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Abstract:    With shrinking technology, the increase in variability of process, voltage, and temperature (PVT) parameters sig-
nificantly impacts the yield analysis and optimization for chip designs. Previous yield estimation algorithms have been limited to 
predicting either timing or power yield. However, neglecting the correlation between power and delay will result in significant 
yield loss. Most of these approaches also suffer from high computational complexity and long runtime. We suggest a novel 
bi-objective optimization framework based on Chebyshev affine arithmetic (CAA) and the adaptive weighted sum (AWS) method. 
Both power and timing yield are set as objective functions in this framework. The two objectives are optimized simultaneously to 
maintain the correlation between them. The proposed method first predicts the guaranteed probability bounds for leakage and 
delay distributions under the assumption of arbitrary correlations. Then a power-delay bi-objective optimization model is for-
mulated by computation of cumulative distribution function (CDF) bounds. Finally, the AWS method is applied for power-delay 
optimization to generate a well-distributed set of Pareto-optimal solutions. Experimental results on ISCAS benchmark circuits 
show that the proposed bi-objective framework is capable of providing sufficient trade-off information between power and timing 
yield. 
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1  Introduction 
 

Continuous process scaling has led to a large 
increase in process, voltage, and temperature (PVT) 
variability and a wide spread fluctuation in integrated 
circuit (IC) performance. This increasing variability 
brings significant impact on the parametric yield of 
today’s chip design (Mani et al., 2005; Radfar and 
Singh, 2014; Banerjee and Chatterjee, 2015). To be 
specific, 30% variation in effective channel length 
could cause over 20× fluctuation in leakage power 
(Rao et al., 2004a; Kanj et al., 2010). In addition, 
Srivastava et al. (2008) pointed out the negative cor-
relation between power dissipation and timing per-

formance of a design. This relationship causes sig-
nificant yield loss when considering both power and 
timing limits and leads to a two-sided constraint over 
the design region. 

Most of the previous yield estimation works 
have been limited to predicting either timing or 
leakage yield (Orshansky and Bandyopadhyay, 2004; 
Rao et al., 2004b; Xie and Davoodi, 2008). Dealing 
with only timing yield optimization will result in yield 
loss due to the power constraint (Srivastava et al., 
2008). On the other hand, all the power yield analyses 
neglect the correlation between power and timing 
metrics. As mentioned above, in a chip design, the 
leakage power and delay are negatively correlated. 
This situation will consequently bring on a conflict 
between these two objectives during the optimization 
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procedure and cause designers to be in a dilemma. 
Specifically, this situation has been more serious at a 
20-nm technology node. Thus, there is a critical re-
quirement to develop an effective approach that per-
forms parametric yield optimization considering both 
power and timing constraints. 

There is recent research focusing on considering 
power and timing metrics simultaneously in yield 
analysis and optimization. Hwang et al. (2003) pro-
posed a novel statistical leakage minimization method 
using the timing yield slack for a gate change metric. 
This method can help improve not only the perfor-
mance of leakage optimization but also the efficiency 
by providing valuable information to guide statistical 
leakage optimization. Based on optimal delay budg-
eting and slack utilization, Mani et al. (2007) pre-
sented a two-phase approach to solve the statistical 
leakage power minimization problem under timing 
yield constraints. The first phase is delay budgeting, 
which is formulated as a robust version of the power- 
weighted linear program that assigns slacks based on 
power-delay sensitivities of gates. The second phase 
consists of a local search among gate configurations 
in the library, such that slacks assigned to gates in the 
previous phase are used for power reduction. How-
ever, these approaches mentioned above fail to take 
into account the close correlation between leakage 
power and delay. They do not perform parametric 
yield optimization incorporating leakage and delay 
considerations, but optimize the power yield under 
timing constraints in the presence of variability. 

Several research efforts have been made on op-
timizing yield in a multi-objective design fashion. For 
example, Liu et al. (2013) proposed a new time- 
domain performance bound analysis method for an-
alog circuits, considering process variations. The 
method can give transient lower and upper bounds of 
the performance variations affected in analog circuits 
accurately and reliably. However, their approach re-
quires additional computational cost for estimating 
yield specification from the predicted performance 
bounds. Additionally, it cannot handle parameter 
variations that are partially specified. Also, Guerra- 
Gómez et al. (2015) proposed several evolutionary 
algorithms to solve the multi-objective yield optimi-
zation problem. In their work, a strategy based on the 
optimal computing budget allocation approach was 
presented to reduce the simulation cost in the yield 

optimization of analog integrated circuits. However, 
their method cannot provide more flexibility in design 
trade-offs. In contrast, our work is discussed under the 
assumption of partially specified PVT parameter 
variations. It provides more flexibility and a simple 
optimization procedure with lower computation cost. 

This study aims at solving the power-delay op-
timization problem by using multi-objective optimi-
zation techniques. The proposed optimization method 
incorporates leakage and delay considerations. We 
introduce a new power and timing yield optimization 
framework using Chebyshev affine arithmetic (CAA) 
and the adaptive weighted sum (AWS) method for 
multi-objective optimization. This framework treats 
both timing and power yield as objective functions 
and optimizes these two goals simultaneously. Addi-
tionally, because AWS is used for optimization in 
multi-domain, our framework can include extra ob-
jectives, e.g., area and thermal metrics. Different from 
traditional multi-objective optimization methods, our 
optimization methodology distributes the optimal 
solutions uniformly upon the Pareto front. As a result, 
it can provide the designers with multiple solutions 
distributed over the optimal design spectrum, giving 
designers the flexibility to choose the most appropri-
ate solution(s) according to power and timing  
requirements. 

The contributions of the new approach include: 
(1) maintaining the correlation between leakage 
power and delay by explicitly expressing both metrics 
in terms of the same parameter variations; (2) allow-
ing arbitrary correlations among PVT parameters, 
because the yield prediction scheme for leakage 
power and delay is under the assumption of uncertain 
parameter correlations; and (3) providing designers 
with trade-off information between power and timing 
yield to find the best solution(s). The final result is a 
set of Pareto-optimal solutions uniformly distributed 
over the design region. The flexibility obtained by the 
new multi-objective framework was demonstrated on 
various ISCAS benchmark circuits. For each circuit, 
well-distributed sets of Pareto-optimal solutions were 
obtained by the proposed methodology. 
 
 
2  Statistical leakage and delay model 
 

This section discusses in detail the statistical 
models for leakage power and delay under the  
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influence of parameter variations, which will be in-
corporated into the bi-objective model for optimiza-
tion. Here, the variability in leakage and delay will be 
expressed as a function of several key PVT parame-
ters. In this way, the correlation between power and 
delay is preserved for yield estimation, because they 
both depend on the identical underlying parameter 
variations. 

Without loss of generality, the current study 
takes into account the variability in several key PVT 
parameters: effective transistor channel length L, 
threshold voltage Vth, oxide thickness Tox, power- 
supply voltage Vdd, and on-chip temperature T. If a 
common notation P is used to represent all these PVT 
parameters, the variation deviated from the nominal 
value of process parameter P may be expressed as 
 

inter intra ,P P P                            (1) 

 
where Pinter denotes the inter-chip process variation, 
and Pintra the intra-chip counterpart (Mande et al., 
2013). All process variations are assumed to follow 
Gaussian distributions, which is in agreement with 
empirical data (Visweswariah, 2003). The relative 
magnitudes of the intra- and inter-chip components 
can be controlled by adjusting their variances while 
satisfying the following equation (Mani et al., 2005): 
 

inter intra

2 2 2 .P P P                          (2) 

 
Based on above basic models, let us take a look 

at leakage power and timing, respectively. Leakage 
power can be expressed as the product of its nominal 
value and a multiplicative function representing the 
perturbation around the nominal leakage value (Rao 
et al., 2004a): 
 

nomLeakage ( ),I f P                      (3) 

 
where deviation P represents the impact from pa-
rameter variation. To be more specific, the leakage 
power can be written as its nominal value Inom multi-
plied with an exponential function in terms of effec-
tive transistor channel length variation (L), thresh-
old voltage variation (Vth), oxide thickness variation 
(Tox), power-supply voltage variation (Vdd), and 
on-chip temperature (T). As L imposes a signifi-

cant influence on sub-threshold leakage, a quadratic 
exponential expression rather than a linear exponen-
tial model is adopted here. Besides, the super-linear 
dependency of leakage power on variability in 
threshold voltage, oxide thickness, power-supply 
voltage, and on-chip temperature can be well ap-
proximated using a linear exponential function ac-
cording to SPICE simulations (Wang and Orshansky, 
2006). In conclusion, the leakage power can be rep-
resented explicitly as follows:  
 

sub gate

2
sub,nom th dd

gate,nom ox dd

Leakage

exp( )

  exp( ),

I I
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 

          

    

 

(4) 
 

where Isub,nom and Igate,nom are the nominal values of 
the sub-threshold leakage power and the gate leakage 
current, respectively. The coefficients a, b, c, d, e, f, 
and g can be in fact regarded as the sensitivities of 
leakage power (in logarithm form) to corresponding 
PVT parameters under consideration. The values of 
the coefficients in Eq. (4) can be determined by non-
linear regression based on HSPICE simulation data. 

On the other hand, for the timing issue, gate de-
lay needs to be modeled as a function in terms of a set 
of PVT parameters. We assume that a first-order 
Taylor expansion is adequate to model the gate delay 
function (Sheng et al., 2013). The delay function 
under parameter variations can be approximated lin-
early as 

 

nomDelay ,i
i i

D
D P

P

 
    

                 (5) 

 
where Dnom is the nominal gate delay calculated at the 
nominal PVT parameter values and D/Pi is the 
delay sensitivity of a specific parameter computed 
around its nominal value. The delay function is writ-
ten more specifically as 
 

nom th ox ddDelay ,D h L k V l T r V s T             (6) 

 
where h, k, l, r, and s are the corresponding parameter 
sensitivities. 

Having established the statistical models of 
leakage power and delay in expressions of parameter 
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variations, we are able to develop the power-delay 
bi-objective optimization framework, which will be 
described in the subsequent part. Note that leakage 
and delay are correlated due to their common de-
pendence on identical PVT parameters. 
 
 
3  Bi-objective optimization procedure 
 

Guerra-Gómez et al. (2013) proposed a sensi-
tivity analysis in the multi-objective optimization of 
analog circuits. The approach can achieve good ac-
curacy for small design parameter perturbations or 
relatively linear behaviors in analog circuit perfor-
mances. However, the leakage power in our optimi-
zation framework is highly nonlinear to design pa-
rameters. Thus, we must seek other yield prediction 
approaches that can handle nonlinear dependency 
upon parameter variations and limited descriptions of 
parameter variations. 

This section applies the CAA method to address 
the above two issues and discusses how to formulate 
the proposed power-delay bi-objective optimization 
model to obtain a well-distributed set of Pareto- 
optimal solutions. First, the CAA methodology is 
applied to predict a guaranteed cumulative distribu-
tion function (CDF) bound for leakage power and 
delay based on the models described in Section 2. The 
distribution function directly provides the functional 
relationship between power/delay metrics and design 
parameters. Then leakage yield and timing yield 
functions can be established as two objective func-
tions. Finally, the bi-objective optimization model for 
power and timing yield is proposed, which will be 
optimized in the subsequent part. 

3.1  CAA-based probability bound prediction 

The PVT parameter variations are assumed to be 
partially specified; i.e., only the mean and variance 
information may be available. As suggested in much 
literature, some PVT parameters tend to be uncertain 
or even have unknown distributions (Gong et al., 
2011; Ukhov et al., 2014). Under this assumption, this 
study applies the CAA method to predict parametric 
yield robustly with fully or partially specified pa-
rameter variations. 

According to the CAA theory (Sun et al., 2008; 
Zhu and Wu, 2014), an uncertain random variable can 

be represented as 
 

nom
1

,
n

i i
i

x x x 


                          (7) 

 
where xnom denotes the nominal value of the PVT 
parameter, i an independent component representing 
the total fluctuation, and xi the magnitude of corre-
sponding i. Note that in our bi-objective optimization 
framework, i represents arbitrary parameter varia-
tions, including effective channel length variation 
(L), threshold voltage variation (Vth), oxide thick-
ness variation (Tox), power-supply voltage variation 
(Vdd), and on-chip temperature (T). 

Considering the bivariate affine arithmetic (AA) 
operation z′←f (x′, y′), an affine operation f can di-
rectly provide a first-order affine form without any 
computation error (de Figueiredo and Stolfi, 2004). 
For example, 

 

nom nom
1

nom

nom

( ) ( ) ,

( ),

.

n

i i i
i

n

i i
i

n

i i
i

x y x y x y

ax a x x

x b x x b









      



  


    









     (8) 

 
However, when f is not affine, we need to choose 

an affine function to approximate z′ over a given 
domain: 
 

a
1 2 nom

1

( , , , ) .
n

n i i k k
i

f z z z    


           (9) 

 
Here, zkk indicates the approximation error. 

To obtain an optimal approximation to z′, we 
usually consider that the approximation is only an 
affine combination of x′ and y′: 
 

a
1 2( , , , ) ,n kf x y                  (10) 

 
where α and β denote the coefficients of x′ and y′, 
respectively, ζ is a constant, and δk represents the 
approximation error. In this study, Chebyshev ap-
proximation (de Figueiredo and Stolfi, 2004) is used 
to approximate z′. Chebyshev approximation can 
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minimize the maximum absolute error  in Eq. (10) 
better than other algorithms. 

Besides the range information, an uncertain 
random variable can be represented by a set of CDFs 
or a p-box (Saad et al., 2014). Thus, in this study, we 
represent the parameter variations as a set of CDFs. 
The CDF bounds for parameter variations can be 
constructed by the CAA method relying on mean and 
variance information and computed under affine and 
non-affine operations. To effectively predict the 
probability bound, we apply Chebyshev approxima-
tion on an uncertain random variable’s CDFs to ad-
dress its nonlinearity. Given an uncertain random 
variable already in the p-box representation, the 
whole range of an uncertain random variable is di-
vided into several subintervals (Fig. 1). Chebyshev 
approximation is then performed on each interval, 
which clearly returns a linear function with the least 
perturbation according to Eq. (10). This provides the 
upper and lower bounds in piecewise linear form, 
enclosing the CDFs well. 

The resulting CDF bounds obtained by Cheby-
shev approximation are named ‘piecewise linear 
probability bounds’ (PLPBs) (Sun et al., 2008). Given 
random variables in PLPB representations, an effi-
cient prediction scheme can be provided for corre-
lating CDF bounds under operations upon random 
variables. This scheme transforms all the non-affine 
operations into affine forms by Chebyshev approxi-
mation, and then CDF bounds are predicted step by 
step under affine operations, handling arbitrary cor-
relations among variations. 

 
 
 
 
 
 
 
 
 
 
 
 

3.2  Correlation CDF bound computation 

Without loss of generality, we describe any two 
PVT parameters as random variables X and Y, which 

are used in PLPB representations. FU, X and FD, X are 
the upper bound and lower bound of X, respectively, 
while FU, Y and FD, Y of Y. Here, we denote Z as a bi-
nary function of X and Y with one of ‘add’, ‘subtract’,  
‘multiply’, and ‘divide’ operations, and let 1

UF   and 
1

DF   denote the upper and lower bounds of the inverse  
CDF, respectively. Based on Williamson and Downs 
(1990), for ‘add’ operation, these bounds can be de-
rived as 
 

1 1
D, D,

1 1
D, D,

[ ,1]

( ) ( )

min[ ( ) ( 1)],

Z X Y

X Y
u p

F p F p

F u F p u

 


 




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  (11) 

1 1
U, U,

1 1
U, U,

[0, ]

( ) ( )

max[ ( ) ( )].

Z X Y

X Y
u p

F p F p

F u F p u

 


 





  
       (12) 

 

Similarly, we can obtain the bounds for ‘sub-
tract’, ‘multiply’, and ‘divide’ operations according to 
Williamson and Downs (1990). As ‘multiply’ and 
‘divide’ operations are not used in this study, we do 
not consider them here. 

Once the abovementioned bounds are obtained, 
affine operations ZX  Y exhibit a functional rela-
tionship in the inverses of X’ and Y’s CDF bounds. 
Here, taking Eq. (11) as an example, for a fixed 

probability value p, if we assume ( )g u  1
D, ( )XF u  

1
D, ( 1),YF p u    then 1

D, ( )X YF p
  is obviously the 

minimum value of g(u) in the interval [p,1]. To solve 
this optimization problem, we will represent random 
variables in PLPB formation. It can propose a simple 
optimization procedure with low computation cost. 

Now let us take FD, XY as an example to show 
how to construct the lower bound. FU, XY, FD, X−Y, and 
FU, X−Y can be derived similarly. Here we have 
 

1 1 1
D, D, D,[ ,1]

[ ,1]

( ) min[ ( ) ( 1)]

min ( ).

X Y X Yu p

u p

F p F u F p u

g u

  
 



   


  (13) 

 
From the above discussion we can conclude that, 

for a fixed probability value p, 1
D, ( 1)YF p u    is a 

piecewise linear function of u, because it is simply an 

affine transformation of 1
D, ( )YF u  (Fig. 2). Thus, we 

can find the minimum value of g(u) in the interval 

Fig. 1  Piecewise linear probability bounds (PLPB) rep-
resentation of an uncertain random variable (the dotted 
lines are PLPB bounds, which are not focused on in this 
study) 
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[p, 1], where 1
D, ( )XF u  and 1

D, ( 1)YF p u    have tran-

sition points r1, r2 and q1, q2, respectively. As shown 
in Fig. 2, due to the continuity and monotonicity of 

1
D, ( )YF u  and 1

D, ( 1)YF p u    in the interval [p, 1], the 

piecewise linear function g(u) has four transition 
points, i.e., s1q1, s2r1, s3q2, and s4r2. Intuitively, 
the minimum value of g(u) is achieved at point s2 
corresponding to a fixed provability value p. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To summarize generally, the probability ranges 

for 1
D, ( )XF u  and 1

D, ( 1)YF p u    are divided by sets 

{p, r1, r2, , rn, 1} and {p, q1, q2, , qn, 1}, respec-
tively. The probability range of g(u) can be divided as 
 

1 2

1 2 1 2

{ , , }

  { , , , , , , ,1},
n

n n

S s s s

p r r r q q q






 

           (14) 

 
where {p, r1, r2, , rn, q1, q2, , qn, 1} are in as-
cending order. For each interval [si, si1], because g(u) 
is monotonic over this interval, the minimum value 
must be determined by one of the end points. There-

fore, the global minimum can be determined by 
choosing the most minimum value of the end points 
among these intervals. 

3.3  Bi-objective optimization model 

In chip-level parametric yield analysis, a rea-
sonable assumption is that each device has a unique 
intra-chip variation Pintra while sharing the same 
inter-chip variation Pinter with all other devices. 
Therefore, global process variations may be regarded 
as fixed values for each device. All process variations 
are fully specified by corresponding CDFs, while all 
environmental variations are partially specified by the 
corresponding mean and variance values. The corre-
sponding PLPB representations can be constructed 
conveniently by Chebyshev approximation. 

According to Eqs. (4) and (6), the leakage power 
and gate delay for a chip design are represented as 
functions in terms of PVT parameter variations. Us-
ing the CAA methodology, we can finally obtain a 
guaranteed CDF bound for leakage power or delay 
distribution. Taking the delay model as an example, it 
is already in the affine form according to Eq. (8). 
Within several steps, CAA is able to predict the upper 
and lower probability bounds for delay distribution 
under parameter variations. Regardless of relation-
ship among PVT parameters, any CDF generated 
under an arbitrary correlation situation will be en-
closed by CAA predicted bounds. As our purpose is to 
optimize the guaranteed parametric yield, we con-
sider only the lower probability bound, which is de-
noted by FD. There will be a similar conclusion for 
power distribution. In the leakage model, two CAA 
approximations, quadratic and exponential operations, 
are required to reduce the leakage function to a series 
of affine operations on parameter variations. The 
guaranteed (lower) CDF bound for leakage distribu-
tion, generated in the same manner, is denoted by FL. 

To analyze parametric yield considering both 
power and timing limits, we now focus on the pre-
dicted distributions FL and FD. For example, leakage 
distribution FL is actually a function that returns the 
cumulative probability at a given leakage value. In the 
opposite direction, given a specific yield probability, 
it is also able to provide the leakage value corre-
sponding to the given particular yield level. Fig. 3 
shows the relationship between FL and the power 
yield. 

Fig. 2  The computing process of the lower bound for the 
inverse CDF of variable Z=X+Y 
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If we define a specific leakage limit L0 as a 

power yield criterion, FL directly provides the yield 
information: 

 

L L 0 0( ) (Leakage ),Y F L P L               (15) 

 
where YL denotes the power yield defined by leakage 
distribution. Timing yield YD can be defined by the 
same token: 

 

D D 0 0( ) (Delay ).Y F D P D               (16) 

 

So far we have established the functional rela-
tionship between parametric yield and design param-
eters x[L, Vth, Tox, Vdd, T], because leakage and delay 
distributions both depend on the variability in  
parameters. 

The algorithmic flow of CAA-based yield pre-
diction is summarized in Algorithm 1: 

 
Algorithm 1    CAA based yield prediction 
Input: design parameter x, metric limit M0 
Output: Yield 
fun←Model_Extraction() 
(op_NonAff, op_Aff)←Non_Affine_Check(fun) 
op_Appx←Chebyshev_Approx(op_NonAff) 
op_Stack←Combine(op_Aff, op_Appx) 
for i1 to length(op_Stack) do 
    dummy_CDF←CDF_Generation(xi) 
    PUSH(dummy_CDF, CDF_Stack) 
end for 
F1←POP(CDF_Stack) 
while CDF_Stack do 
    F2←POP(CDF_Stack) 
    op←POP(op_Stack) 
    F1←CAA_Bound_Computation(op, F1, F2) 
end while 
Distribution←F1 

Yield←Prob(Distribution, M0) 
return Yield 

In Algorithm 1, the ‘Model_Extraction’ subrou-
tine returns the expressions demonstrated in Eqs. (4) 
and (6). Having the explicit expressions of leakage 
power and gate delay parameterized with design pa-
rameters, the ‘Non_Affine_Check’ subroutine identi-
fies the affine operations and non-affine operations in 
analytical power and timing models, denoted by 
op_NonAff and op_Aff, respectively. The ‘Cheby-
shev_Approx’ and ‘Combine’ subroutines further 
translate the power or delay model into a sequence of 
affine operations and put them into a stack, op_Stack. 
The ‘CDF_Generation’ subroutine returns the CDF 
bounds represented by PLPB, denoted by dummy_ 
CDF. The ‘PUSH’ subroutine is the push operation to 
push the dummy_CDF into the stack, CDF_Stack; the 
‘POP’ subroutine is the pop operation. The 
‘CAA_Bound_Computation’ subroutine is responsi-
ble for generating the correlation CDF bound under a 
specified affine operation. By repeatedly performing 
the ‘CAA_Bound_Computation’ subroutine, the al-
gorithm predicts the distribution information for 
power and timing metrics which are represented by 
‘Distribution’. Then the ‘Prob’ subroutine returns the 
parametric yield by computing the CDF value at limit 
M0. The resulting power yield YL and timing yield YD 
are determined as two objective functions in our 
bi-objective optimization framework. 

After determining the objective functions in our 
proposed power-delay bi-objective optimization 
framework, the proposed bi-objective optimization 
model can be rigorously expressed as follows: 
 

L L 0 0

D D 0 0

L U th ox dd

max  ( ) (Leakage )

max  ( ) (Delay )

subject to , [ , , , , ],

Y F L P L

Y F D P D

x x x x L V T V T

  

  

  

  (17) 

 
where FL and FD are distribution functions with re-
spect to design parameters, and xL and xU are the 
boundary values for PVT parameters over the design 
region. Metric limits L0 and D0 are predetermined 
values. 
 
 
4  AWS-based bi-objective optimization 
 

The adaptive weighted sum method (Kim and de 
Weck, 2005) is a methodology that effectively de-
termines the Pareto front for a multi-objective  

Fig. 3  Distribution function FL provides yield information
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optimization problem. It can produce well-distributed 
Pareto-optimal solutions by changing the weights 
adaptively. In this work, the AWS method is used to 
address the power-delay bi-objective optimization 
issue considering both leakage and delay limits. 

4.1  Pareto-optimality 

In a multi-optimization framework, the objective 
function f (x)[f1(x), f2(x), , fn(x)] often conflicts 
with each other (Kashfi et al., 2011), such as the 
leakage power and delay in a circuit design. For con-
flicting objectives, it is not feasible to optimize the 
performance for all of them; improving one will result 
in deteriorating another. In such a case, we strive for 
Pareto-optimality that ensures the best overall per-
formance. Here, a Pareto-optimal solution can be 
defined as follows (Srinivas and Deb, 1994; Li and 
Lian, 2008; Lourenco and Horta, 2012): 
Definition 1 (Pareto-optimal solution) (Li and Lian, 
2008)    Given u*U, if uU s.t. u u*, u* is said 
to be a Pareto-optimal solution. 

The surface consisting of the complete set of 
Pareto-optimal solutions in the objective space is then 
called the Pareto-optimal front. 

In this work, the optimization problem can be 
attributed as a bi-objective issue (it can, however, be 
extended to the multi-optimization case) whose two 
objectives are power and timing yield. AWS is an 
adaptive approach for multi-objective optimization. 
Different from the traditional weighted sum method, 
the weighting factor in AWS is not predetermined but 
evolves according to the nature of the Pareto front. By 
updating the weighting factor adaptively, AWS fo-
cuses on unexplored regions where no solution can be 
obtained by the traditional method; therefore, it is 
able to extract new Pareto-optimal solutions in these 
regions and generate a well-distributed Pareto front 
(Kim and de Weck, 2005). 

4.2  Bi-objective optimization procedure 

For the bi-objective problem (17), AWS starts 
with a traditional weighted sum optimization proce-
dure performed on the objective functions normalized 
in the objective space. To be specific, given two ob-
jective functions, maximizing power yield YL and 
maximizing timing yield YD, and design parameters 
x[L, Vth, Tox, Vdd, T], the optimization model (17) can 
be stated as 

L D

L U th ox dd

max (1 )

subject to , [ , , , , ],

[0,1],

Y Y

x x x x L V T V T

 



  
  



   (18) 

 
where LY   and DY   are the normalized objective func-

tions of YL and YD, respectively, which are defined as 
 

U U
L L D D

L DN U N U
L L D D

,     .
Y Y Y Y

Y Y
Y Y Y Y

   
 

           (19) 

 

Take LY   as an example. Assume 1
x  and 2

x  are 

the optimal solutions for the single objective optimi-

zation of YL and YD, respectively. Then, U
LY  can be 

obtained by U
L L 1( ),Y Y  x  and N

LY  is determined by 
N

L L 1 D 2max[ ( ), ( )].Y Y Y  x x  Normalized DY   can be 

obtained in the same manner. The uniform step size of 
the weighing factor α is set as α1/n0, where n0 is the 
number of divisions (typically, n05–10). By chang-
ing the weighting factor α according to the step size 
α, a small set of optimal solutions for problem (18) 
will be obtained. 

Generally, the optimal solutions obtained from 
problem (18) are not evenly distributed. Solutions 
may quite often appear only in some parts of the Pa-
reto front, while no solutions are obtained in other 
parts. The distances between adjacent solutions differ 
much. To make the solutions well distributed on the 
Pareto front, the regions between adjacent solutions 
with long distances should be further explored. Fig. 4 
shows an example of the Pareto front in the power- 
delay objective space for a specific design. Clearly, 
new optimal solutions need to be extracted from re-
gions 1 and 2 to distribute all Pareto-optimal points 
uniformly on the Pareto front. 

The regions in the power-delay objective space 
that need further refinement can be identified by 
computing the distances between adjacent solutions. 
If the distance is smaller than a preset value, no fur-
ther refinement will be conducted in this region. 
Otherwise, the region with the long distance between 
adjacent solutions becomes a feasible region in which 
new solutions should be extracted. New solution ex-
traction is implemented by imposing additional ine-
quality constraints and solving a sub-optimization 
problem (Kim and de Weck, 2005). 
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The procedure is shown in Fig. 5. P1 and P2 are 
two end points of this region.  is an offset distance 
defined by the user to control the final density of the 
Pareto solution distribution, with horizontal compo-
nent 1 and vertical component 2 parallel to the YL 
and YD axes, respectively. The sub-optimization pro-
cedure to obtain new solutions in this region can be 
formulated as 
 

L

D

L D

L 1 1

D 2 2

L U th ox dd

max (1 )

subject to ( ) ,

 ( ) ,

 , [ , , , , ],

[0,1],

i i

Y

Y

i

Y Y

Y x P

Y x P

x x x x L V T V T

 







  

 

 
  



   (20) 

 

where LY
iP  and DY

iP  (i=1, 2) are the YL and YD posi-

tions of the end points P1 and P2, respectively. The 
weighting factor αi for each feasible region is updated 
adaptively according to the relative length of this 
region. By solving the sub-optimization problem (20), 
new solutions can be identified in this region (Fig. 5c). 
The procedure described above is repeated in all fea-
sible regions until a complete set of new solutions has 
been obtained. 

Fig. 6 shows an example to explain the detailed 
procedures of this optimization framework. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two objective functions in problem (18), 

power yield and timing yield, have been established 
by the yield prediction procedure in Section 3. The 
first step is to generate the first round solutions using 
the traditional weighted sum method. By setting Δα, a 
small set of solutions is specified. These are not close 
enough to form a well-distributed Pareto front. By 
calculating the distances between adjacent solutions, 
we identify two feasible regions where extraction of a 
new solution is necessary (Fig. 6a). 

The next step is further refinement in these two 
feasible regions by solving the sub-optimization 
problem (20). We need to determine the weighting 
factors i in (20) for each region. First, the number of 
further refinements required in each feasible region 
can be evaluated based on the relative length of the 
region (Kim and de Weck, 2005). We denote this 
number as ni. Then, i can be updated adaptively with 
a uniform step size: 
 

1 / .i in                              (21) 

 
In each region, with i substituted into Eq. (21), 

a set of new solutions is generated by solving this 
sub-optimization problem (Fig. 6b). Now the Pareto 
solutions are uniformly distributed on the Pareto 
front. 

Fig. 6  First round solutions of optimization procedures 
(a) and second round refinement of optimization proce-
dures (b) 
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Fig. 5  Suboptimization procedure to extract new solu-
tions: (a) initial solutions, P1 and P2; (b) feasible region
determination; (c) new solutions 

Fig. 4  An example of Pareto front for power and timing 
yield 
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5  Experimental results 
 

This section presents the results of the proposed 
bi-objective optimization framework. The computer 
used to perform all experiments has a quad-core  
2.5 GHz CPU and a 4 GB RAM. The coefficients in 
the leakage model and delay model are determined by 
HSPICE simulations. Here, according to the empiri-
cal data in Visweswariah (2003), we model the pro-
cess variations as truncated Gaussian distributions. 
The 3 values of effective channel length, threshold 
voltage, and oxide thickness are 20%, 10%, and 8% of 
the nominal values, respectively. The inter- and  
intra-chip variations of the process parameters ac-
count for 50%, respectively. With regard to envi-
ronmental parameters, power-supply voltage and 
on-chip temperature are assumed as being distributed 
uniformly. The nominal values of voltage and tem-
perature are 1.1 V and 25 C, respectively. The 
maximum voltage drop is 0.11 V (10% of the nominal 
value). The maximum deviation on on-chip temper-
ature is 10 C. The effectiveness of the algorithm is 
evaluated by using ISCAS benchmark circuits. 

As mentioned above, the proposed framework is 
capable of handling arbitrary correlations among 
parameter variations when predicting the probability 
bounds for leakage power and gate delay. To verify 
this point, we choose circuit C432 and run Monte 
Carlo simulations under correlation assumptions. 
Positive, negative, and no correlations among PVT 
parameters are taken into account for comparison. 
Fig. 7 demonstrates that the CDFs obtained by cor-
relation simulations are well enclosed by the guaran-
teed bound generated by the CAA method, both for 
leakage and delay distributions. The leakage and 
delay metrics are normalized to respective nominal 
values. The results also indicate the importance of 
taking parameters’ correlation into account; without 
consideration of correlation, it tends to give an 
over-optimistic prediction of parametric yield. 

Having verified the reliability of CAA predicted 
probability bounds, we can perform the proposed 
power-delay bi-objective optimization procedure 
based on the predicted leakage distribution FL and 
delay distribution FD. It needs to be indicated that 
leakage power exhibits a greater sensitivity than gate 
delay. Larger spread in leakage variability can be 
observed in Fig. 7. This difference is due to the ex-

ponential term in the leakage model, which propa-
gates significant fluctuation in leakage power. 

To describe optimization results, in this step, we 
take circuit C432 as an example. We set the specific 
delay limit, i.e., D0 in Eq. (17) as 1.02× of the nominal 
delay, and L0 is set as 1.13× of the nominal leakage 
power. The power and timing yield are defined as YL 
P{Leakage1.13Inom} and YDP{Delay1.02Dnom}, 
respectively. The proposed method generates suffi-
cient solutions evenly distributed on the Pareto front, 
as shown in Fig. 8. Also, design values are randomly 
selected to generate the sample points in the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Leakage power distributions (a) and gate delay 
distributions (b) for circuit C432 
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Fig. 8  Monte Carlo verification for circuit C432 
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power-delay objective space. Fig. 8 shows that the 
Pareto front predicted by the proposed method 
matches Monte Carlo results perfectly. 

We now present the optimization results on 
various benchmark circuits. The experimental results 
demonstrate that about 30 solutions are obtained for 
each circuit (second column in Table 1). A few of the 
solutions, generated according to certain weighting 
factors, are listed in Table 1. On the other hand, con-
sidering a given yield level, we optimize the leakage 
and delay metrics that produce the given yield value. 
Optimization results on various ISCAS benchmark 
circuits are listed in Table 2, at 95% power and level 
of timing yield. Likewise, only a few of the solutions 
are provided. Both leakage power and delay values in 
Tables 1 and 2 have been normalized to their nominal 
values. 

To further demonstrate the effectiveness of our 
bi-objective framework, we choose circuit C432 in 
particular to provide a set of Pareto fronts under  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

different metric limits. When the timing constraint is 
fixed at 1.02× nominal delay, Fig. 9 shows the opti-
mization results for various power yield criteria. Pa-
reto fronts are generated by AWS according to dif-
ferent values of power limit L0. The Pareto fronts for  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  A few Pareto-optimal solutions obtained by AWS for parametric yield 

Circuit 
name 

Number of 
solutions 

Power yield Timing yield Runtime 
(s) α1.0 α0.5 α0 α1.0 α0.5 α0 

C432 21 0.9947 0.8176 0.1037 0.9370 0.9608 0.9883 41 

C499 21 0.9947 0.8200 0.1037 0.9209 0.9479 0.9797 37 

C880 18 0.9947 0.6987 0.0180 0.9568 0.9788 0.9844 81 

C1335 20 0.9940 0.8171 0.1034 0.9474 0.9688 0.9893 85 

C1908 23 0.9943 0.8507 0.0182 0.9054 0.9161 0.9446 106 

C2670 20 0.9942 0.8200 0.0179 0.9326 0.9554 0.9672 148 

C3540 22 0.9947 0.8199 0.1037 0.9369 0.9595 0.9506 201 

C5315 23 0.9947 0.1037 0.0181 0.9163 0.9709 0.8741 253 

C6288 23 0.9946 0.1037 0.0179 0.9283 0.9652 0.9611 361 

C7552 21 0.9947 0.1036 0.0181 0.9359 0.9850 0.9707 373 

Table 2  A few Pareto-optimal solutions obtained by AWS for yield percentile 

Circuit 
name 

Number of 
solutions 

Leakage (95%) Delay (95%) Runtime 
(s) α1.0 α0.5 α0 α1.0 α0.5 α0 

C432 15 1.071 1.262 1.740 1.029 1.072 0.989 41 

C499 15 1.070 1.197 1.738 1.039 1.025 0.998 37 

C880 14 1.070 1.355 1.739 1.015 0.997 0.979 81 

C1335 14 1.071 1.479 1.740 1.022 0.996 0.985 85 

C1908 15 1.070 1.245 1.739 1.047 1.033 1.008 106 

C2670 15 1.069 1.240 1.739 1.031 1.017 0.994 148 

C3540 15 1.070 1.257 1.740 1.029 1.014 0.991 201 

C5315 15 1.070 1.264 1.740 1.043 1.028 1.005 253 

C6288 15 1.070 1.428 1.739 1.040 1.019 1.005 361 

C7552 14 1.071 1.254 1.740 1.030 1.015 0.991 373 

 

Fig. 9  The Pareto fronts for circuit C432 under different 
power limits 
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selecting different D0 values under a fixed power limit 
L01.13Inom are described in Fig. 10. Each curve in 
the power-delay objective space represents a Pareto 
front, while each point in these curves denotes a par-
ticular Pareto-optimal solution. All these Pareto- 
optimal points are obtained by the AWS method, and 
they compose the well-distributed Pareto fronts, 
providing the designers with useful and flexible 
trade-off information between power and timing 
yield.  

Finally, Fig. 11 provides the optimal power- 
delay curves for circuit C432 at different yield levels. 
Both power and timing yields are selected identically 
at 99%, 95%, and 85%, respectively. The respective 
Pareto-optimal curves of power and delay percentiles 
can be extracted by AWS accordingly. 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
6  Conclusions 
 

This paper proposes a novel power-delay 
bi-objective optimization methodology for statistical 

yield optimization. Regarding both power and timing 
yield as objective functions, an efficient bi-objective 
optimization framework is suggested to optimize 
these two goals simultaneously under PVT parameter 
variations. The proposed algorithm was verified using 
ISCAS benchmark circuits, demonstrating its  
efficiency. 
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