
Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 750

RePizer: a framework for prioritization of

software requirements*

Saif Ur Rehman KHAN†‡1, Sai Peck LEE1, Mohammad DABBAGH1,

Muhammad TAHIR2, Muzafar KHAN3, Muhammad ARIF4

(1Department of Software Engineering, Faculty of Computer Science and Information Technology,

University of Malaya, Kuala Lumpur 50603, Malaysia)

(2Faculty of Computing and Information Technology, University of Jeddah, Jeddah 21589, Saudi Arabia)

(3College of Computer and Information Sciences (Muzahmiyah Branch), King Saud University, Riyadh 11362, Saudi Arabia)

(4Department of Computer Science, University of Gujrat, Gujrat 50700, Pakistan)
†E-mail: saif_rehman@siswa.um.edu.my

Received May 18, 2015; Revision accepted Oct. 27, 2015; Crosschecked July 20, 2016

Abstract: The standard software development life cycle heavily depends on requirements elicited from stakeholders. Based on
those requirements, software development is planned and managed from its inception phase to closure. Due to time and resource
constraints, it is imperative to identify the high-priority requirements that need to be considered first during the software devel-
opment process. Moreover, existing prioritization frameworks lack a store of historical data useful for selecting the most suitable
prioritization technique of any similar project domain. In this paper, we propose a framework for prioritization of software re-
quirements, called RePizer, to be used in conjunction with a selected prioritization technique to rank software requirements based
on defined criteria such as implementation cost. RePizer assists requirements engineers in a decision-making process by retrieving
historical data from a requirements repository. RePizer also provides a panoramic view of the entire project to ensure the judicious
use of software development resources. We compared the performance of RePizer in terms of expected accuracy and ease of use
while separately adopting two different prioritization techniques, planning game (PG) and analytical hierarchy process (AHP). The
results showed that RePizer performed better when used in conjunction with the PG technique.

Key words: Software requirements, Requirements prioritization techniques, Prioritization framework, Planning game, Analytical

hierarchy process
http://dx.doi.org/10.1631/FITEE.1500162 CLC number: TP311

1 Introduction

Requirements engineering plays a crucial role in
the success of a software system by understanding
and managing various stakeholders’ needs and wishes
(Achimugu et al., 2014; Dabbagh and Lee, 2015).
Based on the elicited requirements, software project

development is planned from its inception to its clo-
sure phase. There are large complex software-
intensive systems with thousands of individual re-
quirements (Arias et al., 2011). Software develop-
ment organizations need to consider every single
requirement to ensure the success of a software pro-
ject. Incomplete and changing requirements can lead
to project failure (Dominguez, 2009). Furthermore,
the key factors, including limited project resources, a
long project schedule, a low requirements engineer-
ing budget, and different levels of importance among
the requirements, could affect the implementation of
software requirements (Firesmith, 2004). Software

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the Ministry of Education, Malaysia (No.
UM.C/625/1/HIR/MOHE/FCSIT/13) and the Bright Sparks Program
of University of Malaya, Malaysia (No. BSP-151(3)11)

 ORCID: Saif Ur Rehman KHAN, http://orcid.org/0000-0002-
9643-6858
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 751

development organizations aim to achieve higher
customer satisfaction by addressing high-priority
requirements first (Lehtola, 2006). However, it re-
mains a challenging task for development organiza-
tions to meet all the requirements specified by
stakeholders due to time and resource constraints
(Otero et al., 2010). Consequently, requirements pri-
oritization is seen as the main remedy for these
problems and has been recognized as one of the most
important decision-making processes during the
software development process (Achimugu et al.,
2014).

Requirements prioritization has been identified
as the most frequently addressed topic in the re-
quirements engineering domain (Daneva et al., 2014).
It plays a crucial role in software release planning by
selecting a set of important requirements. Finally, the
selected set of requirements is implemented in the
subsequent planned release of a software system
(Bourque and Fairley, 2014). The following scenarios
are useful in understanding requirements proritization
activities using incremental and sequential process
models:
Scenario 1 In the case of an incremental process
model, a subset of requirements is prioritized at a time
to support multiple releases of a software system
(Sommerville, 2010). Generally, software require-
ments continuously evolve due to technology ad-
vancement and changing business needs. Therefore, it
is impossible to implement all requirements in a se-
quential manner. Suppose a requirements engineer
has a set of ‘n’ requirements (Fig. 1) and wants to
implement them for the planned three releases (R) of
a software system. In this situation, the requirements
engineer divides the ‘n’ requirements into three
blocks (B) (i.e., 1 to k, k+1 to m, and m+1 to n, where
k, m, nù and k<m<n). Subsequently, the require-
ments engineer needs to prioritize each block of re-
quirements using a suitable prioritization technique
for each planned release of a software system.
Scenario 2 In the case of a sequential process model,
an entire block of requirements is prioritized
(Sommerville, 2010). In this situation, the require-
ments engineer considers the set of requirements as
one block and thus needs to prioritize the complete
block of requirements for the planned single release
of a software system (Fig. 2).

The above scenarios illustrate that requirements
engineers divide the requirements into one or several

blocks to determine high-value requirements, while
considering resource constraints.

In this paper, we propose a framework called

RePizer for prioritization of requirements. The
framework accepts requirements and a prioritization
technique as inputs to rank the requirements. Finally,
RePizer produces a list of prioritized requirements for
a given software project. To show the applicability of
RePizer, we considered the requirements specifica-
tion document of the Library of Congress (LCPAIG,
2003) as a case study. In addition, we evaluated the
performance of RePizer in terms of expected accu-
racy and ease of use while adopting each of two dif-
ferent prioritization techniques, planning game (PG)
and analytical hierarchy process (AHP).

The main contributions of this paper include:
1. providing a formal definition of the require-

ments prioritization problem,
2. comparing current state-of-the-art prioritiza-

tion frameworks,
3. proposing a requirements prioritization frame-

work by formally defining its components, and
4. evaluating the performance of the proposed

framework while adopting two different prioritization
techniques by conducting a real case study.

Fig. 2 Planning of software requirements for a single
release

Fig. 1 Planning of software requirements for multiple
releases

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 752

2 Background

According to Young (2004), a requirement is “a
statement that identifies a capability, characteristic, or
quality factor of a system in order for it to have value
and utility to a customer or user”. Stakeholders in-
clude customers, end-users, engineers, third parties,
and all other people who have some influence on the
system requirements (Gorschek, 2006). Requirements
prioritization is defined as “an activity during which
the most important requirements for the system (re-
lease) should be identified” (Sommerville, 2010).

Published textual descriptions of prioritization
and related terms are not consistent. Various
researchers have provided different definitions
(Lauesen, 2002; Ahl, 2005) and concepts (Ramzan et
al., 2011; Creswell, 2013), which might be ambigu-
ous for many researchers. Therefore, there is a need to
formally define the requirements and associated pri-
oritization problem. Borrowing the concepts from
Khan et al. (2009), we formally represent the re-
quirements prioritization problem as

Given: requirements set R,

a set of permutations of R (PR),
 a function f from PR to the real numbers.
Problem: Find R′PR such that
 (PR,) [() ()].R R R R f R f R        

Here PR represents the set of all possible prioritiza-
tions of original requirements R, and f is a function
that, when applied to R′ (R′R), results in an award
value for that prioritization (Khan et al., 2009). The
function f is an objective function because it is based
on specific criteria, which is the set of existing re-
quirements prioritization techniques, including cu-
mulative voting (Berander and Jönsson, 2006), ana-
lytical hierarchy process (Saaty, 2008), numerical
assignment (Brackett, 1990; Lehtola and Kauppinen,
2006), and planning game (Mead, 2006).

To prioritize the requirements, different dimen-
sions should be considered, which may vary among
stakeholders. Several dimensions for requirements
prioritization have been published, including personal
preference, business value, time-to-market, associ-
ated risk, implementation cost, dependencies, stability,
and type of requirements (i.e., functional or non-
functional).

During the requirements prioritization phase, a
requirements engineer faces a number of challenges,
such as difficulties in quantifying the associated
benefits and risks, a trade-off between user/market-
driven and technology-driven requirements in each
product release, dependencies and relative priorities,
prioritization of multi-versioned requirements, and
limited knowledge of stakeholders (Lehtola, 2006).

3 State-of-the-art requirements prioritization
techniques and frameworks

3.1 Requirements prioritization techniques

Researchers have proposed a number of re-
quirements prioritization techniques (Karlsson and
Ryan, 1997; Lauesen, 2002; Leffingwell and Widrig,
2003; Ahl, 2005; Berander and Andrews, 2005; Mead,
2006; Berander, 2007; Saaty, 2008; Wiegers and
Beatty, 2013; Dabbagh and Lee, 2014). Prioritization
techniques are based on different underlying concepts.
As a result, they produce different prioritization re-
sults. Thus, careful selection of a prioritization tech-
nique is necessary to provide an effective solution for
a particular project.

The requirements prioritization techniques can
be grouped into two broad categories: quantitative
and qualitative techniques (Creswell, 2013).

3.1.1 Quantitative techniques

This subsection presents the state-of-the-art
quantitative techniques for requirements prioritiza-
tion (Leffingwell and Widrig, 2003; Mead, 2006;
Berander, 2007; Wiegers and Beatty, 2013). The pri-
ority is computed based on the defined nominal scale
that represents the level of importance of the re-
quirements (Berander, 2007).

Weiger’s method involves three key terms: the
value of a requirement, costs, and technical risks
associated with its implementation (Wiegers and
Beatty, 2013). The value is calculated by the cus-
tomers on a scale from 1 to 9, while costs and risks are
evaluated by the developers. Finally, the priority of
requirements is calculated by dividing the value by
the sum of the cost and risk associated with its
implementation.

Cumulative voting (CV) is a method to select the
requirements by casting votes equal to the total

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 753

number of requirements (Leffingwell and Widrig,
2003; Mead, 2006). However, this method is unsuit-
able for a large number of requirements because of
possible miscalculations when summing up the dis-
tributed units among the requirements (Berander and
Andrews, 2005).

Hierarchical cumulative voting (HCV) helps in
solving multi-aspect decision problems by arranging
them into hierarchies. Instead of prioritizing all re-
quirements at a same time, HCV takes a subset of
requirements and prioritizes them one by one in a
sequential manner (Berander, 2007).

3.1.2 Qualitative techniques

Qualitative prioritization techniques compute
the requirements priority based on a defined ordinal
scale (Likert, 1932).

The analytical hierarchy process (AHP) is useful
in solving multi-aspect decision problems (Saaty,
2008; Tahriri et al., 2014). To find the relative priori-
ties of hierarchically classified requirements, AHP
performs pairwise comparisons. In AHP, there is a
direct relationship between the number of require-
ments and the number of comparisons. Therefore,
AHP takes more time to prioritize the requirements
than other prioritization techniques such as cumula-
tive voting and top-10 requirements (Berander and
Andrews, 2005). According to Achimugu et al. (2014),
AHP has been recognized as the most cited prioriti-
zation technique among all existing techniques.

The cost-value approach prioritizes the re-
quirements using two factors, cost and value
(Karlsson and Ryan, 1997; Ahl, 2005). Customers
determine the requirements value, while software
engineers estimate the requirements cost using AHP
pairwise comparison. Next, a cost-value diagram is
plotted based on AHP-based comparison results. This
diagram is further used to reach a consensus between
stakeholders and requirements engineers for ranking
the requirements.

Numerical assignment (NA) categorizes the re-
quirements into three classes: mandatory, desirable,
and inessential (Brackett, 1990; Lehtola and
Kauppinen, 2006). The mandatory requirements must
be fulfilled to satisfy the customers. Desirable re-
quirements help in improving the customer’s satis-
faction level, while inessential requirements can be
safely ignored.

The ranking technique assigns a number (using
an ordinal scale) to each software requirement based
on its importance as suggested by the stakeholders
(Berander and Andrews, 2005). On this scale, the
most important requirement is assigned a numeral
value 1, and the least important a numeral value n,
where n represents the last requirement. Finally,
sorting techniques (e.g., bubble sort) are used to pri-
oritize the requirements.

The top-10 requirements technique selects the
most important 10 requirements from a pool of re-
quirements (Lauesen, 2002). It helps stakeholders and
requirements engineers select the top-10 requirements
based on a consensus among stakeholders. Conse-
quently, it helps avoid disagreements among stake-
holders (Berander and Andrews, 2005).

Binary search tree (BST) handles a large number
of requirements as it involves nlog n comparisons for
n requirements (Ahl, 2005). However, the major
drawback associated with the BST technique is that it
does not count the overall importance of all require-
ments; rather, it determines the importance of a single
requirement compared with another.

Planning game (PG) (Mead, 2006) is a variation
of the numerical assignment technique (Brackett,
1990), which uses one of the key practices of eXtreme
Programming (XP), such as user stories, to prioritize
the requirements (Beck, 2000; Mohammadi et al.,
2008). In the PG technique, the customer divides the
requirements into three main categories similar to the
NA technique. Similarly, the programmer divides the
requirements into those that can be estimated pre-
cisely, reasonably well, or cannot be estimated at all.

3.2 Requirements prioritization frameworks

In the literature, a number of requirements pri-
oritization frameworks have been proposed to rank
software requirements (Moisiadis, 2002; Avesani et
al., 2004; Liu et al., 2004; Danesh et al., 2009;
Ramzan et al., 2009; Bebensee et al., 2010; Otero et
al., 2010; Sadiq et al., 2010; Dabbagh and Lee, 2013;
2014; Perini et al., 2013; Dabbagh et al., 2014). This
subsection briefly discusses the current frameworks
that support the requirements prioritization process.

Moisiadis (2002) integrated the multi-faceted
aspects and used quality function deployment (QFD)
and the AHP technique for requirements prioritization
purposes. Basically, this framework prioritizes the

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 754

requirements based on business goals and stakeholder
viewpoints. A requirements prioritization tool based
on the proposed framework is presented and evalu-
ated using some case studies.

Avesani et al. (2004) introduced machine
learning and a Boolean metrics based framework to
estimate the requirements ranking. To rank the re-
quirements, it performs three basic steps: (1) pair
sampling, (2) preference elicitation, and (3) ranking
learning. The authors conducted an experimental
study and reported that a high level of requirements
prioritization was achieved through a low level of
requirements elicitation.

Liu et al. (2004) integrated the multi-perspective
requirements elicited from all stakeholders into a
single concise set of requirements. The proposed
framework first accepts stakeholders’ requirements
and their initial probabilities, and then determines
their impact relationship using a relationship matrix.
Next, it calculates the final probability of require-
ments based on the normalized and adjusted proba-
bilities. The procedure is continued until all stake-
holders’ perspectives have been considered. The au-
thors conducted a case study and reported that the
proposed framework could be applied to a large-scale
system.

Ramzan et al. (2009) proposed an evaluation
framework that uses a proposed value based fuzzy
requirements prioritization technique. In this tech-
nique, requirements are first elicited from all involved
stakeholders with their assigned values. Next, an
expert group (further divided into two subgroups)
examines the requirements (value-based requirements
prioritization) and stakeholders (value-based stake-
holder’s prioritization) independently. Finally, after
performing a value-based fuzzy logic requirements
prioritization, it lists the stakeholders’ prioritized
requirements.

Danesh et al. (2009) focused on business value
oriented requirements prioritization. The basic
working of the proposed framework is: (1) deter-
mining the core business values and (2) finding their
relative relationship by assigning weights using a
simple ordinal scale ranging from 0 to 10, where 0
means ‘not important’ and 10 means ‘critical’. The
authors validated the framework using an online-
banking system as a case study, and reported that it
supports ‘ease of use’ during the requirements priori-

tization process.
Sadiq et al. (2010) proposed a prioritization

framework that uses the AHP technique and also
considers the risk factor of each requirement. Finally,
requirements are prioritized by comparing the asso-
ciated risks with their calculated weights.

Otero et al. (2010) proposed a framework based
on quality attribute criteria measurement and their
relative importance. The derived quality measure-
ment is used as a main metric for requirements prior-
itization. The framework was evaluated using a case
study where only 10 requirements are considered
based on some quality attributes including type,
scope, customer’s satisfaction, perceived impact,
application-specific attributes, and penalties. The
authors concluded that the proposed technique is
feasible for efficiently evaluating the quality and
priority of software requirements.

Bebensee et al. (2010) introduced the use of the
binary priority list (BPL) for requirements prioritiza-
tion and compared its effectiveness with that of ex-
isting prioritization techniques. The authors validated
the performance of the proposed framework by con-
ducting case studies in two small Dutch product
software companies. They reported that the technique
could be effective for a medium amount of require-
ments and is useful for small-size software product
companies.

Dabbagh and Lee (2013) proposed an AHP-
based approach for prioritizing non-functional re-
quirements. In this approach, the interrelationships
which may exist among non-functional requirements
are considered during the prioritization process, while
non-functional requirements are prioritized based on
their importance to the customers and users. In other
words, the approach produces a consistent prioritized
list of non-functional requirements, among which
there are no conflicting relationships.

The case-based ranking approach (CBRank) is a
prioritization approach, which combines the pairwise
comparison and machine learning techniques to cal-
culate the final ordering of requirements (Perini et al.,
2013). This approach aims to overcome the scalability
issues associated with pairwise comparisons. In other
words, using machine learning techniques makes the
approach applicable for a large number of require-
ments. Perini et al. (2009) conducted a controlled
experiment to compare two tool-supported require-

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 755

ments prioritization approaches, AHP and CBRank.
The authors focused on measuring three properties:
time consumption, ease of use, and accuracy of results.
They concluded that CBRank shows a better perfor-
mance than AHP in terms of time consumption and
ease of use, but AHP outperforms CBRank in terms of
accuracy.

Dabbagh et al. (2014) proposed the hybrid as-
sessment method (HAM) based approach, which
could be applied in the context of prioritizing func-
tional and non-functional requirements. This ap-
proach was inspired by HAM, first introduced by
Ribeiro et al. (2011). HAM is a multi-criterion
decision-making method, in which a pairwise com-
parison decision matrix is integrated with a classical
weighted average decision matrix to rank a collection
of alternatives with respect to a set of criteria.

Dabbagh and Lee (2014) proposed an approach
for integrating the process of prioritizing functional
and non-functional requirements. The integrated pri-
oritization approach (IPA) can be defined as an ap-
proach which prioritizes functional and non-functional
requirements simultaneously, producing two separate
prioritized lists of functional and non-functional re-
quirements. One of the advantages of IPA is that it
considers both functional and non-functional re-
quirements during the prioritization stage using only
one decision matrix. It also establishes the relation-
ship between functional and non-functional require-
ments to perform the prioritization task.

Table 1 presents a comparison among existing
requirements prioritization frameworks with the aim
of (1) highlighting the similarities and differences
which exist among those frameworks and (2) identi-
fying the strengths and limitations of each framework.

By extensively reviewing the literature, we have
observed that current frameworks either propose new
prioritization techniques or suggest improvements in
the existing techniques. However, to the best of our
knowledge, there is no generalized framework that
may be suitable for different types of applications and
provides systematic end-to-end support during the
requirements prioritization process. Moreover, there
is no framework that keeps historical data useful for
future releases of similar types of applications
(Table 1). The framework presented in this study
(RePizer) differs appreciably from all other frame-
works presented in the literature, since RePizer does

not always employ the same requirements prioritiza-
tion technique, such as AHP (Sadiq et al., 2010), but
can employ any suitable prioritziation technique
based on the stakeholders’ viewpoints. As a result,
RePizer supports multi-perspective requirements
prioritization by considering stakeholders’ viewpoints
(i.e., perceived impacts and penalties) and business
goals as analyzed by the requirements engineer. Fur-
thermore, RePizer stores historical data, which is
beneficial for selecting the most suitable prioritization
technique effective for prioritizing a set of require-
ments of future releases of similar types of a large-
scale system.

4 Proposed requirements prioritization frame-
work

This section presents our proposed framework,
called RePizer, which helps development organiza-
tions prioritize requirements by integrating the multi-
perspective requirements elicited from all stakehold-
ers. RePizer stores the prioritization results of an
existing release, which could ultimately improve the
decision-making process of requirements engineers
for future releases of a particular project. For example,
suppose that requirements engineers use the AHP
technique to prioritize requirements based on a cer-
tain criterion such as implementation cost for a given
project. The prioritization results obtained by apply-
ing the AHP technique may not be as accurate as
expected in terms of a defined prioritization criterion
(e.g., implementation cost). This is where RePizer
could assist the development team by using historical
data (i.e., version number, number of requirements,
type of requirements, previously applied prioritiza-
tion technique, and type of application) about priori-
tization results of similar types of projects. The his-
torical data would guide requirements engineers to
choose the most appropriate prioritization technique,
such as PG, to achieve more accurate results for future
releases of the same project or of a different project
with similar characteristics. Fig. 3 depicts the overall
view of the proposed framework.

The key components of RePizer are: (1) a re-
quirements planner and (2) a requirements prioritizer,
which are discussed in the following subsections.
Before going through the detailed description of

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 756

Repizer’s components, note that two main assump-
tions need to be considered while using the proposed
framework:
Assumption 1 There must be effective communi-
cation among the group of stakeholders. This
framework follows the Onsite Customers practice of
XP (Mohammadi et al., 2008), which is helpful in
improving the required communication.
Assumption 2 All elicited requirements must pos-
sess the mentioned quality attributes as described by
Wiegers and Beatty (2013).

4.1 Requirements planner

The requirements planner contains essential in-
formation, including the requirements category, pri-
oritization criteria, and project ID, provided by the

requirements engineer after negotiating with different
involved stakeholders (Fig. 3). This information is
necessary for correct functioning of the framework
and is used by the requirements prioritizer to ulti-
mately generate the prioritized list of requirements.
Therefore, the requirements planner includes:

Requirements category (RC): Requirements can
be categorized as functional requirements (FR) and
non-functional requirements (NFR). The set of re-
quirements provided by the requirements engineer
can be represented as follows: RS={R1, R2, …, Rn}.
Note that an individual requirement can be repre-
sented as Ri (1≤i≤n). A given set of requirements can
be further categorized into RSFR and RSNFR, where
RSFR represents a set of functional requirements and
RSNFR a set of non-functional requirements.

Table 1 Comparison of state-of-the-art frameworks for requirements prioritization

Approach name
(reference)

Employed prioritization
technique(s)

Requirements
type

Retaining
historical data

Risk
analysis

Multi-perspective
support

Multi-faceted approach
(Moisiadis, 2002)

Quality function deploy-
ment and AHP

Functional No No Yes

Machine learning
approach (Avesani
et al., 2004)

Pair sampling and rank
learning

Functional No No No

Requirements probability
approach (Liu et al.,
2004)

Probability analysis and
impact relationship

Functional No No Yes

Value-based fuzzy logic
approach (Ramzan et al.,
2009)

Value-based fuzzy Functional No No Yes

Business value oriented
approach (Danesh et al.,
2009)

Relative relationship
between business values

Functional No No No

AHP-based approach
(Sadiq et al., 2010)

AHP Functional No Yes No

Quality criteria based
approach (Otero et al.,
2010)

Quality attribute
measurement

Functional No No No

Binary priority based
approach (Bebensee
et al., 2010)

Binary priority list Functional No No No

AHP-based approach
(Dabbagh and Lee,
2013)

AHP Non-functional No No No

Case-based ranking
approach (Perini et al.,
2013)

Pairwise comparison and
machine learning

Functional No No No

HAM-based approach
(Dabbagh et al., 2014)

Pairwise comparison Functional and
non-functional

No No Yes

IPA-based approach
(Dabbagh and Lee,
2014)

Integrated prioritization Functional and
non-functional

No No No

RePizer (current study) Applicable using different
prioritization techniques

Functional and
non-functional

Yes No Yes

AHP: analytical hierarchy process; HAM: hybrid assessment method; IPA: integrated prioritization approach

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 757

Prioritization criteria (PC): One of the main
elements of RePizer is requirements prioritization
criteria (PC). Requirements can be prioritized based
on different criteria such as implementation cost,
value to users, risk, and time. Based on PC and the
selected prioritization technique, RePizer can effec-
tively prioritize the requirements depending on the
requirements category (i.e., FR or NFR). A careful
selection of the PC plays a significant role in meeting
the defined project objectives, which can be easily
obtained from all involved stakeholders.

Project ID (PID): The requirements planner
contains a unique PID for each new project. Each PID
is assigned by the requirements engineer and is
compared with existing PID’s from the requirements
repository (RR). PID can be formally represented as

ID new old

1 2

[{ ()}

{(: RR : RR)}],
x

x x

P P P P

C P C P

 

   


 (1)

where Px represents the initial project ID, Pnew the
newly assigned project ID, and Pold the existing pro-
ject ID. There are two conditions C1 and C2 that need
to be met while allocating a project ID, as described in
Eq. (1). Note that only one condition may hold true
while assigning a project ID (exclusive OR: ). If C1
holds (i.e., Px already exists in RR), then the

requirements engineer has to assign Pold as a PID;
otherwise, Pnew will be assigned to a current project.

In a case where C1 is true, the current project is a
new release, whose historical data are stored in RR.
Consequently, the requirements engineer can check
historical data (e.g., previously applied prioritization
techniques) to select the prioritization technique most
suitable for the current release. However, if C2 holds
true, it means that no historical data of the current
project are retained in RR. In this situation, the re-
quirements engineer might search within RR for a
different project with similar characteristics to select
an appropriate prioritization technique for the current
project.

4.2 Requirements prioritizer

The requirements prioritizer accepts inputs from
the requirements planner (Fig. 3). Next, it applies
existing prioritization techniques to generate a prior-
itized list of requirements. It consists of two main
components: requirements manager and requirements
grader.

Requirements manager (RM): RM helps regu-
late the activities of the requirements prioritizer
component. First, it accepts inputs (i.e., PID, RC, and
PC) from the requirements planner. Then, it checks
whether it is a first or subsequent (new) release of a
given project. In the case of a first release, the

Fig. 3 High-level view of RePizer

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 758

requirements engineer needs to apply a suitable pri-
oritization technique for that particular project.
However, in a case where historical data of a project
are available for a new release of a given project, the
requirements engineer extracts those data from the
requirements repository (RR) through RM. Using the
extracted data, the requirements engineer decides
which prioritization technique is the most suitable
(e.g., AHP) for the current release of a given project.
After that, it transfers this information including the
selected prioritization technique to the requirements
grader (RG). RG produces an initial prioritized list of
requirements based on the selected prioritization
technique and defined criteria, and returns this in-
formation to RM. Next, RM forwards initial priori-
tized requirements to the requirements engineer for
improving the decision-making process. The re-
quirements engineer analyzes the prioritization results
and may select another prioritization technique or
confirm the produced results. Finally, the whole pri-
oritization process is terminated once the require-
ments engineer is satisfied.

Requirements grader (RG): RG receives collec-
tive information (i.e., information taken from the
requirements engineer and requirements planner)
from RM. This set of combined information acts as a
function, which is applied to the set of requirements to
prioritize them. RG then generates a prioritized list
that it sends back to the RM, which afterwards sends
this list to the requirements engineer for further
analysis. Ultimately, RG generates the final priori-
tized list of requirements. All this information is also
stored in RR for future reference.

5 Case study

The purpose of this section is to demonstrate
how the proposed framework can be applied in real
cases. To show the applicability of the proposed
framework, we used the Library of Congress SRS
document (LCPAIG, 2003) as a case study. This
document describes an application, called the
OpenURL resolver, which extracts metadata from
users’ requests. For example, a library researcher
submits a request for a journal article that is viewed
by the OpenURL resolver as metadata tags, such as
author names, article title, volume number, and page
numbers. Based on this metadata, the OpenURL re-

solver further fulfills the request by consulting the
related application and verifying the user’s access
rights. This case study contains a set of requirements
which are divided into six different categories
(Table 2).

In this particular case study, each category was
divided into sub-categories tagged as mandatory (M)
or desired (D) (Table 3). For instance, category 1
contained only one sub-category (1.1), which con-
sisted of 9 mandatory and 1 desired requirements.

Generally, it is a straightforward task for re-
quirements engineers to prioritize a small number of
requirements. However, the Library of Congress
study contains a large list of FRs (i.e., categories) at
the first level. These FRs are further divided into sub-
categories (i.e., mandatory or desired) at the second
and third levels. This significantly increased the
complexity of the selected study. In such cases,
RePizer can be beneficial for prioritizing the
requirements.

In this case study, we used planning game (PG)
as a prioritization technique to rank the requirements.
In practice, we used user stories and then performed
two-level prioritization based on the variables (i.e.,
mandatory and desired). The first step was that the
requirements engineer assigned a unique PID to the
current project, for example, P01. Suppose the condi-
tion C2 (Eq. (1)) was true; i.e., the given project ID
was not in RR. Then, a unique PID was assigned to
this project and stored in RR. The static values ex-
tracted from the case study were: RSFR=134 (total),
90 mandatory requirements, and 44 desired. To create
user stories and levels of prioritization, the partici-
pants (totally 32; female 11, male 21) were asked to
rank the set of requirements. The participants were
Master’s students who had studied introductory and
advanced-level software engineering (SE) and had the
experience of developing SE-related projects.

Table 2 Set of requirements (category)*

Category Requirements

1 General requirements

2 Knowledge database requirements

3 Services menu requirements

4 Help facilities for end users

5 Documentation for administrators

6 Administration and vendor support
* From LCPAIG (2003)

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 759

We have created a template in a tabular form to

display the requirements of this case study. Partici-
pants were asked first to rank the categories and then
the sub-categories. After that they were asked to rank
the mandatory and desired requirements of a partic-
ular sub-category using three legends: A (very im-
portant), B (important), and C (least important). A lot
of comparisons were needed to prioritize the re-
quirements and thus a sufficient amount of time was
essential to produce valid results. The total time given
to each participant was 10 d. Table 4 depicts the final
prioritized list for categories of the Library of Con-
gress study.

The results indicate that 11 out of 32 participants
preferred category 1 to be at position 1 (on the top of
the prioritized list); 13 participants preferred category
2 to be at position 2; 13 participants preferred cate-
gory 3 to be at position 5; 10 participants preferred
category 4 to be at position 3; 11 participants pre-
ferred category 5 to be at position 6. Finally, 4 par-
ticipants preferred category 6 to be at position 4. All
the results were then submitted to RePizer, which
took the maximum number of votes for each category
and assigned a priority to each category (Table 4).

For example, for position number 6, 10 partici-
pants voted for category 4, and 11 voted for category
5. As more participants (11 participants) voted for the
6th position, category 5 was placed at position num-
ber 6. The same was applied for sub-categories, and
also mandatory and desired requirements. Table 5
describes the compiled results for prioritizing the list
of categories and sub-categories, respectively.

Finally, Table 6 presents the complete prioritized
list of Library of Congress requirements at category
and sub-category levels, as generated by RePizer.

6 Evaluation

In this section, we illustrate in detail the exper-
iment which we conducted to evaluate the perfor-
mance of RePizer. Table 7 summarizes the key
components of the experiment in terms of its main
goal, independent variables, dependent variables, and
context.

Table 3 Set of requirements (category and sub-
category)*

Category Sub-category Mandatory Desired

1 1.1 9 1

2

2.1 13 12

2.2 4 1

2.3 7 1

2.4 3 –

2.5 6 –

2.6 2 1

3

3.1 3 2

3.2 7 4

3.3 2 –

4 4.1 1 1

5
5.1 8 –

5.2 1 –

6

6.1 6 –

6.2 6 12

6.3 5 5

6.4 3 1

6.5 11 2

6.6 3 1
* From LCPAIG (2003)

Table 4 Prioritized list of categories

Category Prioritized list of category
1 1
2 2
3 4
4 6
5 3
6 5

Table 5 Prioritized list of sub-categories

Prioritized list
of category

Sub-category
Prioritized list of

sub-category
1 1.1 1.1

2

2.1
2.2
2.3
2.4
2.5
2.6

2.1
2.6
2.3
2.5
2.4
2.2

4 4.1 4.1

6

6.1
6.2
6.3
6.4
6.5
6.6

6.1
6.2
6.4
6.5
6.3
6.6

3
3.1
3.2
3.3

3.1
3.2
3.3

5
5.1
5.2

5.2
5.1

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 760

The main goal of the experiment was to inves-
tigate the performance of the proposed framework
(i.e., RePizer) while adopting each of two different
prioritization techniques, PG and AHP. In practice, to
evaluate the performance of RePizer, two properties
were measured: (1) accuracy of the results produced
by RePizer while using either the PG or AHP tech-
nique, and (2) ease of use of RePizer while exploiting
each technique. These two properties are further
discussed in Section 6.2.2.

The purpose of the experiment was to answer the
following research questions:

RQ1: Which technique, PG or AHP, produces
more accurate results when adopted by RePizer?

RQ2: Which technique, PG or AHP, makes

RePizer easier to use?
The ultimate goal was to collect evidence to

show that by adopting one or the other technique, the
performance of RePizer could be improved.

6.1 Hypotheses

Based on the above research questions, we for-
mulated the following null and alternative hypotheses:

Null hypothesis (H0 accuracy): The accuracy of
results is equal while adopting PG or AHP.

Alternative hypothesis (H1 accuracy): The accuracy
of results is not equal while adopting PG or AHP.

Null hypothesis (H0 ease of use): There is no signif-
icant difference between PG and AHP in terms of ease
of use when adopted by RePizer.

Alternative hypothesis (H1 ease of use): There is a
significant difference between PG and AHP in terms
of ease of use when adopted by RePizer.

6.2 Variables

Independent and dependent variables of the ex-
periment were identified as the following.

Table 6 Final prioritized list of requirements

Category Sub-category Mandatory Desired

1
1.1 1.1.1, 1.1.4, 1.1.5, 1.1.8, 1.1.3, 1.1.6, 1.1.2,

1.1.7, 1.1.9
1.1.10

2

2.1 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.8, 2.1.9, 2.1.10,
2.1.13, 2.1.5, 2.1.6, 2.1.7, 2.1.11, 2.1.12

2.1.14, 2.1.18, 2.1.19, 2.1.25, 2.1.15, 2.1.16,
2.1.17, 2.1.22, 2.1.24, 2.1.20, 2.1.21, 2.1.23

2.6 2.6.1, 2.6.2 2.6.3

2.3 2.3.1, 2.3.2, 2.3.3, 2.3.4, 2.3.6, 2.3.5, 2.3.7 2.3.8

2.5 2.5.1, 2.5.6, 2.5.2, 2.5.3, 2.5.4, 2.5.5

2.4 2.4.1, 2.4.2, 2.4.3

2.2 2.2.1, 2.2.2, 2.2.4, 2.2.3 2.2.5

4 4.1 4.1.1 4.1.2

6

6.1 6.1.1, 6.1.2, 6.1.5, 6.1.6, 6.1.3, 6.1.4

6.2 6.2.1, 6.2.2, 6.2.4, 6.2.3, 6.2.6, 6.2.5 6.2.7, 6.2.8, 6.2.9, 6.2.12, 6.2.13.4, 6.2.10,
6.2.11, 6.2.15, 6.2.17, 6.2.16, 6.2.18, 6.2.14

6.4 6.4.1, 6.4.3, 6.4.2 6.4.4

6.5 6.5.1, 6.5.3, 6.5.4, 6.5.6, 6.5.7, 6.5.9, 6.5.2,
6.5.8, 6.5.10, 6.5.5, 6.5.11

6.5.13
6.5.12

6.3 6.3.1, 6.3.5, 6.3.2, 6.3.3, 6.3.4 6.3.6, 6.3.7, 6.3.8, 6.3.10, 6.3.9

6.6 6.6.1, 6.6.2, 6.6.3 6.6.4

3

3.1 3.1.1, 3.1.2, 3.1.3 3.1.4, 3.1.5

3.2 3.2.1, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.2, 3.2.7 3.2.8, 3.2.9, 3.2.10, 3.2.11

3.3 3.3.1, 3.3.2

5
5.2 5.2.1

5.1 5.1.1, 5.1.2, 5.1.3, 5.1.5, 5.1.7, 5.1.8, 5.1.6,
5.1.4

Table 7 Overview of the evaluation of RePizer

Criteria Description

Goal Evaluate the performance of RePizer
while adopting PG and AHP techniques

Independent
variable

Prioritization techniques: PG and AHP

Dependent
variable

Accuracy of results; ease of use

Context Experiment executed using 32 real sub-
jects prioritizing 134 requirements of
the OpernURL resolver project

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 761

6.2.1 Independent variables

The independent variables of the experiment
were the PG and AHP technique. These techniques
were introduced in Section 3.

6.2.2 Dependent variables

To perform an effective evaluation of RePizer
while adopting either the PG or AHP technique, two
dependent variables were measured in the experiment:
the accuracy of the results produced by RePizer and
the ease of use.

We measured the accuracy of results as the first
dependent variable in terms of expected accuracy.
The expected accuracy was measured through a
post-questionnaire (post-test A), in which each test
subject was asked to answer the following question
immediately after working with each prioritization
technique, once he/she was provided with prioritized
lists of requirements produced by the technique based
on his/her judgment: How accurate did you find the
results produced by the technique while using
RePizer? In the experiment, the term ‘technique’ was
replaced with PG or AHP. The test subject was asked
to choose an integer ranging from 1 (very low) to 5
(very high) according to the Likert scale (Likert,
1932). Measuring the accuracy of results could be
useful for answering the first research question
(RQ1).

‘Ease of use’ represents how easily a decision
maker performs the prioritization process using a
given prioritization technique. In the experiment, the
second dependent variable (ease of use) was meas-
ured by means of a post-questionnaire (post-test B).
Immediately after working with each prioritization
technique, the test subjects carried out the first
post-test B by answering the following question: How
easy was it to perform the actual prioritization using
the technique while using RePizer? In the experiment,
the term ‘technique’ was replaced with PG or AHP.
The test subject was asked to choose an integer
ranging from 1 to 5 according to the Likert scale
(Likert, 1932), where 1 indicated very difficult and 5
represented very easy. Measuring this property could
help us investigate the second research question
(RQ2).

6.3 Subjects

The experiment was performed with 32 real
participants (21 male and 11 female Master’s students)

who had studied introductory and advanced-level
software engineering (SE) and had experience in
developing SE-related projects. They have also par-
ticipated in SCORE Contest 2011 (http://score-
contest.org/2011/).

6.4 Object

The object of the experiment was a collection of
134 requirements of the OpenURL resolver project
(LCPAIG, 2003). The OpenURL resolver is a web-
based application that extracts metadata from users’
requests. For example, a library researcher submits a
request for a journal article that is viewed by the
OpenURL resolver as metadata tags (such as
author names, article title, volume number, and page
numbers).

Based on the metadata, the OpenURL resolver
fulfills the request by consulting the related applica-
tion and verifying the user’s access rights. The re-
quirements of the OpenURL resolver are given in
Table 2.

6.5 Experiment design

We adopted a type of paired comparison design
(Table 8), comprising one factor with two treatments
(Wohlin et al., 2012). In this design, each subject
separately applied PG and AHP techniques to the
same set of requirements (i.e., the object) while using
RePizer. The order of executions was given at random
to each subject to minimize the effect of execution
order on the final results.

6.6 Experiment results

This subsection presents the significant results
achieved from the experiment. We initially performed
descriptive analysis using Microsoft Excel. We then
carried out statistical analysis using IBM SPSS Sta-
tistics Version 21 to reject or accept the null hypoth-
eses formulated in Section 6.1. A 5% significance
level was used for hypothesis testing.

Table 8 The paired comparison design used for the
experiment

Group Prioritization task 1 Prioritization task 2

1 RePizer using PG RePizer using AHP

2 RePizer using AHP RePizer using PG

PG: planning game; AHP: analytical hierarchy process

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 762

6.6.1 RQ1: Which technique, PG or AHP, produces
more accurate results when adopted by RePizer?

Table 9 summarizes the results collected from
post-test A, which indicates the opinions of test sub-
jects with respect to the expected accuracy of PG and
AHP. The test subjects seemed to have different
opinions of the two techniques.

Therefore, to understand which technique pro-

duces more accurate results, the third null hypothesis
was tested statistically. Before starting to test the null
hypothesis (H0 accuracy) (Section 6.1), we checked the
distribution of data using the Shapiro-Wilk test to
determine whether it was normal. According to the
test (Table 10), we found that the distribution of data
was not normal with respect to expected accuracy as
the P-value was lower than 0.05 for both PG and AHP
techniques. Due to the nature of the variables and the
fact that the data were not normally distributed, we
decided to investigate the first null hypothesis using a
non-parametric test, the Mann-Whitney test (Siegel
and Castellan, 1988). In this case, we observed that
the difference between the two techniques with re-
spect to the expected accuracy was statically signifi-
cant since the P-value was 0.007 (<0.05). Therefore,
the first null hypothesis was rejected and we con-
cluded that PG produces more accurate results than
AHP when adopted by RePizer.

6.6.2 RQ2: Which technique, PG or AHP, makes
RePizer easier to use?

We measured the ease of use through post-test B
(discussed in Section 6.2.2). The results of this post

questionnaire are given in Table 11. Most subjects
believed that it was easier to use PG for performing
the prioritization.

Due to the non-normal distribution of data
(Table 10), we applied the non-parametric Mann-
Whitney test to investigate the second null hypothesis
(H0 ease of use). The results showed that the difference
between the ease of use of PG and AHP was signifi-
cant (P<0.05). Thus, the second null hypothesis was
rejected and we concluded that PG is easier to use
than AHP when adopted by RePizer.

6.7 Threats to validity

This subsection discusses the potential threats
which could bias the validity of the experiment
results.

Since the experiment results (i.e., expected ac-
curacy and ease of use) were obtained based on sub-
jective opinions of the participants, it is possible that
not all of the participants interpreted the questions
asked in post-tests in the same way. To mitigate this
threat, we designed easy-to-learn questionnaires us-
ing standard scales.

The experiment results are specific and de-
pendent on the context in which the experiments were
carried out. Therefore, it is unwise to generalize based
on the results of this study. To minimize this threat,
more experiments should be conducted in diverse
contexts with different participants.

We used statistical analysis (i.e., non-parametric
tests) to test hypotheses. Each statistical test might
have some degree of tolerance, which could bias the
results. To alleviate this threat, we used an automated

Table 9 Results of measuring expected accuracy
collected from post-test A at different Likert scales

Prioritization
technique

Measured expected accuracy

1 2 3 4 5

PG – 5 6 16 5

AHP – 6 17 9 –

PG: planning game; AHP: analytical hierarchy process

Table 11 Results of measuring ease of use collected
from post-test B at different Likert scales

Prioritization
technique

Measured ease of use

1 2 3 4 5

PG – 7 6 15 4

AHP – 13 13 6 –

PG: planning game; AHP: analytical hierarchy process

Table 10 Normality of experimental data tested using the Shapiro-Wilk test

Prioritization technique
Expected accuracy Ease of use

Statics df Sig. Statics df Sig.

PG 0.874 32 0.000359 0.846 32 0.000342

AHP 0.803 32 0.000045 0.793 32 0.000030

PG: planning game; AHP: analytical hierarchy process

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 763

statistical tool, SPSS, which provides more reliable
results than calculating statistical values manually. It
is highly probable that human errors occur when
performing complex statistical calculations manually.

In the experiment, the subjects were students,
not professionals; hence, their reasoning and inter-
pretation of requirements might not be representative
of specialists in software product companies. How-
ever, the students had a thorough knowledge of the
software product and its requirements, and therefore
reasoning and interpretation threats were unlikely to
have had a significant effect.

During the experiment, there was a risk that
when switching techniques, the students may have
been influenced by familiarity with the requirements
or by learning from their experience with the first
prioritization technique. We tried to minimize this
threat by counterbalancing the groups, but further
investigations with different systems are needed to
confirm the results obtained in this study. Further-
more, the participants of the experiment could be
influenced by fatigue. We limited this threat by lim-
iting the number and complexity of the requirements.
Moreover, we tried to arrange the time of each session
to suit each participant so that he/she could be fresh at
that time.

6.8 Discussion

The main results from this study are summarized
in Table 12 in terms of hypothesis, dependent variable,
statistical test, P-value, result, and direction. Based on
the results, RePizer shows a better performance with
respect to accuracy of results perceived by test sub-
jects and ease of use when PG rather than AHP is used,
since the first and second null hypotheses were re-
jected (Table 12).

Note that these results have been achieved in a
situation where the PG and AHP techniques were
applied separately by the same set of test subjects to
the same set of requirements. Thus, when accuracy is
an important issue in prioritization, we recommend
that RePizer should be used in conjunction with PG.

Moreover, a requirements engineer is likely to find it
much easier to apply RePizer using PG. We believe
that our approach of analyzing the particular out-
comes in terms of accuracy of results and ease of use
could be used in pilot studies for identifying trends
before conducting a large-scale study in industry. The
analysis provided valuable information to choose the
most suitable prioritization technique when applying
RePizer to a given software project in an organization.

7 Conclusions and future work

Requirements prioritization is an important ac-
tivity performed in the early stages of a software
development process. The involvement of multiple
stakeholders often creates a set of conflicting re-
quirements which cannot all be implemented. In this
paper, we proposed a framework, called RePizer,
which enables practitioners to prioritize requirements
based on defined criteria using a prioritization tech-
nique. The main contribution of this work is that
RePizer retains the prioritization results of an existing
release, which could ultimately improve the decision-
making process of requirements engineers in devel-
oping future releases of a given project. To show the
applicability of the proposed framework, we applied
it to a set of 134 requirements of the Library of Con-
gress case study. We further conducted an empirical
study to evaluate the performance of RePizer while
adopting either the PG or AHP technique. The evalu-
ation was based on measuring two properties: ex-
pected accuracy and ease of use. Statistical analysis of
the results indicated better performance of RePizer
when used in conjunction with the PG technique.

It would be of interest to conduct further ex-
periments using different applications and other pri-
oritization techniques to compare the results with the
outcomes of this study. Also, it would be useful to
develop a modified version of RePizer that includes a
requirements knowledge base component to automate
the selection process of the prioritization technique.

Table 12 Summary of hypothesis testing

Hypothesis Dependent variable Statistical test P-value Result Direction

H0 accuracy Expected accuracy Mann-Whitney 0.007 Rejected PG

H0 ease of use Ease of use Mann-Whitney 0.003 Rejected PG

PG: planning game

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 764

References
Achimugu, P., Selamat, A., Ibrahim, R., et al., 2014. A sys-

tematic literature review of software requirements priori-
tization research. Inform. Softw. Technol., 56(6):568-585.
http://dx.doi.org/10.1016/j.infsof.2014.02.001

Ahl, V., 2005. An Experimental Comparison of Five Prioriti-
zation Methods—Investigating Ease of Use, Accuracy
and Scalability. MS Thesis, Blekinge Institute of Tech-
nology, Ronneby, Sweden.

Arias, T.B.C., America, P., Avgeriou, P., 2011. Defining and
documenting execution viewpoints for a large and com-
plex software-intensive system. J. Syst. Softw., 84(9):
1447-1461. http://dx.doi.org/10.1016/j.jss.2010.11.908

Avesani, P., Bazzanella, C., Perini, A., et al., 2004. Supporting
the requirements prioritization process: a machine learn-
ing approach. Proc. 16th Int. Conf. on Software Engi-
neering and Knowledge Engineering, p.306-311.

Bebensee, T., van de Weerd, I., Brinkkemper, S., 2010. Binary
priority list for prioritizing software requirements. LNCS,
6182:67-78.
http://dx.doi.org/10.1007/978-3-642-14192-8_8

Beck, K., 2000. Extreme Programming Explained: Embrace
Change. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Berander, P., 2007. Evolving Prioritization for Software
Product Management. PhD Thesis, Blekinge Institute of
Technology, Sweden.

Berander, P., Andrews, A., 2005. Requirements prioritization.
In: Aurum, A., Wohlin, C. (Eds.), Engineering and Man-
aging Software Requirements. Springer, p.69-94.
http://dx.doi.org/10.1007/3-540-28244-0_4

Berander, P., Jönsson, P., 2006. Hierarchical cumulative voting
(HCV)—prioritization of requirements in hierarchies. Int.
J. Softw. Eng. Knowl. Eng., 16(6):819-849.
http://dx.doi.org/10.1142/S0218194006003026

Bourque, P., Fairley, R.E., 2014. Guide to the Software Engi-
neering Body of Knowledge (SWEBOK®), Version 3.0.
IEEE Computer Society Press, Piscataway, New Jersey.

Brackett, J.W., 1990. Software Requirements. Technical Re-
port, No. SEI-CM-19-1.2. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA.

Creswell, J.W., 2013. Research Design: Qualitative, Quantita-
tive, and Mixed Methods Approaches (4th Ed.). Sage
Publications.

Dabbagh, M., Lee, S.P., 2013. A consistent approach for pri-
oritizing system quality attributes. Proc. 14th ACIS Int.
Conf. on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, p.317-
322. http://dx.doi.org/10.1109/SNPD.2013.9

Dabbagh, M., Lee, S.P., 2014. An approach for integrating the
prioritization of functional and nonfunctional require-
ments. Sci. World J., Article ID 737626.
http://dx.doi.org/10.1155/2014/737626

Dabbagh, M., Lee, S.P., 2015. An approach for prioritizing
NFRs according to their relationship with FRs. Lect.
Notes Softw. Eng., 3(1):1-5.

http://dx.doi.org/10.7763/LNSE.2015.V3.154
Dabbagh, M., Lee, S.P., Parizi, R.M., 2014. Application of

hybrid assessment method for priority assessment of
functional and non-functional requirements. Proc. Int.
Conf. on Information Science and Applications, p.1-4.
http://dx.doi.org/10.1109/ICISA.2014.6847365

Danesh, A.S., Mortazavi, S.M., Danesh, S.Y.S., 2009. Re-
quirements prioritization in on-line banking systems us-
ing value-oriented framework. Int. Conf. on Computer
Technology and Development, p.158-161.
http://dx.doi.org/10.1109/ICCTD.2009.41

Daneva, M., Damian, D., Marchetto, A., et al., 2014. Empirical
research methodologies and studies in requirements en-
gineering: how far did we come? J. Syst. Softw., 95:1-9.
http://dx.doi.org/10.1016/j.jss.2014.06.035

Dominguez, J., 2009. The Curious Case of the Chaos Report
2009. Available from http://www.projectsmart.co.uk/the-
curious-case-of-the-chaos-report-2009.html

Firesmith, D., 2004. Prioritizing requirements. J. Obj. Technol.,
3(8):35-47. http://dx.doi.org/10.5381/jot.2004.3.8.c4

Gorschek, T., 2006. Requirements Engineering Supporting
Technical Product Management. PhD Thesis, Blekinge
Institute of Technology, Sweden.

Karlsson, J., Ryan, K., 1997. A cost-value approach for priori-
tizing requirements. IEEE Softw., 14(5):67-74.
http://dx.doi.org/10.1109/52.605933

Khan, S.U.R., Rehman, I.U., Malik, S.U.R., 2009. The impact
of test case reduction and prioritization on software test-
ing effectiveness. Int. Conf. on Emerging Technologies,
p.416-421. http://dx.doi.org/10.1109/ICET.2009.5353136

Lauesen, S., 2002. Software Requirements: Styles and Tech-
niques. Addison-Wesley Professional.

Leffingwell, D., Widrig, D., 2003. Managing Software Re-
quirements: a Unified Approach. Addison-Wesley.

Lehtola, L., 2006. Providing Value by Prioritizing Require-
ments Throughout Product Development: State of Prac-
tice and Suitability of Prioritization Methods. PhD Thesis,
Helsinki University of Technology, Finland.

Lehtola, L., Kauppinen, M., 2006. Suitability of requirements
prioritization methods for market-driven software product
development. Softw. Process Improv. Pract., 11(1):7-19.
http://dx.doi.org/10.1002/spip.249

Library of Congress Portals Applications Interest Group
(LCPAIG), 2003. Functional Requirements for an Open-
URL Resolver for the Library of Congress. Available
from http://www.loc.gov/catdir/lcpaig/openurl_require
ments_20031104.pdf

Likert, R., 1932. A technique for the measurement of attitudes.
Arch. Psychol., 22:1-55.

Liu, X.Q., Veera, C.S., Sun, Y., et al., 2004. Priority assess-
ment of software requirements from multiple perspectives.
28th Annual Int. Computer Software and Applications
Conf., p.410-415.
http://dx.doi.org/10.1109/CMPSAC.2004.1342872

Mead, N., 2006. Requirements Prioritization Introduction.
Software Engineering Institute Web Publication, Carnegie

Khan et al. / Front Inform Technol Electron Eng 2016 17(8):750-765 765

Mellon University, Pittsburgh, USA.
Mohammadi, S., Nikkhahan, B., Sohrabi, S., 2008. An ana-

lytical survey of “on-site customer” practice in extreme
programming. Int. Symp. on Computer Science and Its
Applications, p.1-6.
http://dx.doi.org/10.1109/CSA.2008.72

Moisiadis, F., 2002. The fundamentals of prioritising re-
quirements. Proc. Systems Engineering, Test and Evalu-
ation Conf., p.109-119.

Otero, C.E., Dell, E., Qureshi, A., et al., 2010. A quality-based
requirement prioritization framework using binary inputs.
4th Asia Int. Conf. on Mathematical/Analytical Model-
ling and Computer Simulation, p.187-192.
http://dx.doi.org/10.1109/AMS.2010.48

Perini, A., Ricca, F., Susi, A., 2009. Tool-supported require-
ments prioritization: comparing the AHP and CBRank
methods. Inform. Softw. Technol., 51(6):1021-1032.
http://dx.doi.org/10.1016/j.infsof.2008.12.001

Perini, A., Susi, A., Avesani, P., 2013. A machine learning
approach to software requirements prioritization. IEEE
Trans. Softw. Eng., 39(4):445-461.
http://dx.doi.org/10.1109/TSE.2012.52

Ramzan, M., Jaffar, M.A., Iqbal, M.A., et al., 2009. Value
based fuzzy requirement prioritization and its evaluation
framework. Proc. 4th IEEE Int. Conf. on Innovative
Computing, Information and Control, p.1464-1468.
http://dx.doi.org/10.1109/ICICIC.2009.375

Ramzan, M., Jaffar, M.A., Shahid, A.A., 2011. Value based
intelligent requirement prioritization (VIRP): expert
driven fuzzy logic based prioritization technique. Int. J.
Innov. Comput. Inform. Contr., 7(3):1017-1038.

Ribeiro, R.A., Moreira, A.M., van den Broek, P., et al., 2011.
Hybrid assessment method for software engineering de-
cisions. Dec. Supp. Syst., 51(1):208-219.
http://dx.doi.org/10.1016/j.dss.2010.12.009

Saaty, T.L., 2008. Decision making with the analytic hierarchy
process. Int. J. Serv. Sci., 1(1):83-98.
http://dx.doi.org/10.1504/IJSSCI.2008.017590

Sadiq, M., Shahid, M., Ahmad, S., 2010. Adding threat during
software requirements elicitation and prioritization. Int. J.
Comput. Appl., 1(9):50-54.
http://dx.doi.org/10.5120/200-339

Siegel, S., Castellan, N.J., 1988. Nonparametric Statistics for
the Behavioral Sciences (2nd Ed.). McGraw-Hill.

Sommerville, I., 2010. Software Engineering (9th Ed.).
Pearson.

Tahriri, F., Dabbagh, M., Ale Ebrahim, N., 2014. Supplier
assessment and selection using fuzzy analytic hierarchy
process in a steel manufacturing company. J. Sci. Res.
Rep., 3(10):1319-1338.

Wiegers, K., Beatty, J., 2013. Software Requirements (3rd Ed.).
Microsoft Press.

Wohlin, C., Runeson, P., Höst, M., et al., 2012. Experimenta-
tion in Software Engineering. Springer Science & Busi-
ness Media.
http://dx.doi.org/10.1007/978-3-642-29044-2

Young, R.R., 2004. The Requirements Engineering Handbook.
Artech House, Norwood, MA, USA.

