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Abstract: The feature extraction algorithm plays an important role in face recognition. However, the extracted
features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is that it
eliminates the redundancy among the extracted discriminant features, while many algorithms generally ignore this
property. In this paper, we introduce a novel feature extraction method called local uncorrelated local discriminant
embedding (LULDE). The proposed approach can be seen as an extension of a local discriminant embedding (LDE)
framework in three ways. First, a new local statistical uncorrelated criterion is proposed, which effectively captures
the local information of interclass and intraclass. Second, we reconstruct the affinity matrices of an intrinsic graph
and a penalty graph, which are mentioned in LDE to enhance the discriminant property. Finally, it overcomes the
small-sample-size problem without using principal component analysis to preprocess the original data, which avoids
losing some discriminant information. Experimental results on Yale, ORL, Extended Yale B, and FERET databases
demonstrate that LULDE outperforms LDE and other representative uncorrelated feature extraction methods.
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1 Introduction

Face recognition has received increasing atten-
tion in computer vision and pattern recognition be-
cause of its special advantages. However, it is a
challenge to analyze the high dimensionality of in-
put data. To resolve this problem, numerous dimen-
sionality reduction methods have been proposed in
recent years. They aim to find a low-dimensional
subspace of high-dimensional data and project the
original data on it. The most popular dimensional-
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ity reduction techniques may be principal component
analysis (PCA) (Turk and Pentland, 1991) and lin-
ear discriminant analysis (LDA) (Belhumeur et al.,
1997). PCA aims to calculate the project vectors of
the low-dimensional subspace, in which the covari-
ance matrix of the training set is maximized. Unlike
PCA which is unsupervised, LDA is a supervised fea-
ture extraction method, which tends to find a linear
transformation that maximizes the interclass scatter
and minimizes the intraclass scatter simultaneously.
It is generally believed that LDA outperforms PCA.

Even though PCA and LDA preserve the global
linear Euclidean structure of the original data, they
fail to discover the underlying low-dimensional man-
ifold structure. Many manifold learning algorithms
have been proposed to resolve this issue. The the-
oretical foundation of manifold learning is based on
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the assumption that the high-dimensional data lies
on an intrinsic low-dimensional submanifold. The
most representative manifold learning algorithms
contain local linear embedding (LLE) (Roweis and
Saul, 2000), Isomap (Tenenbaum et al., 2000), and
Laplacian eigenmap (LE) (Belkin and Niyogi, 2003).
These methods are more suitable for preserving
the local geometrical structure of the original data
rather than obtaining discriminant features. That
is because none of these algorithms can obtain a
low-dimensional representation of a new test sam-
ple, which is the so-called ‘out of sample’ problem.
One common way to deal with this problem is to
construct an explicit linear mapping between the
high-dimensional data and the low-dimensional sub-
space. Locality preserving projection (LPP) (He and
Niyogi, 2003) is a typical representation method of
this approach. However, LPP does not take the la-
bel information of samples into account. Thus, more
recent studies have made use of label information
and derived a lot of supervised feature extraction
algorithms, such as supervised optimal locality pre-
serving projection (SOLPP) (Wong and Zhao, 2012)
and local linear discriminant analysis (LLDA) (Fan
et al., 2011).

Yan et al. (2007) presented a general formulation
called graph embedding, and the above-mentioned
algorithms, such as PCA, LDA, LPP, LLE, and the
recently proposed tensor based algorithms, can all
be reformulated within this common framework. In
graph embedding, two graphs should be constructed,
i.e., the specific intrinsic graph G = {X,W } that
describes certain enhanced statistical or geometric
properties of the original data, and the penalty graph
GP = {X,WP} that demonstrates statistical or ge-
ometric properties of the original data that should
be constrained. Marginal Fisher analysis (MFA)
was developed using the graph embedding frame-
work (Yan et al., 2007). Another popular algorithm
based on graph embedding is local discriminant em-
bedding (LDE) (Chen et al., 2005). Note that LDE
and MFA are essentially the same.

The aforementioned algorithms also achieve
good classification accuracy through experiments.
However, an important property named ‘statistical
uncorrelation’ is ignored or not maintained. The sta-
tistical uncorrelated criterion aims to eliminate the
redundancy among the extracted discriminant fea-

tures. Jin et al. (2001) introduced an uncorrelated
optimal discriminant vector (UODV) and a related
theorem. To cope with the disadvantage of UODV,
which cannot reflect the total scatter of the whole
sample set, Jing et al. (2003) proposed an improved
uncorrelated optimal discriminant vector (IUODV).
However, they considered only a globally statisti-
cal uncorrelated criterion over all data. Thus, a
local uncorrelated discriminant transform (LUDT)
was further recommended, and a local uncorrelated
criterion via reconstructing the total scatter matrix
by redefining the expectation of each data point was
proposed (Jing et al., 2011). However, LUDT cannot
take the class information of data into account, which
is crucial to classification. Chen et al. (2013) recom-
mended the local uncorrelated discriminant projec-
tion (LUDP) depending on a reformative local un-
correlated criterion and imposed this new constraint
into maximum margin analysis. Overall, all these
methods fail to capture the local information of in-
terclass and intraclass simultaneously.

To resolve this problem, a novel feature extrac-
tion method called local uncorrelated local discrimi-
nant embedding (LULDE) is proposed in this paper.
There are several contributions in the proposed ap-
proach. First, we propose a new local uncorrelated
criterion, which effectively preserves both the local
information of interclass and the local information of
intraclass. Second, we reconstruct the affinity matri-
ces of graphs G and GP, which makes our algorithm
obtain more discriminant capacity than the conven-
tional LDE algorithm. Finally, the proposed method
uses a different approach from PCA to preprocess the
high-dimensional data, which overcomes the small-
sample-size (SSS) problem.

2 Review of local discriminant
embedding

Suppose that there is a training matrix X =

[x1,x2, . . . ,xn], where xi ∈ R
m (i = 1, 2, . . . , n) and

m is the dimensionality of the sample point. Each of
them belongs to one of c classes {X1,X2, . . . ,Xc}.
The number of training samples in class i, ni, satisfies
∑c

i=1 ni = n. The class label of data point xi is
denoted by lxi . In this section, we will give a brief
review of LDE.

LDE (Chen et al., 2005) aims to find a



214 Ma et al. / Front Inform Technol Electron Eng 2016 17(3):212-223

low-dimensional embedding such that data points of
the same class maintain their intrinsic neighbor re-
lationships, whereas neighboring points of different
classes keep away from each other.

To discover both geometrical and discriminant
structures of the data manifold, two graphs are built:
intrinsic graph G and penalty graph GP. Assume
that the sets of intraclass and interclass neighbors of
xi are indicated by NNI(xi) and NNE(xi), respec-
tively. We have

NNI(xi) = {xj|lxi = lxj and

[xi ∈ Nk1(xj) or xj ∈ Nk1(xi)]}, (1)

NNE(xi) = {xj|lxi �= lxj and

[xi ∈ Nk2(xj) or xj ∈ Nk2(xi)]}, (2)

where Nk(x) denotes the k-nearest neighbors of x.
Let W andWP denote the affinity matrices of graphs
G and GP, respectively. Each element of these ma-
trices can be defined as follows:

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

e−||xi−xj ||2/t,

xi ∈ NNI(xj) or xj ∈ NNI(xi),

0, otherwise,

(3)

Wpij =

⎧
⎪⎪⎨

⎪⎪⎩

e−||xi−xj ||2/t,

xi ∈ NNE(xj) or xj ∈ NNE(xi),

0, otherwise,

(4)

where t is a constant, usually set to the average of
squared distances between all pairs. Thus, the opti-
mization problem of LDE is as follows:

J(V ) = argmax
∑

i,j

||V Txi − V Txj||2WPij

s.t.
∑

i,j

||V Txi − V Txj||2Wij = 1. (5)

Using simple matrix algebra, the aforemen-
tioned objective function can be reformulated as

J(V ) = argmax
tr{V TX(DP −WP)X

TV }
tr{V TX(D −W )XTV }

= argmax
tr(V TXLPX

TV )

tr(V TXLXTV )
, (6)

where tr(W ) denotes the trace of matrix W , D and
DP are diagonal matrices, whose entries are column
(or row, since W and WP are symmetric matrices)

sums of W and WP, respectively, and L and LP de-
note the Laplacian matrices associated with graphs
G and GP, respectively.

Then we obtain a projection matrix V =

[v1,v2, . . . ,vd] whose columns are the generalized
eigenvectors corresponding to the d largest eigenval-
ues of the equation

XLPX
Tvj = λXLXTvj . (7)

3 Local uncorrelated local discriminant
embedding

3.1 Statistical uncorrelation

The statistical uncorrelation is a very impor-
tant property, and the extracted factors are ignored
or not preserved in some algorithms. This property
is aimed to eliminate the redundancy among the ex-
tracted discriminant features and ensure that the ex-
tracted discriminant projection vectors have no over-
lapping discriminant information from the statistical
point of view.

The statistical uncorrelation is defined as follows
(Jin et al., 2001):

vT
j STvi = 0 (i = 1, 2, . . . , j − 1), (8)

where ST denotes the total scatter matrix satisfying

ST =

n∑

i,j=1

(xi − xj)(xi − xj)
T. (9)

From the aforementioned equation, we can find
that the classical statistical uncorrelation constraint
is a globally statistical uncorrelation. However, the
local information is more important than the global.
Recently, some local uncorrelated approaches were
introduced by extracting the local information of the
data (Jing et al., 2011; Chen et al., 2013). However,
these algorithms cannot use the local information of
intraclass and interclass simultaneously.

In this study, we try to reconstruct the total
scatter matrix by redefining a local matrix LL, and
construct the reformative uncorrelated constraints.

3.2 Local statistical uncorrelation

First, we construct a matrix LL that preserves
the local information about the same class and the
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different classes. The entry of LL is defined as
follows:

LLij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−||xi−xj||2/t(1 + e−||xi−xj ||2/t),

xi ∈ NNI(xj) or xj ∈ NNI(xi),

e−||xi−xj||2/t(1 − e−||xi−xj ||2/t),

xi ∈ NNE(xj) or xj ∈ NNE(xi),

0, otherwise,

(10)

where NNI(xi) and NNE(xi) have been defined in
Eqs. (1) and (2), respectively. Then we redefine the
total scatter matrix SL as follows:

SL =

n∑

i,j=1

LLij(xi − xj)(xi − xj)
T. (11)

Hence, we define a new local uncorrelated constraint
as follows:

vT
j SLvi = 0 (i = 1, 2, . . . , j − 1). (12)

3.3 Local uncorrelated local discriminant
embedding

To use the local information about the same
class and the different classes, we will introduce the
proposed LULDE, which is derived from the graph
embedding framework. First, we redefine the affinity
matrices W and WP as follows:

W̃ij =

⎧
⎪⎪⎨

⎪⎪⎩

e−||xi−xj||2/t(1 + e−||xi−xj ||2/t),

xi ∈ NNI(xj) or xj ∈ NNI(xi),

0, otherwise,

(13)

W̃Pij =

⎧
⎪⎪⎨

⎪⎪⎩

e−||xi−xj ||2/t(1− e−||xi−xj||2/t),

xi ∈ NNE(xj) or xj ∈ NNE(xi),

0, otherwise.
(14)

Thus, the optimization problem of LULDE is as
follows:

J(V ) = argmax

∑
i,j ||V Txi − V Txj||2W̃Pij

∑
i,j ||V Txi − V Txj ||2W̃ij

s.t. V TV = I,vT
j SLvi = 0, i = 1, 2, . . . , j − 1,

(15)

where I is the identity matrix. Using simple matrix
algebra, the aforementioned objective function can

be reformulated as

J(V ) = argmax
tr{V TX(D̃P − W̃P)X

TV }
tr{V TX(D̃ − W̃ )XTV }

= argmax
tr(V TXL̃PX

TV )

tr(V TXL̃XTV )

= argmax
tr(V TSPV )

tr(V TSV )
, (16)

where SP = XL̃PX
T, S = XL̃XT, D̃ and D̃P

are the redefined diagonal matrices, whose entries
are column (or row, since W̃ and W̃P are symmetric
matrices) sums of the redefined W̃ and W̃P, respec-
tively, and L̃ and L̃P denote the Laplacian matrices
associated with graphs G and GP, respectively.

The first discriminant vector, v1, which is the
eigenvector corresponding to the maximum eigen-
value of S−1SP, can be easily obtained. Then
according to the following theorem, we can calcu-
late the other d − 1 optimal discriminant vectors
iteratively:
Theorem 1 If S and SL are nonsingular matrices,
then vj (j ≥ 2) is the eigenvector corresponding to
the maximum eigenvalue of the following equation:

PS−1SPvj = λvj , (17)

where
{
P = I − S−1SLVd(V

T
d SLS

−1SLVd)
−1V T

d SL,

Vd = [v1,v2, . . . ,vj−1].

(18)
Proof First, we use the Lagrange multiplier
method to transform Eq. (16) including the local
uncorrelated constraint

L(vj) = vT
j SPvj − λvT

j Svj −
j−1∑

i=1

uiv
T
j SLvi. (19)

Letting the partial derivatives ∂L(vj)/∂vj equal zero
and u = [u1, u2, . . . , uj−1], we have

∂L(vj)

∂vj
= 2SPvj − 2λSvj − SLVdu = 0. (20)

Left multiplying Eq. (20) by vT
i SLS

−1 (i =

1, 2, . . . , j − 1), we obtain a set of j − 1 equations
as follows:

2vT
i SLS

−1SPvj − 2λvT
i SLS

−1Svj

− vT
i SLS

−1SLVdu = 0 (i = 1, 2, . . . , j − 1). (21)
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Eq. (21) can be represented in the form of matrix:

2V T
d SLS

−1SPvj − V T
d SLS

−1SLVdu = 0. (22)

Therefore, we obtain

u = 2(V T
d SLS

−1SLVd)
−1V T

d SLS
−1SPvj . (23)

Left multiplying Eq. (20) by S−1, we can obtain

2S−1SPvj − 2λvj − S−1SLVdu = 0. (24)

Substituting Eq. (23) into Eq. (24) leads to

2S−1SPvj − 2λvj − 2S−1SLVd

· (V T
d SLS

−1SLVd)
−1V T

d SLS
−1SPvj = 0, (25)

i.e.,

(I − S−1SLVd(V
T
d SLS

−1SLVd)
−1V T

d SL)

· S−1SPvj = λvj .

3.4 Small-sample-size (SSS) problem

In many real face recognition problems, the di-
mension of data is far greater than the number of
samples, which causes the matrix based on the data
to be singular. This is the well-known SSS problem.
When suffering from the SSS problem, many algo-
rithms cannot continue to work. To deal with this
problem, many methods have been proposed usually
applying PCA to reduce the dimensionality of the
original data. However, the PCA method simply
abandons the null space of the covariance matrix of
the training set, and this may lose some discriminant
information. In this study, the proposed algorithm
can avoid PCA.

We can see that the redefined matrix SL is the
sum of matrices S and SP, i.e., SL = S+SP. Hence,
we remove the null space of SL, and project the sam-
ples into its range space. Suppose U ∈ R

m×d (d �
m) is the projection matrix. Then these matrices
can be expressed as SL = UTSLU , S = UTSU ,
and SP = UTSPU . Thus, we make these matrices
nonsingular and the computation is then clearly re-
duced and the SSS problem can be overcome. The
whole procedure of LULDE is summarized in Algo-
rithm 1.

4 Experiments and analysis

In this section, we evaluate the effectiveness of
the proposed LULDE method. The performance of

Algorithm 1 Local uncorrelated local discriminant
embedding (LULDE)
Input: training set X = [x1,x2, . . . ,xn] ∈ R

m×n for c

classes, and the desired final dimensionality d.
Output: optimal projection matrix V .
1: Construct the affinity matrices ˜W and ˜WP defined

in Eqs. (13) and (14).
2: Construct the local uncorrelated matrix LL defined

in Eq. (10).
3: Compute SL according to Eq. (11) and S and SP

according to Eq. (16).
4: Compute the projection matrix U which is the eigen-

vector corresponding to the nonzero eigenvalue of
SL.

5: Project SL, S, and SP to the range space of SL,
SL = UTSLU , S = UTSU , and SP = UTSPU .

6: Compute the first projection vector, v1, which is the
eigenvector corresponding to the maximum eigen-
value of S−1SP.

7: Compute the other projection vector vj (j ≥ 2)

which is the eigenvector corresponding to the maxi-
mum eigenvalue of Eq. (17), until j > d.

8: The d projection vectors construct the projection
matrix VLULDE = [v1,v2, . . . ,vd].

9: Obtain the optimal projection matrix V =

UVLULDE.

LULDE was compared to those of LDA, IUODV,
LUDT, LUDP, and LDE on four databases, namely,
Yale, ORL, Extended Yale B, and FERET. To over-
come the SSS problem, we applied PCA to prepro-
cess the data before implementing the feature extrac-
tion algorithm (IUODV, LUDT, LDE). About 99%
of variance was retained in our experiments. For
LUDT and LUDP, we set the number of the nearest
neighbors (k1) between 1 and 10 and chose the best
accuracy as the final result. For LDE and LULDE
algorithms, we fixed k1 = 5 and k2 = 10 (also set
k2 = 20 in big databases, e.g., Extended Yale B and
FERET, as a contrast), and set the heat parameter t
to the average of squared distances between all pairs
about databases. In the experiments, the nearest
neighbor (NN) classifier with the Euclidean distance
metric was employed as the classification algorithm.
All experiments were repeated 10 times with differ-
ent training samples and the average accuracy rates
were recorded.
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4.1 Experiments on the Yale database

In the Yale face database, there are 165 gray
images of 15 persons, and each individual has 11 im-
ages with a resolution of 92 × 112 pixels. The im-
ages of the cropped version contain lighting varia-
tions and facial expression variations (normal, happy,
sad, sleepy, surprised, and winking). In our experi-
ment, each image was manually cropped and resized
to 32 × 32 pixels. Some images from one person are
shown in Fig. 1.

Fig. 1 Images of one person from the Yale database

In this experiment, we randomly chose r (r =

2, 3, . . . , 8) images for each person as training sam-
ples, and the remainder for testing. Table 1 lists the
best average recognition rates and the corresponding
standard deviations of the different methods with
different training samples. It is observed that the
recognition rates of all methods improved signifi-
cantly as the number of training samples increased.
That is because more information can be obtained
with a large set of training data than with a small
set. We also observe that the classification results of
our proposed method were better than those of the
other compared algorithms on all training subsets.
Fig. 2 shows the recognition rate versus dimensional-
ity, where we chose five training samples per person.
Fig. 3 shows the recognition rate versus the number
of training samples per class on the Yale database.
Our proposed LULDE algorithm also consistently
outperformed the other methods.

Finally, to investigate the performance of
LUDT, LUDP, LDE, and LULDE methods under
k1, we randomly selected eight images for each per-
son as training samples, with the remaining images
for testing. We fixed k2 = 10 and set k1 between 1
and 10. The experiments were repeated 10 times and
the best average recognition rates were recorded in
Table 2. Fig. 4 displays the recognition rate versus
k1.

4.2 Experiments on the ORL database

The ORL face database includes 400 face images
of 40 individuals, and has different variations includ-
ing expression, lighting, and facial details. There are
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Fig. 2 Recognition rate versus dimensionality on the
Yale database
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Fig. 3 Recognition rate versus the number of training
samples on the Yale database
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Fig. 4 Recognition rate versus k1 on the Yale
database

10 images for each subject, and the resolution of each
image is 92× 112 pixels. The images were resized to
32 × 32 pixels in our experiment. Fig. 5 shows sev-
eral images of one person. We randomly grouped the
images of each person into two parts. One part was
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Table 1 Performance comparisons on the Yale database for different numbers of training samples per class

Algorithm
Maximum average recognition rate±standard deviation (%)

r = 2 3 4 5 6 7 8

LDA 45.19±3.14 60.67±5.57 69.52±4.44 73.89±5.52 75.20±2.20 78.67±3.58 81.78±5.52
IUODV 50.00±3.48 60.42±3.36 67.43±4.42 71.00±5.65 72.13±2.22 75.33±5.82 75.11±5.42
LUDT 53.85±4.80 64.08±3.92 70.19±3.01 74.11±4.80 77.20±3.17 79.33±4.98 81.33±5.66
LUDP 43.85±3.29 50.58±3.69 54.38±3.69 58.22±2.47 60.40±3.27 58.67±8.20 64.89±9.06
LDE 52.07±2.79 64.33±3.98 69.14±2.95 72.78±5.11 76.40±4.49 79.00±5.99 81.56±6.55
LULDE 56.07±2.20 67.83±3.47 73.24±3.25 77.00±2.92 80.00±3.82 84.50±4.65 85.11±5.83

Table 2 Results under different k1’s on the Yale database

Algorithm
Best average recognition rate (%)

k1 = 1 2 3 4 5 6 7 8 9 10

LUDT 80.22 76.89 77.33 78.44 77.33 79.11 79.33 80.67 81.11 81.33
LUDP 64.44 64.67 64.67 64.89 64.89 64.44 64.44 64.44 64.22 64.22
LDE 72.67 80.44 81.78 81.78 81.56 81.78 80.89 80.89 80.89 80.89
LULDE 80.67 83.33 84.44 84.67 85.11 84.67 85.11 85.11 85.11 85.11

Fig. 5 Images of one person from the ORL database

used as training samples with r (r = 2, 3, . . . , 8) im-
ages being chosen for each individual, and the other
as testing samples.

Table 3 reports the maximum average recogni-
tion rates and the corresponding standard deviations
of the different methods with different numbers of
training samples. The proposed method (LULDE)
achieved the best recognition rate compared with
LDA, IUODV, LUDT, LUDP, and LDE. Fig. 6 il-
lustrates the recognition rate versus the dimension-
ality, where we chose five training samples per per-
son. The recognition rate versus different training
samples per class is shown in Fig. 7. Figs. 6 and 7
show that the proposed method (LULDE) also con-
sistently outperformed the other methods in most
experimental cases.

To investigate the capability of the LUDT,
LUDP, LDE, and LULDE methods with different
numbers of nearest neighbors (k1), we randomly se-
lected eight images for each person as training sam-
ples, with the remaining images for testing. We fixed
k2 = 10 and set k1 between 1 and 10. The exper-
iments were repeated 10 times and the maximum
average recognition rates were recorded in Table 4.
Fig. 8 displays the recognition rate versus k1.
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Fig. 6 Recognition rate versus dimensionality on the
ORL database
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Fig. 7 Recognition rate versus the number of training
samples per class on the ORL database
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Table 3 Performance comparisons on the ORL database for different numbers of training samples per class

Algorithm
Maximum average recognition rate±standard deviation (%)

r = 2 3 4 5 6 7 8

LDA 77.59±3.32 86.39±2.64 91.71±1.84 94.40±2.48 95.31±1.96 96.58±1.94 96.13±1.24
IUODV 78.09±3.41 84.25±2.42 90.17±1.88 93.85±2.08 95.38±1.54 95.50±1.72 95.38±1.87
LUDT 78.84±2.92 86.50±1.59 91.63±2.19 94.25±2.44 95.94±1.51 96.00±1.41 97.00±1.05
LUDP 71.13±2.75 79.00±1.80 84.13±3.01 88.05±2.67 91.69±2.23 93.00±2.12 94.13±2.64
LDE 80.91±2.85 86.61±2.20 91.25±2.10 94.15±2.10 96.19±1.92 96.67±1.30 97.38±0.92
LULDE 83.50±2.68 91.21±1.76 95.17±0.97 96.80±1.83 97.75±1.56 98.42±1.33 99.13±0.60

Table 4 Results under different k1’s on the ORL database

Algorithm
Best average recognition rate (%)

k1 = 1 2 3 4 5 6 7 8 9 10

LUDT 97.00 95.25 95.13 95.50 95.75 95.87 96.13 96.38 96.63 96.38
LUDP 94.13 94.13 94.13 94.13 94.13 94.13 94.13 94.13 94.13 94.13
LDE 94.50 97.50 97.88 97.62 97.38 97.62 97.50 97.50 97.50 97.50
LULDE 98.75 99.13 99.13 98.88 99.13 99.13 99.13 99.13 99.13 99.13
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Fig. 8 Recognition rate versus k1 on the ORL
database

4.3 Experiments on the Extended Yale B
database

The Extended Yale B face database contains
many gray face images of 38 subjects under different
pose and illumination conditions. In our experiment,
we chose a subset of the database that includes only
those under illumination conditions. Each person
had 64 different front images. All the images were
resized to a resolution of 32×32 pixels. Some images
from one person are illustrated in Fig. 9.

We randomly chose r (r = 5, 10) images for each
person as training samples, and the remainder for
testing. Table 5 shows the maximum average recog-
nition rates and the corresponding standard devia-

Fig. 9 Images of one person from the Extended Yale
B database

Table 5 Performance comparisons on the Extended
Yale B database for different numbers of training sam-
ples per class

Algorithm
Maximum average recognition rate

±standard deviation (%)

r = 5 r = 10

LDA 65.85±2.10 79.35±1.59
IUODV 65.23±2.12 79.17±1.50
LUDT 66.46±1.79 80.40±1.25
LUDP 30.77±0.93 43.51±1.15
LDE 65.62±1.87 79.88±1.42
LULDE 68.73±1.79 81.95±1.45

tions. The proposed method (LULDE) obtained the
best recognition rate when the number of training
samples for each class varied from 5 to 10. Fig. 10
illustrates the recognition rate versus the dimension-
ality, and the number of training samples per sub-
ject was 5. Fig. 10 shows that the LULDE algo-
rithm achieved a higher recognition rate than LDA,
IUODV, LUDT, LDUP, and LDE.

Also, to investigate the capability of the LUDT,
LUDP, LDE, and LULDE methods under different
numbers of nearest neighbors (k1), we randomly se-
lected 10 images for each person as training samples,
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with the remaining images for testing. We set pa-
rameter k1 between 1 and 10, fixed k2 = 10 and also
fixed k2 = 20 as a contrast. The experiments were
repeated 10 times and the best average recognition
rates were recorded in Table 6. Fig. 11 shows the
recognition rate versus k1.

4.4 Experiments on the FERET database

The FERET face database contains 200 indi-
viduals and each person has 7 images which include
different illumination conditions and facial expres-
sions. All the original gray images were resized to
32 × 32 pixels. Fig. 12 illustrates several images of
one person. We randomly grouped the images of each
person into two parts. One part was used as training
samples with r (r = 3, 4) images being chosen for
each individual, and the other as testing samples.

The maximum average recognition rates and
the corresponding standard deviations of the dif-
ferent methods are shown in Table 7. The pro-
posed LULDE algorithm achieved the best recog-
nition rate compared with other methods when the
number of training samples per subject was 3. How-
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Fig. 10 Recognition rate versus dimensionality on the
Extended Yale B database

ever, when using 4 training samples per subject it
did not achieve the best performance. Fig. 13 shows
the recognition rate versus the dimensionality, where
the number of training samples per class was 3.
The recognition rate of LULDE was not as good as
that of IUODV, LUDT, or LDE when the dimension
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Fig. 11 Recognition rate versus k1 on the Extended
Yale B database

Fig. 12 Images of one person from the FERET
database

Table 7 Performance comparisons on the FERET
database for different numbers of training samples
per class

Algorithm
Maximum average recognition rate

±standard deviation (%)

r = 3 r = 4

LDA 37.56±1.95 35.48±1.90
IUODV 77.81±0.63 86.55±1.12
LUDT 76.76±1.44 83.97±1.82
LUDP 36.06±1.08 41.75±1.33
LDE 77.10±1.58 86.47±1.09
LULDE 77.88±1.32 85.23±0.97

Table 6 Results under different k1’s on the Extended Yale B database

Algorithm
Best average recognition rate (%)

k1 = 1 2 3 4 5 6 7 8 9 10

LUDT 79.57 80.25 80.36 80.31 80.38 80.38 80.34 80.34 80.40 80.38
LUDP 43.50 43.49 43.48 43.49 43.50 43.49 43.50 43.51 43.51 43.50
LDE (k2 = 10) 78.17 78.90 79.38 79.68 79.89 80.02 79.94 79.97 79.96 79.96
LDE (k2 = 20) 78.05 78.91 79.41 79.62 79.80 79.93 79.82 79.82 79.83 79.86
LULDE (k2 = 10) 80.19 80.63 81.17 81.85 81.95 82.10 82.05 82.05 82.09 82.09
LULDE (k2 = 20) 80.13 80.77 81.20 81.73 81.95 82.02 82.02 82.11 82.12 82.12
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was below about 50. However, when the dimension
was above 50, the performances of these methods
dropped significantly, and our method kept a bet-
ter balance. So, we conclude that the advantage of
LULDE is obvious when the dimension is higher, and
in general LULDE outperforms the other methods.

Finally, to investigate the performance of the
LUDT, LUDP, LDE, and LULDE methods under
different numbers of nearest neighbors (k1), we ran-
domly selected 3 images for each person as training
samples, with the remaining images for testing. We
set k1 between 1 and 10, fixed k2 = 10 and also
fixed k2 = 20 as a contrast. The experiments were
repeated 10 times and the best average recognition
rates were recorded in Table 8. Fig. 14 illustrates the
recognition rate versus k1.

4.5 Face images in a 2D space

To visualize the low-dimensional features in the
obtained mapping space, we projected the original
data into a 2D space and took the ORL database as
an example. We chose 5 persons and 6 training sam-
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Fig. 13 Recognition rate versus dimensionality on the
FERET database

ples per person. Fig. 15 shows the data of the ORL
face database embedded in a 2D Euclidean space by
the uncorrelated algorithm. The overlaps of class 2
and class 4 indicate that IUODV and LUDT did not
differentiate each class well. Nevertheless, LULDE
can gather together the points of the same class and
keep away neighboring points of different classes af-
ter embedding. In general, the proposed algorithm
outperforms other representative uncorrelated fea-
ture extraction methods.

5 Conclusions

In this paper, a new feature extraction algo-
rithm named local uncorrelated local discriminant
embedding (LULDE) is proposed. The advantages
of the proposed method are as follows: first, it in-
troduces a new local uncorrelated criterion which ef-
fectively captures the local information of interclass
and intraclass, to eliminate the redundancy among
the extracted discriminant features. Second, it re-
constructs the affinity matrices which are mentioned
in the LDE method, to enhance the discriminant
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Fig. 14 Recognition rate versus k1 on the FERET
database

Table 8 Results under different k1’s on the FERET database

Algorithm
Best average recognition rate (%)

k1 = 1 2 3 4 5 6 7 8 9 10

LUDT 77.75 76.80 77.00 76.85 76.99 76.95 76.94 76.80 77.03 77.09
LUDP 36.06 36.06 36.06 36.06 36.06 36.06 36.06 36.06 36.06 36.06
LDE (k2 = 10) 76.79 77.10 77.10 77.10 77.10 77.10 77.10 77.10 77.10 77.10
LDE (k2 = 20) 77.38 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65
LULDE (k2 = 10) 77.80 77.88 77.88 77.88 77.88 77.88 77.88 77.88 77.88 77.88
LULDE (k2 = 20) 77.69 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00 78.00
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Fig. 15 ORL face images in a 2D Euclidean space using different algorithms: (a) IUODV; (b) LUDT; (c)
LUDP; (d) LULDE

property. Finally, it overcomes the SSS prob-
lem without using PCA to preprocess the origi-
nal data. Extensive experimental results on four
face databases, Yale, ORL, Extended Yale B, and
FERET, demonstrate the effectiveness of the pro-
posed algorithm. However, choosing the number of
nearest neighbors is also an open problem. Future
work will be devoted to parameter selection and de-
veloping a nonparametric algorithm.
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