To model complicated design issues Class & activity

Fernández-Medina
et al. (2007)

Data warehouses To address confidentiality problems and set security
constraints in the conceptual modeling of data
warehouses

Class

Zhou et al. (2008) Aspect-oriented
modeling (AOM)

To model the functional crosscutting concerns and
integrate the AOM architecture

Sequence

Hausmann et al.
(2001)

UML semantics
specification

To integrate extensions’ specific semantics with
UML semantics

Sequence

Xie et al. (2007) Multithreading and
concurrency

To highlight aspects of thread interactions Sequence

Seemann and von
Gudenberg (1999)

Real-time To define a textual language UMLscript-RT to de-
scribe the sequence diagrams

Sequence

da Silva and de
Lucena (2004)

Agents A multi-agent system modeling language (MAS-ML) Sequence

Saleh and El-Morr
(2004)

Mobile agent-based
software systems

The extension covers all aspects of mobility at the
various views and diagrams of UML

Sequence

Fontoura et al.
(2000)

Frameworks UML-F that allows the explicit representation of
framework variation points

Sequence

Hausmann et al.
(2001)

Extensible semantics To specify the operational semantics of UML behav-
ioral diagrams

Sequence

Dong et al. (2002) Distributed systems To change the use case diagram to multilevel for
requirement engineering of a distributed system

Use case

Djemaa et al. (2006) Adaptive web
application

To model adaptive web applications (AWA) Use case

Fei and Yan (2008) Agent UML To enhance the analysis and design of an agent system Use case

Chung and Supakkul
(2006)

Requirements To represent the nonfunctional requirements with the
functional requirements

Use case

Stein et al. (2002) Aspects To present aspects Use case

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 147

5. UML domain-specific extensions that can be
combined with the other different domain-specific
extensions, preferably general extensions;

6. When two UML extensions focus on one par-
ticular area and on one type of UML diagram, com-
bine them together or choose the more general one.

The exclusion criteria are as follows:
1. UML activity, component, state chart, inter-

action diagrams;
2. UML heavyweight extensions that manipu-

late the UML meta-model by editing or deleting
UML packages;

3. Theoretical and algorithmic UML extensions;
4. Profiles.

3.3 Applying the integration process

In this subsection, the integration process men-
tioned above is applied to three UML diagrams: class,
sequence, and use case. In each subsection, a step-
by-step explanation of the integration process is
shown.

3.3.1 Integration of graphical symbols

This subsection addresses the application of the
integration process on the UML class, sequence, and
use case diagram graphical extensions. This process
has three steps: creation of a library, integration, and
conflict handling. Each UML diagram will be sub-
jected to these steps, and the results will be shown as
the process is applied.

1. Class diagram
Step 1: Creation of a library
In this process of graphical integration, a library

is created to include the proposed graphical exten-
sions. All the graphical symbols are inserted along
with their descriptions. The idea behind having such
a library is to have a graphical database for iUML-g.
Such a database lists all the symbols and their de-
scriptions, plus their original source. The description
column informs the user of the intended objective of
the symbol. Table 2 shows the created library for
UML class diagram graphical extensions.

Step 2: Case A (Combination)
If some of the already existing symbols in the

library can be combined together with other existing
symbols, combine them into one symbol and add that

symbol to the library. Table 3 shows the integrated
graphical symbols.

Step 3: Case B (Conflict)
If a graphical conflict occurs between two or

more extensions, these extensions should be inserted
individually in the library. In the process of integrat-
ing a UML class diagram, no graphical extensions
are found to have a conflict.

2. Sequence diagram
Step 1: Creation of a library
Table 4 shows the created library for UML se-

quence diagram graphical extensions.
Step 2: Case A (Combination)
The result of this step is one integrated symbol.

Table 5 shows this symbol.
Step 3: Case B (Conflict)
No conflict is found in the sequence diagrams

extensions.
3. Use case diagram
Step 1: Creation of a library
Table 6 shows the created library for UML use

case diagram graphical extensions.
Step 2: Case A (Combination)
The result of this step is one integrated symbol.

Table 7 shows this symbol.
Step 3: Case B (Conflict)
One conflict occurs during the attempt to inte-

grate three graphical extensions. Table 8 shows the
three symbols that cannot be integrated.

The goal behind integrating these functionalities
is to have one abstract use case. However, during the
creation of the diagram, the abstract use case makes
the diagram confusing because every time there is a
need for a specific functionality, one has to refer to
the abstract use case. Therefore, it is better to have
three independent functionalities where each one
presents a different type of information.

3.4 Qualitative assessment

In this subsection, we present qualitative analy-
sis of the feedback received from software engineers
and system analysts, with industrial experience, on
using iUML-g. The participants were provided com-
plete technical details of iUML-g to implement it in
their own projects. A total of nine professionals par-
ticipated in the study.

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 148

Table 2 Library of the proposed graphical symbols (class diagram)

Modeling element Source Meaning of the symbol

Jantan et al. (2008) A single process

Jantan et al. (2008) A database in the class diagram design

Jantan et al. (2008) The information and data operations (such as query, lookup, and entry)
that are involved with the database

Jantan et al. (2008) Complex interaction between users and web applications

Jantan et al. (2008) Hyperlinks in the class diagram design

Jantan et al. (2008) Predefined and complex processes

Jantan et al. (2008) The user’s action to perform activities

{variable} Fontoura et al. (2000) The implemented methods during the framework instantiation

{appl-class} Fontoura et al. (2000) Classes that are defined as framework instances

{extensible} Fontoura et al. (2000) The extensibility of class functionality

{static} Fontoura et al. (2000) Variation points of non-runtime instantiation

{dynamic} Fontoura et al. (2000) Variation points of runtime instantiation

{incomplete} Fontoura et al. (2000) The possibility of adding new subclasses

{forAllNewMethods} Fontoura et al. (2000) Indicating that the OCL constraint must be met by the introduced methods

{optional} Fontoura et al. (2000) Optional event

{final} Dong (2002); Sanada
and Adams (2002)

Indicating that the final class has no decedent classes (leaves)

Byeon et al. (2004) The geo-referenced class is used to represent the class icon with the aid of
graphical notations. The main elements of geo-referenced classes are a
graphical representation with a symbolistic icon, an iconic notation to in-
dicate the geographic type, class name, attributes, and operations

Mahmood and Lai
(2013)

RClass is used to represent stakeholder requirements and is divided into
four sections: first, stereotyped requirement text, name of the class, and
abstraction level to differentiate the requirement level; second, the objec-
tive of the RClass; third, scenario, which is the set of interactions neces-
sary to achieve the objective; fourth, rank of the RClass

Mahmood and Lai
(2013)

CClass is used to represent component features and is divided into three
sections: first, stereotyped component text and name of the class; second,
the functionality provided by the component; third, the dependency on
elements and their relationships

Fernández-Medina
et al. (2007)

Security information and constraints

Fernández-Medina
et al. (2007)

Dimensions within a multidimensional model

Fernández-Medina
et al. (2007)

Facts within a multidimensional model

Fernández-Medina
et al. (2007)

Dimension hierarchy levels within a multidimensional model

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 149

Qualitative data were collected by conducting

interviews with the participants. Their experiences
were documented using mainly two questions encom-
passing the advantages and difficulties associated with
applying the proposed iUML-g notation. The inter-
views were kicked off with the following question:
“Does iUML-g provide a broad set of graphical con-
cepts to model different domains?” Next, participants
were asked to answer the following question: “As
compared to UML, do you find iUML-g more capa-
ble of modeling systems that involve more than one
application domain?” We used follow-up questions
to clarify and gather more details about the strengths
and suggested improvements mentioned by the par-
ticipants. The interview participants were also asked
to rate each question as either ‘strongly agree’,
‘agree’, ‘neutral’, ‘disagree’, or ‘strongly disagree’.

As shown later in Table 9, the overall average
for all questions is above 3.5 on a scale of 4. The

interview data indicate that seven out of the nine par-
ticipants strongly agreed that iUML-g provided a set
of graphical concepts to model different domains. In
response to the second question, 66% participants
strongly agreed that iUML-g was more capable of
modeling systems that involve more than one appli-
cation domain. More than 88% participants either
strongly agreed or agreed that iUML-g had a short
learning curve. Similarly, all the participants either
strongly agreed or agreed that the tool support facili-
tated using iUML-g in practice.

The participants did not indicate any major dis-
advantages in applying the iUML-g in modeling
software that involved more than one application
domain. Furthermore, three participants suggested
the incorporation of extensions to other UML dia-
grams (e.g., activity and collaboration diagrams). We
agreed with these participants, and had incorporated
their suggestions in our plan for future work.

Table 3 Integrated graphical extensions

Modeling element Source Meaning of the symbol Method of combination

Peterson et al.
(2006);
Fernández-
Medina et al.
(2007)

The security package will be inserted
into the class diagram and will be
attached to the classes that need to
be protected from security attacks.
Each security package has three
attributes: risk factor, which calcu-
lates the probability of the security
attack; security tile, which protects
the main parts of a system; security
descriptor, which protects specific
parts of the system

The design of the security package
was adopted from Peterson et al.
(2006), while the security infor-
mation was suggested by
Fernández-Medina et al. (2007)

Peterson et al.
(2006);
Fernández-
Medina et al.
(2007)

A security tile that protects the main
parts of the system. It mostly con-
tains tagged values specified by se-
curity analysts and can be attached
to security packages to cover more
security concerns

Same as above

Byeon et al.
(2004);
Mahmood and
Lai (2013)

The new main elements of the class
are three vertical compartments to
indicate symbolistic icons, iconic
notations, and class name, and
<<requirements>> to specify stake-
holder requirements. It will be used
to represent requirements with the
aid of graphical notations

The three vertical compartments
that will contain some graphical
and textual information were
suggested by Byeon et al. (2004).
The requirements stereotype and
the other requirements-related
information were proposed by
Mahmood and Lai (2013)

Byeon et al.
(2004);
Mahmood and
Lai (2013)

The new main elements of the class
are three vertical compartments to
indicate symbolistic icons, iconic
notations, and class name, and
<<component>> to specify stake-
holder requirements. It will be used
to represent requirements with the
aid of graphical notations

The three vertical compartments
that will contain some graphical
and textual information were
suggested by Byeon et al. (2004).
The component stereotype and
the other requirements-related
information were proposed by
Mahmood and Lai (2013)

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 150

4 Tool support

All of the UML extensions’ modeling elements
were modeled and integrated by a special diagram
editor tool called Dia (Hsia et al., 1995). Dia is a free
software that allows the user to create diagrams with
the aid of a wide selection of modeling elements.
Elements come from domains such as Cisco,

Database, Electric, Flow Chart, UML, and others.
The Dia tool is known for its simple and easy-to-use
environment. Dia makes it easy to control and man-
age the drawn elements of diagrams through the pro-
vided properties attached to each element. The draw-
ing mechanism in Dia is as easy as using the Paint
tool found in Microsoft Windows releases. It is easy
to handle and flexible.

Table 4 Library of the proposed graphical symbols (sequence diagram)

Modeling element Source Meaning of the symbol

{variable} Fontoura et al. (2000) The methods that must be implemented during the framework
instantiation

{appl-class} Fontoura et al. (2000) Classes that are defined and used as framework instances

{extensible} Fontoura et al. (2000) The extensibility of class functionality

{static} Fontoura et al. (2000) Variation points of non-runtime instantiation

{dynamic} Fontoura et al. (2000) Variation points of runtime instantiation

{incomplete} Fontoura et al. (2000) The possibility of adding new subclasses

{forAllNewMethods} Fontoura et al. (2000) Indicating that the OCL constraint is meant to hold for all
newly introduced methods

{optional} Fontoura et al. (2000) Indicating that a given event is optional

{final} Dong (2002); Sanada and
Adams (2002)

Indicating that the final class has no decedent classes (leaves)

Zhou et al. (2008) Crosscutting bar to indicate join points between two events

Hausmann et al. (2001) Synchronization bold bars to be placed between activations,
meaning that the activities must start and end at the same time

Xie et al. (2007) Indicating the threads and colors to distinguish between run-
ning, ready, or suspended threads

Seemann and von Gudenberg
(1999)

Loops and constraints in textual format

<<role cancel>> da Silva and de Lucena (2004) An agent canceling its role

<<role commitment>> da Silva and de Lucena (2004) An agent committing to a role

<<role change>> da Silva and de Lucena (2004) An agent changing its role

<<localized>> Saleh and El-Morr (2004) Indicating that mobile interactions need not be co-located

crosscutting messages

Zhou et al. (2008) Crosscutting messages

Hausmann et al. (2001) Synchronization in the modeling construct

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 151

Table 5 Integrated graphical extension

Modeling element Source Meaning of the symbol Method of integration

Hausmann et
al. (2001);
Zhou et al.
(2008)

The crosscutting bar
indicates join points
that must start and
end at the same time

The crosscutting bar was suggested by Zhou et al.
(2008) to show the join points between two events.
Hausmann et al. (2001) proposed the other graph-
ical symbol to enforce synchronization between
two activities. Both symbols focus on the start
time of the activity, and hence the final integrated
symbol indicates synchronizing join points

Table 6 Library of the proposed graphical symbols (use case diagram)

Modeling element Source Meaning of the symbol

Fei and Yan (2008) Agents

Djemaa et al. (2006) The human user who visits the web application

Djemaa et al. (2006) The role played by a human user (physical actor) to
maintain the web application

Djemaa et al. (2006) The hardware aspect of the system, whether it is a
computer system, device hardware, or web ser-
vice

Djemaa et al. (2006) DIF (dynamic informational functionality) is used
to represent a dynamic web page

Djemaa et al. (2006) SIF (static informational functionality) is used to
represent a static web page

Djemaa et al. (2006) PF (profession functionality) is used to represent a
dynamic web page using update request

Chung and Supakkul (2006) Nonfunctional requirements

Chung and Supakkul (2006) Operationalizing nonfunctional requirements

Chung and Supakkul (2006) Claiming nonfunctional requirements

<<refine>> Stein et al. (2002) Refined aspects

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 152

Using Dia, the user can insert text, control the

size of the drawn elements, and enter properties for
such elements. What makes Dia more interesting
than the other diagram editor tools is its ability to
control and specify the diagram elements. Each ele-
ment in the diagram has properties. For example, the
element ‘Class’ has properties such as name, attrib-
utes, and operations, which can be specified by the
user by double-clicking the element in the diagram
and then entering the desired information. The user
can also choose if he or she wants the class to be ab-
stract or the class’s attributes to be visible or not.
Another feature is the ability to create a stereotype
for the user’s class, which makes the procedure of
extending the diagram easier, becoming just a simple
text-entering procedure.

Another extraordinary feature found in Dia is

the option to create a sheet of modeling elements, i.e.,
drawing elements from scratch and saving them in a
special library or sheet. This sheet can be listed in the
main menu of sheets and can be easily used.

In this work, Dia was used to help in creating
integrated graphical extensions. The need was for a
diagram editing software that provides flexible edit-
ing tools, which makes the process of integrating
graphical symbols easy and straightforward. In addi-
tion, there was a need for software like Dia to store
the final integrated symbols in a ready-to-use library
and, as mentioned earlier, Dia provides a way to
store the created symbols in sheets. After saving the
symbols in a sheet, they will be easily selected and
used during the creation of diagrams.

Table 7 Integrated graphical extension

Modeling element Source Meaning of the symbol Method of integration

Djemaa et al.
(2006); Fei and
Yan (2008)

The human user who visits the
web application, or agents in
agent-oriented systems

The human user symbol suggested by
Djemaa et al. (2006) is more general,
and hence can represent agents in
agent-oriented systems

Table 8 The three extended functionalities proposed by Djemaa et al. (2006)

Modeling element Meaning of the symbol

DIF (dynamic informational functionality) is used to represent a dynamic web page

SIF (static informational functionality) is used to represent a static web page

PF (profession functionality) is used to represent a dynamic web page using update request

Table 9 Study qualitative data (9 participants, on a scale of 4)

Question
Number of participants

AverageStrongly agree
(4)

Agree
(3)

Neutral
(2)

Disagree
(1)

Strongly disagree
(0)

Does iUML-g provide a broad set of
graphical concepts to model differ-
ent domains?

7 2 0 0 0 3.78

As compared to UML, do you find
iUML-g more capable of modeling
systems that involve more than one
application domain?

6 3 0 0 0 3.67

Does iUML-g have a short learning
curve?

6 2 1 0 0 3.56

Does iUML-g tool support facilitate
using iUML-g in practice?

8 1 0 0 0 3.89

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 153

An iUML-g sheet was created using Dia (Hsia
et al., 1995). This sheet contains modeling elements
from the collected UML extensions, plus the inte-
grated ones. Fig. 1 shows the iUML-g sheet.

An example of the created modeling elements is

the three integrated classes proposed by Byeon et al.
(2004) and Fernández-Medina et al. (2007), as
shown in Fig. 2. Fernández-Medina et al. (2007)
proposed security constraints such as security levels
and roles to be placed on the elements of a hospital
system, and Byeon et al. (2004) suggested that the
class graphic format can be vertically divided to in-
clude helpful graphical iconic notations. The results
are integrated classes, like the ones shown in Fig. 3.

The class diagram shown in Fig. 3 was created
using Dia. Three classes were created: Student, GPA,
and Registrar. Class ‘Student’ is a component class
that satisfies the requirements of class GPA, a re-
quirement class. The three classes (symbols) in this

example are iUML-g symbols. The way the classes
are drawn is by integrating two extensions: those of
Mahmood and Lai (2013) and Byeon et al. (2004).

5 Case study

This section provides an example for evaluating

the use of iUML-g in a case study. The case study
illustrates that iUML-g is more capable of modeling
systems that involve many different domains.

5.1 Secured health care system (Data Warehouse
+Security+GNSS)

This case study addresses the issue of system
security, especially health care systems. Health care
systems, placed in hospitals, handle tremendous
amounts of inpatient and outpatient records. Such
records store information about patients, such as per-
sonal information, financial issues, physical tests
results, medical history background, and current
health condition.

5.1.1 Problem description

Some hospital information is considered private
and should be checked and accessed only by the con-
cerned staff or the treating physicians. The health
care system must be secure for many reasons. For
example, patients’ confidential and sensitive data need
to be tightly locked away not only from outsiders but
from non-concerned personnel, such as receptionists
or laboratory staff, who are privileged to access cer-
tain information only.

Fig. 1 iUML-g sheet (a subset of iUML symbols)

Fig. 2 iUML-g integrated classes created using Dia

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 154

Using UML to enforce security measures re-

quires extensions to UML that add different model-
ing elements with different techniques, which ensure
that the modeled system is secure enough. It also
focuses on only one domain.

In iUML-g, the user uses one integrated form to
cover security concerns for multiple domains: data
warehouse and secured class diagram design. The
previous extensions to UML by Peterson et al. (2006)
and Fernández-Medina et al. (2007) are security
techniques that are limited to specific domains. On
the other hand, in iUML-g, the user can take ad-
vantage of all the integrated security techniques
available to address security concerns using model-
ing elements, i.e., stereotypes and tagged values that
are general enough to work on any problem domain.

5.1.2 Applying the iUML-g

To create the class diagram for this system, we
can take advantage of the stored graphical symbols
in the library. Table 10 shows the iUML-g graphical
symbols that will be adopted and used in the creation
of a class diagram.

The overall goal is to incorporate security pack-
ages and tiles that were previously specified into the
main elements of the system, i.e., elements that need
security measures, such as patients’ history records,
diagnosis files, and financial arrangements. These
security measures will ensure that these important

data are accessed only by authorized users.
First, we have to define the users of the system.

Fig. 4 specifies the health and non-health employees
of the hospital. This helps in defining the authorized
and unauthorized users of the system.

The next step is defining the levels of security.
These levels will be assigned to patients’ data in their
stored records. The constraints on these levels are
placed on their values. The security levels must have
a value range only from confidential, secret, and top
secret. Fig. 5 shows the defined levels of security.

After defining the users and levels of security,
we have to define the information that has to be se-
cure. We will define the authorized users who have
access to the information (security role) and what
levels of security will be placed over such infor-
mation (security level). Table 11 describes the dif-
ferent types of records that need to be secure.

Table 12 shows the assignment of security roles
and levels over the hospital records. Security roles
and levels are expressed as sets of tagged values.

The tagged values shown in Table 12 will now
be inserted into the security tiles (Figs. 6–9).

The next step is creating security packages. Se-
curity packages have to refer to the previously de-
fined security tiles. This is done by writing the secu-
rity tile’s name next to the <<Security Package>>
label in the package (Figs. 10 and 11).

Fig. 3 iUML-g class diagram example created using Dia

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 155

Table 10 Excerpt of the iUML-g library

Modeling element Source Meaning of the modeling element

Peterson et al. (2006);
Fernández-Medina
et al. (2007)

The security package will be inserted into the class diagram
and will be attached to the classes that need to be protected
from security attacks. Each security package has three at-
tributes: risk factor, which calculates the security attack;
security tile, which protects the main parts of a system;
and security descriptor, which describes the security cate-
gories that protect specific parts of the system

Peterson et al. (2006);
Fernández-Medina
et al. (2007)

A security tile protects parts of a system. It mostly contains
tagged values specified by security analysts and can be
attached to security packages to cover more security
concerns

Byeon et al. (2004);
Fernández-Medina
et al. (2007)

A class icon with iconic representation to display graphical
information along with textual information such as class
name, security levels, and roles

Fernández-Medina
et al. (2007)

Security information and constraints

Fernández-Medina
et al. (2007)

Dimensions within a multidimensional model

Hospital employee

Health nonHealth

Doctor Nurse Maintenance Administrative

Fig. 4 Hierarchy of users as suggested by Fernández-
Medina et al. (2007)

Table 11 Different types of hospital records

Element Description

Admission Containing individual admissions of patients
of one or more hospitals

Diagnosis Containing information on each user diagnosis
Patient Containing patients’ information
Diagnosis
group

Containing a set of groups of diagnosis

City Containing information on cities
User profile Containing the users who will access the model

Table 12 iUML-g security roles and levels

Element Tagged value

Admission

Access by users who have
Security Level = Secret & Top Secret &
Security Role = Health & Administrative

The attribute ‘Cost’ is accessed only by
Security Role = Administrative

Diagnosis
Access by users who have

Security Level = Secret &
Security Role = Health

Patient

Access by users who have
Security Level = Secret &
Security Role = Health & Administrative

The attribute ‘Address’ is accessed only by
Security Role = Administrative

The attribute ‘Race’ is accessed only by
Security Role = Health

Diagnosis
group

Access by users who have
Security Level = Confidential

City
Access by users who have

Security Level = Confidential

Fig. 6 iUML-g security tile #1

<<enumeration>>
Level

Confidential

Secret
Top secret

Fig. 5 Levels of security as suggested by Fernández-
Medina et al. (2007)

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 156

The next step is to create the classes that repre-

sent the main elements of the system: Admission,
Patient, Diagnosis, Diagnosis group, and City.
Fig. 12 shows an example of the iUML-g class ‘Ad-
mission’. The goal of this design is to have unique
and helpful graphical notations attached to the
created classes.

The final step is integrating security packages
into the UML class diagram (Fig. 13). Each security
package protects a certain type of hospital record,
which is represented as a class in the diagram.

5.1.3 Discussion

For this case study, some modeling elements
were used from iUML-g to consider some issues that
were not handled or addressed by UML. The graph-
ical symbols found in this case study were used to
emphasize the issue of security and how to map it
graphically to the iUML-g class diagram. Fig. 10
shows an example of a security package that was
especially created to be used in domains that require
security measures.

Attaching graphics to classes also helps the
classes to be more readable. Dividing the first row of
the class vertically helps attach more information
about the class in small compartments, such as iconic
notations, class name, security levels, and roles. Fig. 12
shows iUML-g design of an ‘Admission’ class.

The essence of UML is the ability to model the
targeted system using a set of graphical notations.
The limited set of UML graphical notations can help
the system designer to better visualize the system’s
internal and external elements, but at the same time,
and as mentioned before, this set is limited. Unfortu-
nately, UML was unable to address some problem
domains. UML has to be adapted and extended for
such domains. Fernández-Medina et al. (2007) ap-
plied their extension to UML for the conceptual de-
sign of a secure multidimensional model within the
context of a typical health care system. Byeon et al.
(2004) provided notational help to obtain precise
measurements and precise calculations of real-world
geographical entities, and Peterson et al. (2006) used
a UML class diagram to represent an ATM model
integrated with UMLpac for possible security con-
siderations. Without extending UML, it would be
challenging for UML to model a secure health care
system using regular notations and other modeling
elements. Stereotypes and especially tag definitions
must be defined in order to enforce secure access to
patients’ records. Also, security packages and tiles,
as discussed in this case study, create another shield
to prevent such important records from security attacks.
The key issue is to specify more security measures
and techniques to protect the stored information.

Fig. 7 iUML-g security tile #2

Fig. 9 iUML-g security tile #4

Fig. 8 iUML-g security tile #3

Fig. 10 iUML-g security package (secure access)

Fig. 11 iUML-g security package (secure attribute access)

Fig. 12 iUML-g class ‘Admission’ created using Dia

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 157

iUML-g integrates different extensions, con-

cerning different and similar domains, for the sake of
using one comprehensive set of graphical concepts
when dealing with a number of domains. Without
using iUML-g, one cannot place more security tech-
niques over the multidimensional elements such as
patient, admission, and diagnosis. iUML-g handles
security by setting tagged values and constraints in
the data warehouse application domain, and this can
be greatly enhanced, security-wise, by attaching se-
curity packages to the elements found in the data
warehouse domain.

5.1.4 Threats to validity

The validity of iUML-g is threatened by two

main issues: the validity of the available extensions,
and the reliability of the integration process. In the
former, each UML extension must provide a rich and
robust extension to the UML. In this work, we as-
sumed the validity of the available extensions, and
therefore no validation of the available extensions
was done from our side.

In the second threat, i.e., reliability of the inte-
gration process, the integration process must also be
applied carefully. The steps of the integration pro-
cess must be revised repeatedly. In this work, the
proposed integration process worked well while in-
tegrating the available extensions in the literature;
however, new extensions may require the process to
be modified.

Fig. 13 Integrated UML class diagram (secured health care system)

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 158

6 Conclusions

The rationale behind the integration process was

to come up with one form of UML in order to ad-
dress a variety of problem domains. In the literature,
many UML extensions were proposed, each address-
ing a particular domain. Examples of these domains
are web hypermedia applications, aspect-oriented
modeling, distributed systems, component-based
software systems, data warehouses, design patterns,
etc., but these UML extensions are specific to partic-
ular problem domains; in other words, such exten-
sions are not applicable to other domains. The
novelty is that we provide an integrated UML that
supports not just a single domain but a number of
domains.

In this paper, we proposed a framework to inte-
grate the available UML extension. We then used the
framework to propose an integrated UML-graphical
form. The process was verified by using a case study
in which we modeled a system that uses different
domains but which UML is unable to model.

Our future work will include providing an inte-
grated UML for the extension that modifies the
meta-model to provide a complete integrated UML
(iUML). We also plan to consider other UML dia-
grams such as activity and collaboration diagrams to
cover more areas in the software development sys-
tems. Other future work would include the integra-
tion of iUML-g with available integrated develop-
ment environments (IDEs) such as Rational Rose or
Enterprise Architect.

References
Atkinson, C., Gerbig, R., Fritzsche, M., 2015. A multi-level

approach to modeling language extension in the enter-
prise systems domain. Inform. Syst., 54:289-307.
http://dx.doi.org/10.1016/j.is.2015.01.003

Booch, G., Rumbaugh, J., Jacobson, I., 2005. The Unified
Modeling Language User Guide (2nd Ed.). Addison-
Wesley Professional.

Boulil, K., Bimonte, S., Pinet, F., 2015. Conceptual model for
spatial data cubes: a UML profile and its automatic
implementation. Comput. Stand. Interf., 38:113-132.
http://dx.doi.org/10.1016/j.csi.2014.06.004

Byeon, W.S., Wang, B., Jeong, S.K., et al., 2004. Extension
and implementation of iconic stereotype for GNSS ap-
plication in the UML class diagram. Proc. Int. Conf. on
Cyberworlds, p.162-169.
http://dx.doi.org/10.1109/CW.2004.32

Chung, L., Supakkul, S., 2006. Representing NFRs and FRs:

a goal-oriented and use case driven approach. LNCS,
3647:29-41. http://dx.doi.org/10.1007/11668855_3

Cruz-Lemus, J.A., Genero, M., Caivano, D., et al.,, 2011.
Assessing the influence of stereotypes on the compre-
hension of UML sequence diagrams: a family of experi-
ments. Inform. Softw. Technol., 53(12):1391-1403.
http://dx.doi.org/10.1016/j.infsof.2011.07.002

Cunha, A., Garis, A., Riesco, D., 2015. Translating between
Alloy specifications and UML class diagrams annotated
with OCL. Softw. Syst. Model., 14(1):5-25.
http://dx.doi.org/10.1007/s10270-013-0353-5

da Silva, V., de Lucena, C.J.P., 2004. From a conceptual
framework for agents and objects to a multi-agent system
modeling language. Auton. Agents Multi-agent Syst.,
9(1-2):145-189.
http://dx.doi.org/10.1023/B:AGNT.0000019691.42633.07

Djemaa, R.B., Amous, I., Hamadou, A.B., 2006. WA-UML:
towards a UML extension for modelling adaptive Web
applications. Proc. 8th IEEE Int. Symp. on Web Site
Evolution, p.111-117.
http://dx.doi.org/10.1109/WSE.2006.20

Dong, J., 2002. UML extensions for design pattern composi-
tions. J. Obj. Technol., 1(3):149-161.

Dong, Y., Li, M., Wang, Q., 2002. A UML extension of dis-
tributed system. Proc. Int. Conf. on Machine Learning
and Cybernetics, p.476-480.
http://dx.doi.org/10.1109/ICMLC.2002.1176800

Dou, L., Liu, Q., Yang, Z.Y., 2013. A metamodeling ap-
proach for pattern specification and management. J.
Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(10):
743-755. http://dx.doi.org/10.1631/jzus.C1300040

Fei, C., Yan, C., 2008. Spaeris: a multi-agent system specified
by agent UML. Proc. Int. Seminar on Future Information
Technology and Management Engineering, p.368-371.
http://dx.doi.org/10.1109/FITME.2008.60

Fernández-Medina, E., Trujillo, J., Villarroel, R., et al., 2007.
Developing secure data warehouses with a UML exten-
sion. Inform. Syst., 32(6):826-856.
http://dx.doi.org/10.1016/j.is.2006.07.003

Fontoura, M., Pree, W., Rumpe, B., 2000. UML-F: a model-
ing language for object-oriented frameworks. LNCS,
1850:63-82. http://dx.doi.org/10.1007/3-540-45102-1_4

Génova, G., Llorens, J., Fraga, A., 2014. Metamodeling gen-
eralization and other directed relationships in UML. In-
form. Softw. Technol., 56(7):718-726.
http://dx.doi.org/10.1016/j.infsof.2014.01.010

Hausmann, J.H., Heckel, R., Sauer, S., 2001. Towards dy-
namic meta modeling of UML extensions: an extensible
semantics for UML sequence diagrams. Proc. IEEE
Symp. on Human-Centric Computing Languages and
Environments, p.80-87.
http://dx.doi.org/10.1109/HCC.2001.995242

Hsia, P., Gupta, A., Kung, C., et al., 1995. A study on the
effect of architecture on maintainability of object-
oriented systems. Proc. Int. Conf. on Software
Maintenance, p.4-11.
http://dx.doi.org/10.1109/ICSM.1995.526522

Alshayeb et al. / Front Inform Technol Electron Eng 2016 17(2):143-159 159

Hsu, I.C., Ting, D.H., Hsueh, N.L., 2014. MDA-based visual
modeling approach for resources link relationships using
UML profile. Comput. Stand. Interf., 36(3):648-656.
http://dx.doi.org/10.1016/j.csi.2013.08.017

Jantan, A.H., Sumari, P., Sulaiman, S., 2008. Com+HDM:
extending UML profiles for modeling complex Web
hypermedia applications. Proc. Int. Conf. on Advanced
Computer Theory and Engineering, p.290-294.

Lara, J.A., Lizcano, D., Martínez, M.A., et al., 2014. A UML
profile for the conceptual modelling of structurally com-
plex data: easing human effort in the KDD process. In-
form. Softw. Technol., 56(3):335-351.
http://dx.doi.org/10.1016/j.infsof.2013.11.005

Magureanu, G., Gavrilescu, M., Pescaru, D., 2013. Validation
of static properties in unified modeling language models
for cyber physical systems. J. Zhejiang Univ.-Sci. C
(Comput.& Electron.), 14(5):332-346.
http://dx.doi.org/10.1631/jzus.C1200263

Mahmood, S., Lai, R., 2013. RE-UML: a component-based
system requirements analysis language. Comput. J.,
56(7):901-922. http://dx.doi.org/10.1093/comjnl/bxs089

Misbhauddin, M., Alshayeb, M., 2015. Extending the UML
use case metamodel with behavioral information to
facilitate model analysis and interchange. Softw. Syst.
Model., 14(2):813-838.
http://dx.doi.org/10.1007/s10270-013-0333-9

Peterson, M.J., Bowles, J.B., Eastman, C.M., 2006. UMLpac:
an approach for integrating security into UML class
design. Proc. IEEE SoutheastCon, p.267-272.
http://dx.doi.org/10.1109/second.2006.1629362

Saleh, K., El-Morr, C., 2004. M-UML: an extension of UML
for the modeling of mobile agent-based software systems.
Inform. Softw. Technol., 46(4):219-227.
http://dx.doi.org/10.1016/j.infsof.2003.07.004

Sanada, Y., Adams, R., 2002. Representing design patterns
and frameworks in UML—towards a comprehensive ap-
proach. J. Obj. Technol., 1(2):143-154.

Seemann, J., von Gudenberg, J.W., 1999. Extension of UML
sequence diagrams for real-time systems. LNCS, 1618:
240-252.
http://dx.doi.org/10.1007/978-3-540-48480-6_19

Stein, D., Hanenberg, S., Unland, R., 2002. A UML-based
aspect-oriented design notation for AspectJ. Proc. 1st Int.
Conf. on Aspect-Oriented Software Development, p.106-
112. http://dx.doi.org/10.1145/508386.508399

Xie, S., Kraemer, E., Stirewalt, R.E.K., 2007. Empirical eval-
uation of a UML sequence diagram with adornments to
support understanding of thread interactions. Proc. 15th
IEEE Int. Conf. on Program Comprehension, p.123-134.
http://dx.doi.org/10.1109/ICPC.2007.19

Zhou, X.C., Liu, C., Niu, Y.T., et al., 2008. Towards a
framework of aspect-oriented modeling with UML. Proc.
Int. Symp. on Computer Science and Computational
Technology, p.738-741.

Zubcoff, J., Pardillo, J., Trujillo, J., 2009. A UML profile for
the conceptual modelling of data-mining with time-series
in data warehouses. Inform. Softw. Technol., 51(6):977-
992. http://dx.doi.org/10.1016/j.infsof.2008.09.006

